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Abstract

When answering a question, humans utilize the information
available across different modalities to synthesize a consistent
and complete chain of thought (CoT). This process is normally
a black box in the case of deep learning models like large-scale
language models. Recently, science question benchmarks have
been used to diagnose the multi-hop reasoning ability and
interpretability of an AI system. However, existing datasets
fail to provide annotations for the answers, or are restricted
to the textual-only modality, small scales, and limited domain
diversity. To this end, we present Science Question Answering
(SCIENCEQA), a new benchmark that consists of ∼21k multi-
modal multiple choice questions with diverse science topics
and annotations of their answers with corresponding lectures
and explanations. We further design language models to learn
to generate lectures and explanations as the chain of thought
(CoT) to mimic the multi-hop reasoning process when answer-
ing SCIENCEQA questions. SCIENCEQA demonstrates the
utility of CoT in language models, as CoT improves the ques-
tion answering performance by 1.20% in few-shot GPT-3 and
3.99% in fine-tuned UnifiedQA. We also explore the upper
bound for models to leverage explanations by feeding those
in the input; we observe that it improves the few-shot perfor-
mance of GPT-3 by 18.96%. The data and code are available
at https://scienceqa.github.io .1

Introduction
A long-standing goal of AI systems is to act reliably and learn
complex tasks efficiently like human beings. In the process of
reliable decision making, humans follow an explicit chain-of-
thought (CoT) reasoning process that is typically expressed
as an explanation. However, machine learning models are
trained mostly using a large number of input-output examples
to perform a specific task. These black-box models only
generate the final decision without reliably revealing the
underlying reasoning process. Not surprisingly, it is unclear
if they understand the task and can generalize even though
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they perform well on the benchmark. On the other hand,
humans are able to learn from instructions or explanations
from past experience and generalize them to novel and unseen
problems. This helps them learn more quickly with fewer
data. In this work, we explore if machines can be endowed
with such reasoning abilities in the context of science-based
question answering.

Question: Which type of force 
from the baby's hand opens the 
cabinet door?

Context: A baby wants 
to know what is 
inside of a cabinet. 
Her hand applies 
a force to the door, 
and the door opens.

Answer: The answer is A.

Lecture: A force is a push or a pull that one 
object applies to a second object. The 
direction of a push is away from the object 
that is pushing. The direction of a pull is 
toward the object that is pulling.

Explanation: The baby's hand applies a force 
to the cabinet door. This force causes the door 
to open. The direction of this force is toward 
the baby's hand. This force is a pull.

Options: (A) pull (B) push

BECAUSE:

Figure 1: We construct the SCIENCEQA dataset where a
data example consists of multimodal question answering
information and the grounded lecture and explanation. We
study if QA models can generate a reasonable explanation to
reveal the chain-of-thought reasoning.

Recently, science problem solving benchmarks (Kemb-
havi et al. 2017) have been used to diagnose the multi-hop
reasoning ability and interpretability of AI systems. To an-
swer science questions, a model needs to not only understand
multimodal contents but also extract external knowledge to
arrive at the correct answer. Since these tasks require domain-
specific knowledge and explicit multi-hop reasoning, a model
would be not interpretable if it fails to provide explanations
to reveal the reasoning process. However, current datasets
(Kembhavi et al. 2017, 2016; Sampat, Yang, and Baral 2020)
mostly lack annotated explanations for the answers. To ad-
dress this issue, other science datasets annotate the explana-
tions, but they are restricted to the textual only modality and
limited to small data scales (Jansen et al. 2018; Dalvi et al.
2021; Mihaylov et al. 2018) or a small set of topics (Khot
et al. 2020; Jhamtani and Clark 2020). Therefore, we collect
Science Question Answering (SCIENCEQA), a large-scale
multi-choice dataset that contains multimodal science ques-
tions with explanations and features rich domain diversity.

SCIENCEQA is collected from elementary and high school
science curricula, and contains 21,208 examples along with



lectures and explanations. Different from existing datasets
(Kembhavi et al. 2016, 2017; Sampat, Yang, and Baral 2020),
SCIENCEQA has richer domain diversity from three different
subjects: natural science, social science, and language science.
A typical example consists of a question, multiple choices,
multimodal contexts, a correct answer, as well as a lecture and
an explanation. The lecture and explanation provide general
external knowledge and specific reasons, respectively, for
arriving at the correct answer.

Consider the thoughts one person might have when answer-
ing the question in Figure 1. One first recalls the knowledge
regarding the definition of a force learned from textbooks:
“A force is a push or a pull that ... The direction of a push is
... The direction of a pull is ...”, then forms a line of reason-
ing: “The baby’s hand applies a force to the cabinet door. →
This force causes the door to open. → The direction of this
force is toward the baby’s hand.”, and finally arrives at the
correct answer: “This force is a pull.”. Following (Narang
et al. 2020), we formulate the task to output a natural expla-
nation alongside the predicted answer. In this paper, we train
language models to generate lectures and explanations as the
chain of thought (CoT) to mimic the multi-hop reasoning
process to answer SCIENCEQA questions.

Our experiments show that current multimodal methods
(Yu et al. 2019; Anderson et al. 2018; Kim, Jun, and Zhang
2018; Gao et al. 2019; Li et al. 2019; Lu et al. 2021b) fail
to achieve satisfactory performance on SCIENCEQA and
do not generate correct explanations. Instead, we find that
CoT can help large language models not only in the few-
shot learning setting but also in the fine-tuning setting. When
combined with CoT to generate the lecture and explanation,
the fine-tuned UnifiedQA (Khashabi et al. 2020) achieves an
improvement of 3.99% as opposed to not using CoT in the
fine-tuning stage. The few-shot GPT-3 model (Brown et al.
2020) via chain-of-thought prompting can obtain 75.17% on
SCIENCEQA with an improvement of 1.20% compared to
the few-shot GPT-3 without CoT. Prompted with CoT, GPT-3
can generate reasonable explanations as evaluated by auto-
mated metrics, and promisingly, 65.2% of explanations meet
the gold standard of human evaluations. We also investigate
the upper bound for models to harness explanations by in-
cluding them in the input. We find that doing so improves
GPT-3’s few-shot performance by 18.96%, suggesting that
explanations do aid models and are currently underutilized
in the CoT framework.

To sum up, our contributions are three-fold: (a) To bridge
the gap in existing datasets in the scientific domain, we build
Science Question Answering (SCIENCEQA), a new dataset
containing 21,208 multimodal science questions with rich
domain diversity. To the best of our knowledge, SCIENCEQA
is the first large-scale multimodal dataset that annotates lec-
tures and explanations for the answers. (b) We show that
CoT benefits large language models in both few-shot and
fine-tuning learning by improving model performance and
reliability via generating explanations. (c) We further explore
the upper bound of GPT-3 and show that CoT helps language
models learn from fewer data.

Related Work
Visual question answering. Since the task of visual question
answering (VQA) was first proposed in (Antol et al. 2015),
there have been plenty of VQA datasets (Zhang et al. 2016;
Zhu et al. 2016; Krishna et al. 2017; Goyal et al. 2017; John-
son et al. 2017; Hudson and Manning 2019) conducted to fa-
cilitate the research work. Although our SCIENCEQA dataset
shares some features with VQA, there are several main differ-
ences between them. First, SCIENCEQA is more challenging
than existing VQA datasets because it contains multimodal
contexts and diverse topics in the scientific domain. In ad-
dition, most answers are annotated with lectures and expla-
nations, which makes SCIENCEQA a suitable dataset for
multi-modal question answering and multi-hop reasoning for
AI systems. Inspired by the recent remarkable performance
achieved for VQA (Lu et al. 2018b,a; Gao et al. 2018, 2019;
Li et al. 2019; Dosovitskiy et al. 2021; Gao et al. 2022), in
this paper, we further extensively benchmark SCIENCEQA
with a wide range of attention-based (Anderson et al. 2018;
Lu et al. 2018b; Kim, Jun, and Zhang 2018; Gao et al. 2019)
and Transformer-based (Lu et al. 2019; Li et al. 2019, 2020;
Dosovitskiy et al. 2021) methods.
Datasets for science problems. Science problem solving
is a challenging task that requires an AI system not only to
understand the multimodal information from the science cur-
riculum but also to reason about how to answer the domain-
specific questions. Current science problem datasets such as
AI2D (Kembhavi et al. 2016), DVQA (Kafle et al. 2018),
VLQA (Sampat, Yang, and Baral 2020), and FOODWEDS
(Krishnamurthy, Tafjord, and Kembhavi 2016) have con-
tributed to multimodal reasoning in the scientific domain. For
example, a portion of VLQA contains multimodal questions
on science subjects. These datasets, however, lack annotated
explanations for the answers to reveal the reasoning steps.
Some other datasets annotate the answers in the forms of
supporting facts (Mihaylov et al. 2018; Khot et al. 2020), en-
tailment trees (Dalvi et al. 2021), explanation graphs (Jansen
et al. 2018), reasoning chains (Jhamtani and Clark 2020).
However, these datasets are restricted to the single text modal-
ity with small data scales and limited topics. Instead, our
SCIENCEQA annotates the answers with grounded lectures
and explanations and it features a richer domain diversity
across 3 subjects, 26 topics, 127 categories, and 379 skills.
Learning from explanations and few-shot learning. Expla-
nations help humans understand a task better, and there have
been several attempts to show the same for models. For ex-
ample, the learning from instruction paradigm (Mishra et al.
2021b; Ouyang et al. 2022; Wei et al. 2021; Mishra et al.
2021a; Parmar et al. 2022; Lampinen et al. 2022), where
the task level explanation is provided in the form of instruc-
tion, improves model performance significantly. An exam-
ple of learning from explanations in the scientific domain
is proposed in (Sachan and Xing 2017) where the model
interprets demonstrative solutions to solve geometry prob-
lems. Recently, there has been a surge of interest in few-shot
learning, where language models learn a specific task from
a few examples (Perez, Kiela, and Cho 2021; Bragg et al.
2021). For instance, (Nye et al. 2021; Wei et al. 2022; Lu
et al. 2022) find that explanations in the format of the chain



of thought can improve language models’ reasoning ability
in few-shot learning. In this paper, we show that the chain
of thought boosts the performance of large language models
like UnifiedQA (Khashabi et al. 2020) if the models gener-
ate explanations along with the answer in a fine-tuning way.
Furthermore, a few-shot GPT-3 model via chain-of-thought
prompting is able to improve the reasoning performance on
SCIENCEQA and generate reasonable explanations.

Dataset
We collect SCIENCEQA, which is a multimodal multiple-
choice science question dataset containing 21,208 examples.
An example in SCIENCEQA is shown in Figure 1. Given
the science question and multimodal contexts, the task is
to select the correct answer from multiple options. Differ-
ent from existing datasets (Sachan, Dubey, and Xing 2017;
Kembhavi et al. 2016; Sampat, Yang, and Baral 2020; Lu
et al. 2021a; Krishnamurthy, Tafjord, and Kembhavi 2016),
SCIENCEQA covers diverse topics across three subjects: nat-
ural science, social science, and language science. Moreover,
most questions are annotated with grounded lectures and de-
tailed explanations. The lecture provides general knowledge
that introduces the background information for solving prob-
lems of a similar class. The explanation reveals a specific
reason for the answer. To effectively answer the questions, a
model often needs to be able to understand the multimodal
content in the input and extract external knowledge, similar to
how humans do. More importantly, the goal of SCIENCEQA
is to aid development of a reliable model that is capable of
generating a coherent chain of thought when arriving at the
correct answer to reveal the multi-step reasoning process. For
data collection details, see Appendix .

Statistic Number
Total questions 21,208

Questions with text context 10,220 (48.2%)
Questions with image context 10,332 (48.7%)

* Image of natural format ≈2,960 (14.0%)
* Image of diagram format ≈7,372 (34.8%)

Questions with both contexts 6,532 (30.8%)
Questions without any context 7,188 (33.9%)
Questions with a lecture 17,798 (83.9%)
Questions with a explanation 19,202 (90.5%)

Different questions 9,122
Different lectures 261

Topic classes 26
Category classes 127
Skill classes 379

Average question length 12.11
Average choice length 4.40
Average lecture length 125.06
Average explanation length 47.66

Table 1: Main statistics in SCIENCEQA.

Data Analysis
Key statistics. We randomly split the dataset into training,
validation, and test splits with a ratio of 60:20:20. Each split

has 12,726, 4,241, and 4,241 examples, respectively. Table 1
shows the main statistics of SCIENCEQA. SCIENCEQA has a
large set of different questions, totaling up to 9,122. Out of the
21,208 questions in SCIENCEQA, 10,332 (48.7%) have an
image context, 10,220 (48.2%) have a text context, and 6,532
(30.8%) have both. 83.9% of the questions are annotated with
a lecture, while 90.5% of the questions feature an explanation.
The cross-combination of these information sources diversi-
fies the problem scenario: sometimes the model is given a lot
of information from multiple sources, while at other times,
the only source of information is the question itself.
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Figure 2: Question length distribution of related datasets. SCI-
ENCEQA is distributed more evenly in terms of the number
of question words than other datasets.

Question analysis. SCIENCEQA has a diverse set of sci-
ence questions. The question length distribution is visualized
against other VQA datasets in Figure 2. As shown in the dia-
gram, SCIENCEQA’s distribution is flatter than other datasets,
spanning more evenly across different question lengths.

3,800
(17.92%)

3,688
(17.39%)

6,532
(30.80%)

7,188
(33.89%) No context

Image Text

Image and text!

Figure 3: Question distribution with different context formats.

Context analysis. Figure 3 shows the number and percentage
of questions with either an image context, a text context, or
both. There are a total of 7,803 unique image contexts and
4,651 unique text contexts. 66.11% of the questions have at
least one type of context information. The image context is in
the format of diagrams or natural images, which visualize the
critical scenario necessary for question answering or simply
illustrate the question for better understanding. Similarly, the
textual context can provide either semantically rich informa-
tion or a simple hint to the question. Therefore, models need
to be general to understand these diverse types of contexts.
Domain diversity. Each SCIENCEQA question belongs to
one of the three subjects: natural science, social science, and
language science. With each subject, questions are catego-



rized first by the topic (Biology, Physics, Chemistry, etc.),
then by the category (Plants, Cells, Animals, etc.), and fi-
nally by the specific skill (Classify fruits and vegetables as
plant parts, Identify countries of Africa, etc.). SCIENCEQA
has a total of 26 topics, 127 categories, and 379 skills. The
treemap in Figure 11 visualizes the different subjects, topics,
and categories and shows that SCIENCEQA questions are
very diverse, spanning a wide range of domains.

Comparisons with Existing Datasets
Table 2 shows a comparison of SCIENCEQA and other sci-
ence problem datasets. As shown in the table, SCIENCEQA is
much larger than most other datasets. SCIENCEQA also has
the largest set of images, spans across all 12 grades, contains
the longest questions, and has the most diverse input sources.
As opposed to limiting the subject to only natural science,
SCIENCEQA also includes social science and language sci-
ence, largely adding to the domain diversity of the dataset.
Furthermore, most of the questions in SCIENCEQA are anno-
tated with textual lectures (83.9%) and explanations (90.5%),
which reveal the reasoning path to the correct answer. To
the best of our knowledge, SCIENCEQA is the first large-
scale multimodal science question dataset that annotates the
answers with detailed lectures and explanations.

Baselines and Chain-of-Thought Models
In this section, we establish baselines and develop two chain-
of-thought models on SCIENCEQA.

Baselines
Heuristic baselines. The first heuristic baseline is random
chance: we randomly select one from the multiple options.
Each trial is completed on the whole test set, and we take
three different trials for an average result. The second heuris-
tic baseline is human performance. We post the task to
Amazon Mechanical Turk and ask workers to answer SCI-
ENCEQA questions. Only workers who obtain a high school
or higher degree and pass the qualification examples are qual-
ified for the study. Each worker needs to answer a set of 10
test questions, and each question is answered by three dif-
ferent workers. For more details of the human performance
study, see Appendix .
Zero-shot and few-shot baselines. We establish the zero-
shot baselines on top of UnifiedQA (Khashabi et al. 2020)
and GPT-3 (Brown et al. 2020). The zero-shot setup follows
the format of QCM→A where the input is the concatenation
of tokens of the question text (Q), the context text (C), and
multiple options (M), while the output is to predict the an-
swer (A) from the option set. We extract the caption from
the captioning model based on ViT (Dosovitskiy et al. 2021)
and GPT-2 (Radford et al. 2019) for the image as the vi-
sual context. In the few-shot setting, we follow the standard
prompting (Brown et al. 2020) where in-context examples
from the training set are concatenated before the test instance.
These in-context examples serve as an instruction for the
language model to adjust to the specific task in SCIENCEQA.
Fine-tuning baselines. We first consider the fine-tuning base-
lines from VQA models (Anderson et al. 2018; Kim, Jun,

Question: question : Iquesi

Options: (A) option : Iopti1 (B) option : Iopti2 (C) option : Iopti3
Context: context : Icont

i
Answer: The answer is answer : Iai . BECAUSE: lecture : Ilecti
explanation : Iexpi

Question: question : Iquest

Options: (A) option : Ioptt1 (B) option : Ioptt2 (C) option : Ioptt3

(D) option : Ioptt4
Context: context : Icont

t

Answer:

Figure 4: Prompt instruction encoding for the test example t
in GPT-3 (CoT).

and Zhang 2018; Yu et al. 2019; Gao et al. 2019; Kim, Son,
and Kim 2021; Lu et al. 2021b; Li et al. 2019) proposed in
recent years. These VQA baselines take the question, the
context, and choices as the textual input, take the image as
the visual input, and predict the score distribution over choice
candidates via a linear classifier. In addition, we build the
fine-tuning baseline on top of the large language model Uni-
fiedQA (Khashabi et al. 2020). UnifiedQA takes the textual
information as the input and outputs the answer option. Simi-
larly, the image is converted into a caption that provides the
visual semantics for the language model.

Language Models with the Chain of Thought
A chain of thought refers to a coherent flow of sentences that
reveals the premises and conclusion of a reasoning problem
(Wei et al. 2022). A chain of thought clearly decomposes a
multi-hop reasoning task into intermediate steps instead of
solving the task in a black-box way. The chain of thought can
be the step-by-step thought process (Wei et al. 2022) before
arriving at the final answer or explanations (Narang et al.
2020) that come after the answer. The annotated lectures and
explanations in SCIENCEQA serve as demonstrations of the
chain of thought that mimics the multi-step reasoning steps
of human beings. In this paper, we study if large language
models can generate reasonable explanations as the chain
of thought to reveal the thought process when answering
SCIENCEQA questions. Further, we explore how the chain of
thought can improve the reasoning ability of language models
on SCIENCEQA in both few-shot and fine-tuning learning.
UnifiedQA with the chain of thought. UnifiedQA
(Khashabi et al. 2020) is a state of the art model for multi-
option question answering. The original architecture of Uni-
fiedQA takes the question and options as the input and outputs
a short phrase as the final answer. We make a format modifi-
cation to develop UnifiedQA with the chain of thought (CoT),
i.e., UnifiedQA is fine-tuned to generate a long sequence of
text which consists of the answer followed by the lecture and
explanation.
GPT-3 via chain-of-thought prompting. Recent research
work (Brown et al. 2020; Mishra et al. 2022; Lu et al. 2022)
has shown that GPT-3 (Brown et al. 2020) can perform vari-
ous tasks when provided with in-context examples in a stan-
dard prompt. Take multi-option question answering as an
example, the standard prompt (Lu et al. 2021c; Zhao et al.



#Q #I AvgQ MaxQ Grades Science subjects Contexts Images Lecture Explanation

Geometry3K (2021a) 3,002 2,342 10.1 46 6-12 natural (geometry) image diagram ✘ ✘
AI2D (2016) 4,563 4,903 9.8 64 1-6 natural image diagram ✘ ✘
FOODWEBS (2016) ≈5,000 ≈5,00 - - 8 natural (foodweb only) image diagram ✘ ✘
ARC (2018) 7,787 0 20.4 128 3-9 natural ✘ ✘ ✘ ✘
TQA (2017) 26,260 3,455 9.2 57 6-8 natural image, text diagram ✔ ✘
IconQA (2021b) 107,439 96,817 8.4 73 PreK-3 math visual diagram ✘ ✘

WorldTree (2018) 1,680 0 - - 3-5 natural ✘ ✘ ✘ ✔
OpenBookQA (2018) 5,957 0 10.6 68 1-6 natural ✘ ✘ ✘ ✔
QASC (2020) 9,980 0 8.0 25 1-9 natural ✘ ✘ ✘ ✔
SCIENCEQA (ours) 21,208 10,332 12.1 141 1-12 natural, social, language image, text natural, diagram ✔ ✔

Table 2: Statistics for SCIENCEQA and comparisons with existing datasets. #Q: number of questions, #I: number of images,
AvgQ: average question length; MaxQ: maximum question length.

2021; Liu et al. 2021) builds instructions using in-context
examples with components of the question text, options, and
the correct answer text. This style of few-shot learning en-
ables the GPT-3 model to answer specific questions without
parameter updates. Different from standard prompting, we
build GPT-3 via chain-of-thought (CoT) prompting, as shown
in Figure 4. To be specific, for each test problem t, we map
the prompt instruction I : {Ii}n, It into a textual format
where {Ii}n refers to the instruction set of n-shot in-context
examples from the training set, while It denotes the test in-
struction. Instead of the way where the explanation comes
before the answer (Wei et al. 2022), we feed the instruction
I into the encoder-decoder model GPT-3 to generate the an-
swer a followed by the lecture lect and explanation exp:
M : {Ii}n, It → a, lect, exp.

Experiments
Experimental Setup
Evaluation metrics. The heuristics and VQA baselines treat
our SCIENCEQA task as a multi-class classification problem
with multiple options and are evaluated with the accuracy
metrics. UnifiedQA and GPT-3 treat SCIENCEQA as a text
generation problem. So the most similar option is selected
as the final prediction to evaluate the question answering
accuracy. The generated lectures and explanations are eval-
uated by automatic metrics (Papineni et al. 2002; Lin 2004;
Reimers and Gurevych 2019) and human scores by annota-
tors.
Implementation details. The VQA baselines are trained for a
maximum number of 50 epochs with a learning rate of 5e−5.
We fine-tune the UnifiedQA for 50k iterations and evaluate
every 1k iteration. The training process is stopped following
the early stopping strategy with a patience period of three
evaluations. For GPT-3, we use the text-davinci-002
engine, which is the most capable model version suggested
in the official documentation. More details can be found in
Appendix .

Results for Question Answering
Table 3 demonstrates the empirical results for Science Ques-
tion Answering.
VQA baselines. We feed the VQA baseline models with the
input of QCM format to predict answers A. Out of all the

VQA models we benchmarked, VisualBERT (Li et al. 2019,
2020) performs the best on average (61.87%). Interestingly,
Patch-TRM (Lu et al. 2021b) beats VisualBERT in natural
science (NAT) and language science (LAN), and it also per-
forms better in higher-grade questions (67.50% v.s. 59.92%).
However, in the subject of social science (SOC), Visual-
BERT outperforms Patch-TRM by a large margin (+22.39%).
Such drastic changes in performance might imply that current
VQA models are not generalized to process the challenging
questions in SCIENCEQA.
Language models. We evaluate whether large-scale pretrain-
ing on text can help language models learn scientific knowl-
edge and thus perform better on the SCIENCEQA task. For
this purpose, we have tried two of the state-of-the-art pre-
trained language models: UnifiedQA and GPT-3.

(i) UnifiedQA. The results show that without any super-
vised fine-tuning (zero-shot), UnifiedQA cannot beat any
VQA baseline model, while the pretraining does help the
model obtain some scientific knowledge to outperform the
random baseline. When fine-tuned with the answer labels in
SCIENCEQA, UnifiedQABASE reports an accuracy of 70.12%
on average. By further teaching the model to generate the
answer along with lecture and explanation, the developed lan-
guage model with chain-of-thought (UnifiedQABASE (CoT))
brings additional improvements of +3.21% (QCM→AE) and
+3.99% (QCM→ALE). These results show that generating
the chain of thought along with the answer benefits the rea-
soning ability of language models.

(ii) GPT-3. The positive effect of pretraining is also proved
by the surprisingly good results from GPT-3 in the same zero-
shot setting as UnifiedQA. Without any fine-tuning, GPT-3
already reaches almost the best performance we can get. In-
terestingly, prompting the GPT-3 with two training examples
with only answers results in a negligible difference. How-
ever, if we prompt GPT-3 with chain-of-thought prompting
(QCM→ALE), we obtain the state-of-the-art result so far
(75.17%).
Human performance. Humans outperform all benchmarks
consistently across question classes, context types, and
grades, e.g., a 20.07% gap for questions with the image con-
text (IMG) between humans and our best performing model.
The gap is to be filled by future research on multimodal
reasoning for scientific question answering.



Model Learning Format NAT SOC LAN TXT IMG NO G1-6 G7-12 Avg

Random chance - M→A 40.28 46.13 29.25 47.45 40.08 33.66 39.35 40.67 39.83

Q only (Anderson et al. 2018) train set Q→A 41.34 27.22 47.00 41.79 35.15 44.60 39.28 40.87 39.85
CI only (Anderson et al. 2018) train set CI→A 41.34 29.25 45.45 42.33 36.09 42.93 39.21 41.07 39.87
Q+M only (Anderson et al. 2018) train set QM→A 52.66 51.86 60.18 55.57 50.37 57.42 52.53 57.88 54.44
Q+CT +M only (Anderson et al. 2018) train set QCT M→A 57.28 49.04 61.36 60.46 52.80 58.82 54.44 60.51 56.61
Q+CI+M only (Anderson et al. 2018) train set QCIM→A 58.97 53.77 60.45 62.85 54.49 57.63 56.72 61.04 58.26

MCAN (Yu et al. 2019) train set QCM→A 56.08 46.23 58.09 59.43 51.17 55.40 51.65 59.72 54.54
Top-Down (Anderson et al. 2018) train set QCM→A 59.50 54.33 61.82 62.90 54.88 59.79 57.27 62.16 59.02
BAN (Kim, Jun, and Zhang 2018) train set QCM→A 60.88 46.57 66.64 62.61 52.60 65.51 56.83 63.94 59.37
DFAF (Gao et al. 2019) train set QCM→A 64.03 48.82 63.55 65.88 54.49 64.11 57.12 67.17 60.72
ViLT (Kim, Son, and Kim 2021) train set QCM→A 60.48 63.89 60.27 63.20 61.38 57.00 60.72 61.90 61.14
Patch-TRM (Lu et al. 2021b) train set QCM→A 65.19 46.79 65.55 66.96 55.28 64.95 58.04 67.50 61.42
VisualBERT (Li et al. 2019, 2020) train set QCM→A 59.33 69.18 61.18 62.71 62.17 58.54 62.96 59.92 61.87

UnifiedQASMALL (Raffel et al. 2020) zero-shot QCM→A 47.78 40.49 46.00 50.24 44.12 44.39 45.56 46.21 45.79
UnifiedQABASE (Raffel et al. 2020) zero-shot QCM→A 50.13 44.54 48.18 53.08 48.09 46.69 47.58 50.03 48.46
UnifiedQASMALL (Raffel et al. 2020) train set QCM→A 53.77 58.04 61.09 52.10 51.51 61.46 58.22 53.59 56.57
UnifiedQABASE (Raffel et al. 2020) train set QCM→A 68.16 69.18 74.91 63.78 61.38 77.84 72.98 65.00 70.12
UnifiedQABASE (CoT) train set QCM→AE 70.60 74.02 78.36 65.69 64.80 81.53 75.48 69.48 73.333.21↑
UnifiedQABASE (CoT) train set QCM→ALE 71.00 76.04 78.91 66.42 66.53 81.81 77.06 68.82 74.113.99↑
GPT-3 (Brown et al. 2020) zero-shot QCM→A 75.04 66.59 78.00 74.24 65.74 79.58 76.36 69.87 74.04
GPT-3 (Brown et al. 2020) 2-shot QCM→A 74.64 69.74 76.00 74.44 67.28 77.42 76.80 68.89 73.97
GPT-3 (CoT) 2-shot QCM→AE 76.60 65.92 77.55 75.51 66.09 79.58 78.49 67.63 74.610.64↑
GPT-3 (CoT) 2-shot QCM→ALE 75.44 70.87 78.09 74.68 67.43 79.93 78.23 69.68 75.171.20↑
Human - QCM→A 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42 88.40

Table 3: Evaluation of baselines over different classes in accuracy (%). Model names: Q = question, M = multiple options,
C = context, CT = text context, CI = image context, CoT = chain of thought. Format names: A = answer, AE = answer with
explanation, ALE = answer with lecture and explanation. Question classes: NAT = natural science, SOC = social science, LAN =
language science, TXT = text context, IMG = image context, NO = no context, G1-6 = grades 1-6, G7-12 = grades 7-12.

Results for Generated Explanations
One prediction example of GPT-3 (CoT) is visualized in
Figure 5. We can see that GPT-3 (CoT) predicts the cor-
rect answer and generates a reasonable lecture and expla-
nation to mimic the human thought process. We further re-
port automatic metrics (BLEU-1/4 (Papineni et al. 2002),
ROUGE-L (Papineni et al. 2002), and (sentence) Similarity
(Reimers and Gurevych 2019) to evaluate the generated lec-
tures and explanations, as shown in Table 4. The Similarity
metric computes the cosine-similarity of semantic embed-
dings between two sentences based on the Sentence-BERT
network (Reimers and Gurevych 2019). The results show
that UnifiedQABASE (CoT) generates the most similar expla-
nations to the given ones. By asking annotators to rate the
relevance, correctness, and completeness of generated expla-
nations, we find that the explanations generated by GPT-3
(CoT) conform best to human judgment.

Analysis
Blind studies. Blind studies are conducted on top of the mod-
ification of the full model, Top-Down (Anderson et al. 2018).
The results achieved in blind studies of Q only and CI only
are close to random chance, showing that the SCIENCEQA
dataset is robust and reliable in distribution. The performance
drops in Q+M only, Q+CT +M only, and Q+CI+M only in-
dicate that all input components provide critical information
for answering SCIENCEQA questions.

Prompt types. We study the effect of prompt types and
visualize the comparison in Figure 6. It shows that prompt-
ing the GPT-3 model with both lectures and explanations
(QCM→ALE) results in the highest accuracy on average and
the smallest variance. In contrast, prompting with only expla-
nations (QCM→AE) gives the largest variance, resulting in a
less stable model.
Number of in-context examples. In Figure 7, we further
investigate how different numbers of training examples en-
coded in prompts can affect the prediction accuracy. The
QCM→ALE prompt type outperforms or performs compa-
rably to the QCM→A type with all numbers of examples.
And we observe the peak performance of QCM→ALE with
2 training examples being prompted. After that, the accuracy
goes down as more training examples are added to the model.
Dynamic sampling. In Table 5, instead of random sam-
pling, we try to dynamically select the in-context examples
to prompt with the same class as the test sample. However,
slight differences in prediction accuracy are observed when
comparing them to simple random sampling.
Upper bound. We search the upper bound of the GPT-3 ac-
curacy by feeding the gold lecture and explanation in the test
prompt. As reported in Table 6, QCME*→A outperforms
the QCM→ALE baseline by 18.86% and QCMLE*→A out-
performs QCM→ALE by 18.96%, indicating a potential im-
provement direction by generating correct explanations be-
fore answering science questions.



Question: What do these two changes have in common?\n
bleaching clothes\n
a piece of apple turning brown\n
Options: (A) Both are only physical changes. (B) Both are caused by cooling. (C) Both are chemical changes. (D) Both are 
caused by heating.\n
Answer: The answer is C. BECAUSE: A physical change is a change to a substance that does not change what the substance 
is. A physical change only changes the substance’s physical properties, such as its size, shape, or color.\n
A chemical change is a change to a substance that changes what the substance is. A chemical change changes the substance’s 
chemical properties, such as its chemical structure.\n
The changes that you listed are both chemical changes.\n
When you bleach clothes, the chemical structure of the fabric changes. This change makes the fabric less likely to hold color.\n 
When a piece of fruit turns brown, the chemical structure of the fruit changes. This change makes the fruit taste different.

5978

Figure 5: One example of the predicted answer along with the chain of thought from GPT-3 (CoT).

Model Format BLEU-1 BLEU-4 ROUGE-L Similarity Relevant Correct Complete Gold
UnifiedQABASE (CoT) QCM→ALE 0.397 0.370 0.714 0.811 80.4% 76.6% 76.1% 56.9%
GPT-3 (CoT) QCM→AE 0.234 0.048 0.351 0.561 76.9% 73.0% 70.5% 52.5%
GPT-3 (CoT) QCM→ALE 0.192 0.052 0.323 0.595 88.5% 78.8% 84.5% 65.2%

Table 4: Automatic metrics (BLEU-1/4, ROUGE-L, Similarity) and human evaluation of generated explanations. Note that a
gold explanation refers to one that is relevant, correct, and complete.
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Figure 6: Acc. v.s. different prompts with 4-shot examples.

Prompt type Sampling Acc. (%)
QCM→ALE Dynamic (same topic) 75.15
QCM→ALE Dynamic (same category) 74.58
QCM→ALE Dynamic (same skill) 75.10

Table 5: Dynamic sampling for GPT-3 (CoT).

Error analysis. GPT-3 via chain-of-thought prompting ob-
tains promising results but still fails to answer a wide range
of challenging questions in SCIENCEQA. See examples of
failure cases in Appendix . The failure cases can be classified
into two types: (a) the model fails to understand the multi-
modal inputs and lacks domain-specific knowledge to arrive
at the correct answer; (b) the model generates the wrong
chain of thought with irrelevant, incorrect, or incomplete
information.

Discussion and Conclusion
In this paper, we propose SCIENCEQA, a dataset that features
21,208 multi-option questions with multimodal contexts from
the science curriculum. To the best of our knowledge, SCI-
ENCEQA is the first large-scale multimodal science dataset
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Figure 7: Acc. v.s. different # of training examples.

Prompt type Sampling Acc. (%)
QCML*→A Random 73.59
QCML*→AE Random 74.32
QCME*→A Random 94.0318.86↑
QCMLE*→A Random 94.1318.96↑

QCM→ALE Random 75.17

Table 6: Upper bound of GPT-3 (CoT).

where most questions are annotated with corresponding lec-
tures and explanations. We establish various baselines, in-
cluding recent VQA models and large language models on
SCIENCEQA. We further study if language models can gen-
erate reasonable explanations and then benefit the reasoning
ability. Experiments show that UnifiedQA with the chain of
thought can achieve an improvement of 3.99% and few-shot
GPT-3 via chain-of-thought (CoT) prompting can obtain a
satisfactory accuracy of 75.17% on SCIENCEQA. 65.2% of
the generated explanations from GPT-3 (CoT) meet the gold
standard by human evaluations.



References
Anderson, P.; He, X.; Buehler, C.; Teney, D.; Johnson, M.; Gould, S.;
and Zhang, L. 2018. Bottom-Up and Top-Down Attention for Image
Captioning and Visual Question Answering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).
Antol, S.; Agrawal, A.; Lu, J.; Mitchell, M.; Batra, D.; Lawrence Zit-
nick, C.; and Parikh, D. 2015. Vqa: Visual question answering. In
Proceedings of the IEEE international conference on computer
vision (CVPR), 2425–2433.
Bragg, J.; Cohan, A.; Lo, K.; and Beltagy, I. 2021. Flex: Unify-
ing evaluation for few-shot nlp. Advances in Neural Information
Processing Systems (NeurIPS), 34.
Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.; Dhari-
wal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
2020. Language models are few-shot learners. Advances in neural
information processing systems (NeurIPS), 33: 1877–1901.
Clark, P.; Cowhey, I.; Etzioni, O.; Khot, T.; Sabharwal, A.;
Schoenick, C.; and Tafjord, O. 2018. Think you have solved ques-
tion answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457.
Dalvi, B.; Jansen, P.; Tafjord, O.; Xie, Z.; Smith, H.; Pipatanangkura,
L.; and Clark, P. 2021. Explaining answers with entailment trees.
Proceedings of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP).
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai,
X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly,
S.; et al. 2021. An image is worth 16x16 words: Transformers for
image recognition at scale. In The International Conference on
Learning Representations (ICLR).
Gao, F.; Ping, Q.; Thattai, G.; Reganti, A.; Wu, Y. N.; and Natarajan,
P. 2022. Transform-Retrieve-Generate: Natural Language-Centric
Outside-Knowledge Visual Question Answering. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 5067–5077.
Gao, P.; Jiang, Z.; You, H.; Lu, P.; Hoi, S. C.; Wang, X.; and Li,
H. 2019. Dynamic Fusion With Intra-and Inter-Modality Attention
Flow for Visual Question Answering. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 6639–6648.
Gao, P.; Li, H.; Li, S.; Lu, P.; Li, Y.; Hoi, S. C.; and Wang, X. 2018.
Question-guided hybrid convolution for visual question answering.
In The European Conference on Computer Vision (ECCV), 469–485.
Goyal, Y.; Khot, T.; Summers-Stay, D.; Batra, D.; and Parikh, D.
2017. Making the V in VQA Matter: Elevating the Role of Image
Understanding in Visual Question Answering. In Conference on
Computer Vision and Pattern Recognition (CVPR).
Hudson, D. A.; and Manning, C. D. 2019. Gqa: A new dataset for
real-world visual reasoning and compositional question answering.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 6700–6709.
Jansen, P. A.; Wainwright, E.; Marmorstein, S.; and Morrison, C. T.
2018. Worldtree: A corpus of explanation graphs for elementary
science questions supporting multi-hop inference. arXiv preprint
arXiv:1802.03052.
Jhamtani, H.; and Clark, P. 2020. Learning to explain: Datasets and
models for identifying valid reasoning chains in multihop question-
answering. arXiv preprint arXiv:2010.03274.
Johnson, J.; Hariharan, B.; van der Maaten, L.; Fei-Fei, L.;
Lawrence Zitnick, C.; and Girshick, R. 2017. Clevr: A diagnostic
dataset for compositional language and elementary visual reasoning.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2901–2910.

Kafle, K.; Price, B.; Cohen, S.; and Kanan, C. 2018. Dvqa: Under-
standing data visualizations via question answering. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 5648–5656.

Kembhavi, A.; Salvato, M.; Kolve, E.; Seo, M. J.; Hajishirzi, H.;
and Farhadi, A. 2016. A Diagram is Worth a Dozen Images. In Pro-
ceedings of the European Conference on Computer Vision (ECCV).

Kembhavi, A.; Seo, M.; Schwenk, D.; Choi, J.; Farhadi, A.; and
Hajishirzi, H. 2017. Are you smarter than a sixth grader? textbook
question answering for multimodal machine comprehension. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 4999–5007.

Khashabi, D.; Min, S.; Khot, T.; Sabharwal, A.; Tafjord, O.; Clark,
P.; and Hajishirzi, H. 2020. UNIFIEDQA: Crossing Format Bound-
aries with a Single QA System. In Findings of the Association for
Computational Linguistics (EMNLP), 1896–1907.

Khot, T.; Clark, P.; Guerquin, M.; Jansen, P. A.; and Sabharwal,
A. 2020. QASC: A Dataset for Question Answering via Sentence
Composition. ArXiv, abs/1910.11473.

Kim, J.-H.; Jun, J.; and Zhang, B.-T. 2018. Bilinear Attention
Networks. In Advances in Neural Information Processing Systems
(NeurIPS), 1571–1581.

Kim, W.; Son, B.; and Kim, I. 2021. ViLT: Vision-and-Language
Transformer Without Convolution or Region Supervision. In Pro-
ceedings of the 38th International Conference on Machine Learning
(ICML), 5583–5594.

Krishna, R.; Zhu, Y.; Groth, O.; Johnson, J.; Hata, K.; Kravitz, J.;
Chen, S.; Kalantidis, Y.; Li, L.-J.; Shamma, D. A.; et al. 2017. Vi-
sual genome: Connecting language and vision using crowdsourced
dense image annotations. International Journal of Computer Vision
(IJCV), 32–73.

Krishnamurthy, J.; Tafjord, O.; and Kembhavi, A. 2016. Semantic
parsing to probabilistic programs for situated question answering.
In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 160–170.

Lampinen, A. K.; Dasgupta, I.; Chan, S. C.; Matthewson, K.; Tessler,
M. H.; Creswell, A.; McClelland, J. L.; Wang, J. X.; and Hill, F.
2022. Can language models learn from explanations in context?
arXiv preprint arXiv:2204.02329.

Li, L. H.; Yatskar, M.; Yin, D.; Hsieh, C.-J.; and Chang, K.-W.
2019. Visualbert: A simple and performant baseline for vision and
language. arXiv preprint arXiv:1908.03557.

Li, L. H.; Yatskar, M.; Yin, D.; Hsieh, C.-J.; and Chang, K.-W. 2020.
What does bert with vision look at? In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics
(ACL), 5265–5275.

Lin, C.-Y. 2004. Rouge: A package for automatic evaluation of
summaries. In Text summarization branches out, 74–81.

Liu, J.; Shen, D.; Zhang, Y.; Dolan, B.; Carin, L.; and Chen, W.
2021. What Makes Good In-Context Examples for GPT-3? arXiv
preprint arXiv:2101.06804.

Lu, J.; Batra, D.; Parikh, D.; and Lee, S. 2019. Vilbert: Pretraining
task-agnostic visiolinguistic representations for vision-and-language
tasks. In Advances in Neural Information Processing Systems
(NeurIPS), 13–23.

Lu, P.; Gong, R.; Jiang, S.; Qiu, L.; Huang, S.; Liang, X.; and Zhu,
S.-C. 2021a. Inter-GPS: Interpretable Geometry Problem Solving
with Formal Language and Symbolic Reasoning. In The 59th Annual
Meeting of the Association for Computational Linguistics (ACL).



Lu, P.; Ji, L.; Zhang, W.; Duan, N.; Zhou, M.; and Wang, J. 2018a.
R-VQA: learning visual relation facts with semantic attention for
visual question answering. In The ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (SIGKDD),
1880–1889.

Lu, P.; Li, H.; Zhang, W.; Wang, J.; and Wang, X. 2018b. Co-
attending free-form regions and detections with multi-modal multi-
plicative feature embedding for visual question answering. In The
AAAI Conference on Artificial Intelligence (AAAI).

Lu, P.; Qiu, L.; Chang, K.-W.; Wu, Y. N.; Zhu, S.-C.; Rajpurohit,
T.; Clark, P.; and Kalyan, A. 2022. Dynamic Prompt Learning via
Policy Gradient for Semi-structured Mathematical Reasoning. arXiv
preprint arXiv:2209.14610.

Lu, P.; Qiu, L.; Chen, J.; Xia, T.; Zhao, Y.; Zhang, W.; Yu, Z.;
Liang, X.; and Zhu, S.-C. 2021b. IconQA: A New Benchmark for
Abstract Diagram Understanding and Visual Language Reasoning.
In The 35th Conference on Neural Information Processing Systems
(NeurIPS) Track on Datasets and Benchmarks.

Lu, Y.; Bartolo, M.; Moore, A.; Riedel, S.; and Stenetorp, P. 2021c.
Fantastically ordered prompts and where to find them: Overcoming
few-shot prompt order sensitivity. arXiv preprint arXiv:2104.08786.

Mihaylov, T.; Clark, P.; Khot, T.; and Sabharwal, A. 2018. Can a
suit of armor conduct electricity? a new dataset for open book ques-
tion answering. Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Mishra, S.; Finlayson, M.; Lu, P.; Tang, L.; Welleck, S.; Baral, C.;
Rajpurohit, T.; Tafjord, O.; Sabharwal, A.; Clark, P.; and Kalyan, A.
2022. LILA: A Unified Benchmark for Mathematical Reasoning. In
The 2022 Conference on Empirical Methods in Natural Language
Processing (EMNLP).

Mishra, S.; Khashabi, D.; Baral, C.; Choi, Y.; and Hajishirzi, H.
2021a. Reframing Instructional Prompts to GPTk’s Language. ACL
Findings.

Mishra, S.; Khashabi, D.; Baral, C.; and Hajishirzi, H. 2021b. Cross-
task generalization via natural language crowdsourcing instructions.
The 59th Annual Meeting of the Association for Computational
Linguistics (ACL).

Narang, S.; Raffel, C.; Lee, K.; Roberts, A.; Fiedel, N.; and Malkan,
K. 2020. Wt5?! training text-to-text models to explain their predic-
tions. arXiv preprint arXiv:2004.14546.

Nye, M.; Andreassen, A. J.; Gur-Ari, G.; Michalewski, H.; Austin,
J.; Bieber, D.; Dohan, D.; Lewkowycz, A.; Bosma, M.; Luan, D.;
et al. 2021. Show Your Work: Scratchpads for Intermediate Compu-
tation with Language Models. arXiv preprint arXiv:2112.00114.

Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C. L.;
Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A.; et al.
2022. Training language models to follow instructions with human
feedback. arXiv preprint arXiv:2203.02155.

Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002. Bleu: a
method for automatic evaluation of machine translation. In Pro-
ceedings of the 40th annual meeting of the Association for Compu-
tational Linguistics (ACL), 311–318.

Parmar, M.; Mishra, S.; Purohit, M.; Luo, M.; Mohammad, M.; and
Baral, C. 2022. In-BoXBART: Get Instructions into Biomedical
Multi-Task Learning. In Findings of the Association for Computa-
tional Linguistics: NAACL 2022, 112–128. Seattle, United States:
Association for Computational Linguistics.

Perez, E.; Kiela, D.; and Cho, K. 2021. True few-shot learning
with language models. Advances in Neural Information Processing
Systems (NeurIPS), 34.

Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I.;
et al. 2019. Language models are unsupervised multitask learners.
OpenAI blog, 1(8): 9.
Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena,
M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Exploring the Limits of
Transfer Learning with a Unified Text-to-Text Transformer. Journal
of Machine Learning Research (JMLR), 21: 1–67.
Reimers, N.; and Gurevych, I. 2019. Sentence-BERT: Sentence
Embeddings using Siamese BERT-Networks. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics.
Sachan, M.; Dubey, K.; and Xing, E. 2017. From textbooks to
knowledge: A case study in harvesting axiomatic knowledge from
textbooks to solve geometry problems. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing
(EMNLP), 773–784.
Sachan, M.; and Xing, E. 2017. Learning to solve geometry prob-
lems from natural language demonstrations in textbooks. In Pro-
ceedings of the 6th Joint Conference on Lexical and Computational
Semantics (* SEM 2017), 251–261.
Sampat, S. K.; Yang, Y.; and Baral, C. 2020. Visuo-Lingustic
Question Answering (VLQA) Challenge. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing:
Findings (EMNLP), 4606–4616.
Wei, J.; Bosma, M.; Zhao, V. Y.; Guu, K.; Yu, A. W.; Lester, B.; Du,
N.; Dai, A. M.; and Le, Q. V. 2021. Finetuned language models
are zero-shot learners. The International Conference on Learning
Representations (ICLR).
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Chi, E.; Le, Q.;
and Zhou, D. 2022. Chain of thought prompting elicits reasoning in
large language models. arXiv preprint arXiv:2201.11903.
Yu, Z.; Yu, J.; Cui, Y.; Tao, D.; and Tian, Q. 2019. Deep Modular
Co-Attention Networks for Visual Question Answering. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 6281–6290.
Zhang, P.; Goyal, Y.; Summers-Stay, D.; Batra, D.; and Parikh, D.
2016. Yin and Yang: Balancing and Answering Binary Visual Ques-
tions. In Conference on Computer Vision and Pattern Recognition
(CVPR).
Zhao, Z.; Wallace, E.; Feng, S.; Klein, D.; and Singh, S. 2021.
Calibrate before use: Improving few-shot performance of language
models. In International Conference on Machine Learning (ICML),
12697–12706. PMLR.
Zhu, Y.; Groth, O.; Bernstein, M.; and Fei-Fei, L. 2016. Visual7W:
Grounded Question Answering in Images. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).



Dataset Analysis

Data Collection

Questions in the SCIENCEQA dataset are sourced from open re-
sources managed by IXL Learning, an online learning platform
curated by experts in the field of K-12 education. The dataset in-
cludes problems that align with California Common Core Content
Standards. To construct SCIENCEQA, we downloaded the original
science problems and then extracted individual components (e.g.
questions, hints, images, options, answers, lectures, and solutions)
from them based on heuristic rules.

We manually removed invalid questions, such as questions that
have only one choice, questions that contain faulty data, and ques-
tions that are duplicated, to comply with fair use and transformative
use of the law. If there were multiple correct answers that applied, we
kept only one correct answer. Also, we shuffled the answer options
of each question to ensure the choices do not follow any specific pat-
tern. To make the dataset easy to use, we then used semi-automated
scripts to reformat the lectures and solutions. Therefore, special
structures in the texts, such as tables and lists, are easily distin-
guishable from simple text passages. Similar to ImageNet, ReClor,
and PMR datasets, SCIENCEQA is available for non-commercial
research purposes only and the copyright belongs to the original au-
thors. To ensure data quality, we developed a data exploration tool to
review examples in the collected dataset, and incorrect annotations
were further manually revised by experts. The tool can be accessed
at https://scienceqa.github.io/explore.html.

Question Statistics

Figure 8 shows a distribution of the first four words in the question
text. A large number of question lengths and formats highlight the
diversity of SCIENCEQA. The question lengths range from 3 words
to 141 words, and the questions in SCIENCEQA have an average
length of 12.11 words.
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Figure 8: Question distribution in SCIENCEQA.

Subject Statistics
Figure 9 shows the question length distribution of each subject.
The three subjects all feature long-tail distributions in terms of the
number of question words. On average, social science questions
are the shortest, while language science questions are the longest.
Language science questions are distributed more evenly than other
questions across different numbers of words. These features imply
that the SCIENCEQA dataset is rich in compositional diversity.
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Figure 9: Question distributions of diff. subjects.

Choice Statistics
Table 7 shows the number of questions with each number of dif-
ferent choices. Questions have a minimum of two options and a
maximum of five options. Figure 10 shows the distribution of choice
length in SCIENCEQA. Most choices are short, containing up to
five words. However, the distribution has a long tail where about 5%
of the choices contain more than 15 words. Hence, it requires mod-
els to have a high level of text understanding to address diversely
distributed choices.

Choice number Size Percent

2 11,045 52.08%
3 5,078 23.94%
4 4,893 23.07%
5 192 0.91%

Table 7: Choice number distribution.
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Figure 10: Choice length distribution.
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Figure 11: Domain diversity in SCIENCEQA. Each color corresponds to one subject: natural science, social science, and language
science. For visual clarity, only the most frequent classes are shown.

Grade Statistics
The grade distribution is shown in Table 8. The majority of questions
come from the middle level curriculum (i.e., from grade 3 to grade
8) while around 10% are taken from the high school curriculum
(i.e., from grade 9 to grade 12). These high school level questions
are close to or at the difficulty level of the U.S. standardized tests
for college admissions. Machine algorithms need to master a large
amount of scientific knowledge and perform complex reasoning in
order to perform well on SCIENCEQA.

Grades Number Percent

Grade 1 95 0.45%
Grade 2 1,678 7.91%
Grade 3 3,032 14.3%
Grade 4 3,544 16.71%
Grade 5 3,086 14.55%
Grade 6 2,450 11.55%
Grade 7 2,749 12.96%
Grade 8 2,546 12.0%
Grade 9 491 2.32%

Grade 10 558 2.63%
Grade 11 539 2.54%
Grade 12 440 2.07%

Table 8: Grade distribution statistics.

Experiments
Experimental Details
Below are details on the experiments:

• Fine-tuning on the dataset. Fine-tuning baselines (VQA base-
lines and UnifiedQA) are trained on the training set, developed
on the validation set, and evaluated on the test set.

• Input sizes: For VQA baselines, we set the maximum number
of input words or tokens as 100.

• Batch sizes. We use batches of 64 and 4 for VQA baselines
and fine-tuned UnifiedQA, respectively.

• Newline character. For language models, the newline separa-
tors (“n) in the text are replaced with ““n when encoding the
inputs because “n is normally used as a stop symbol, following
the original works (Brown et al. 2020; Khashabi et al. 2020).

• Captioning model. We use the tool to generate captions for
the images in the dataset. The maximum length of generated
captions is 16, the number of beams is 4, and the maximum
number of output tokens is 512.

• Compute resources. We use two GeForce RTX 3090 GPUs
for fine-tuning VQA baselines and UnifiedQA on the dataset.

• Questions without any context. For questions without any
context, the context text is replaced with an empty string.

• GPT-3: Following default settings, we choose temperature, fre-
quency penalty and presence penalty as 0.0, and top probability
as 1.0. All experiments for GPT-3 are run via the online API.
Experiments in Figure 7 are repeated four times with in-context
examples listed in Table 9. Experiments in Table 3, 5, 6, and
10 are conducted using examples with the trial ID of 1.

Trial IDs Random seeds In-context example IDs

1 3 6493, 16241, 14954, 3598, 10088
2 5 17099, 6960, 20290, 9780, 18898
3 7 8836, 4144, 10781, 17852, 1363
4 9 12701, 16832, 10180, 7289, 3801

Table 9: Training example candidates used in four trials for
GPT-3 (CoT).

Human Performance Study
In order to understand how humans perform on SCIENCEQA ques-
tions, we used Amazon Mechanical Turk (AMT) to crowd source
answers to the test set. A total of 4,241 test questions were shuffled
and split into 425 batches, with each batch having 10 questions

https://huggingface.co/nlpconnect/vit-gpt2-
image-captioning



(excluding the last one). For each batch, we also randomly added
five training questions as exam examples. Each set of 15 questions
was then assigned to 3 AMT workers. Only workers who correctly
answer 4 out of the 5 exam examples or more are qualified for the
human performance study. In other words, workers who failed to
pass the qualified exam were eliminated from the analysis. For each
set of 15 questions, we provided the worker with $0.5 per HIT task.
At the rate of 3 questions per minute, this amounts to $6.0 per hour.

Prompt type Sampling Acc. (%)
QCM→LA Random 60.6
QCM→EA Random 56.0
QCM→LEA Random 55.4
QCM→ELA Random 51.5
QCM→ALE Random 73.6

Table 10: Different positions of L/E for GPT-3 (CoT).

More Results
Positions of lectures and explanations. We study the performance
of GPT-3 (CoT) in terms of different positions of lectures and expla-
nations on 1,000 test examples. The results are shown in Table 10.
There could be huge accuracy decreases if GPT-3 (CoT) predicts
lectures and explanations before answers. It is mainly because if
GPT-3 (CoT) is formulated to generate the long lecture and expla-
nation first, there is a greater chance that it will stop generating
the prediction early or use up the maximum token limits before
obtaining the required answer.
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Figure 12: UnifiedQA (CoT) learns efficiently with fewer
training examples.

CoT learns with fewer data. To study if the chain of thought helps
language models learn more efficiently, we report the accuracies of
UnifiedQA and UnifiedQA (CoT) fine-tuned on different sizes of the
training set in Figure 12. UnifiedQA (CoT) benefits language models
by learning the coherent reasoning path when answering questions,
resulting in similar accuracy with fewer training examples.

Case Study and Limitations
Figure 13 shows three examples with correct answers and gold
explanations predicted by GPT-3 via chain-of-thought prompting
(CoT). We can see that GPT-3 (CoT) not only predicts the correct
answers but also generates reasonable explanations, which follow
the multi-hop reasoning process of human beings. This suggests
that large language models like GPT-3 have great promise for im-
plementing high-level reasoning abilities.

Figure 14 visualizes three more examples with predictions from
GPT-3 (CoT). In these examples, GPT-3 (CoT) is able to predict
the correct answers but fails to generate gold explanations. For
example, GPT-3 (CoT) generates an irrelevant explanation because
the context text does not include fine-grained visual information
in the image (Figure 14a). In the example shown in Figure 14b,
GPT-3 (CoT) fails to predict the coherent thought chains, where
there are an incorrect example and an incorrect statement for a
chemical change. The third example is given in Figure 14c, where
the generated explanation is just a repetition of the input question
and the output answer, instead of following the complete thought
chain to arrive at the final answer.

Four failure examples with wrong predicted answers are listed
in Figure 15. We extract the image captions and feed them to the
large language model as the visual content input. However, these
captions lack fine-grained semantics and usually do not work well
for diagrams, which results in two failure cases shown in Figure 15a
and 15b. Moreover, there exist challenges for large language models
to reason about the questions that require them to understand com-
plex and uncommon domain knowledge. For example, GPT-3 (CoT)
cannot understand accurately the terminology of personification in
language science (Figure 15c) and a series of complex chemical
changes happen in the formation process of dinosaur fossils (Figure
15d).

Broader Impacts
Societal impact. The SCIENCEQA dataset collects science ques-
tions sourced from textbooks and is proposed to diagnose the multi-
modal understanding and multi-hop reasoning abilities of AI sys-
tems. Due to the nature of data sources, SCIENCEQA does not
contain any user usage data or personally sensitive information such
as gender and race. After careful examination of our dataset, to our
best knowledge, we have not found any improper content, such as
pornographic information, racial remarks, or harmful social bias.
We adhere to the goal of AI for the common good, and any antisocial
data points will be removed from the dataset based on feedback.
Potential usage. The proposed SCIENCEQA dataset and designed
methods in this paper are beneficial to both follow-up research work
and real-world applications. SCIENCEQA provides a useful bench-
mark for multi-modal learning, multi-hop reasoning, and general
artificial intelligence. Besides, SCIENCEQA will contribute to the
development of K-12 education applications such as tutoring sys-
tems. Furthermore, the designed methods with the chain of thought
investigate the ability of large language models to mimic the human
mind process when reasoning about a challenging task.



4XHVWLRQ��:KLFK�DQLPDO
V�QHFN�LV�DOVR�DGDSWHG�IRU�KXQWLQJ�SUH\�ZKLOH�NHHSLQJ�WKH�UHVW�RI�LWV�ERG\�VWLOO"
&RQWH[W��6DGGOH�ELOOHG�VWRUNV�OLYH�QHDU�ZHWODQGV�DQG�ODNHV��7KH\�HDW�PRVWO\�ILVK��7KH�
V�QHFN�KHOSV�LW�JUDE�
ILVK�ZKLOH�NHHSLQJ�WKH�UHVW�RI�LWV�ERG\�VWLOO��,I�WKH�VWRUN�KDG�WR�PRYH�LWV�ERG\��LW�PLJKW�VFDUH�WKH�ILVK�DZD\��
)LJXUH��VDGGOH�ELOOHG�VWRUN��$�EODFN�DQG�ZKLWH�ELUG�LV�VWDQGLQJ�LQ�WKH�JUDVV�
2SWLRQV���$��QRUWKHUQ�SLQWDLO��%��EODFN�KHDGHG�KHURQ
$QVZHU��7KH�DQVZHU�LV�%��%(&$86(��7KH�QRUWKHUQ�SLQWDLO�LV�D�GXFN��,W�GRHV�QRW�KXQW�IRU�ILVK�¬I
7KH�EODFN�KHDGHG�KHURQ�LV�D�W\SH�RI�KHURQ��,W�OLYHV�QHDU�ZHWODQGV�DQG�ODNHV��,W�HDWV�PRVWO\�ILVK�¬I
7KH�KHURQ
V�QHFN�KHOSV�LW�JUDE�ILVK�ZKLOH�NHHSLQJ�WKH�UHVW�RI�LWV�ERG\�VWLOO��,I�WKH�KHURQ�KDG�WR�PRYH�LWV�ERG\��LW�PLJKW�VFDUH�
WKH�ILVK�DZD\�

�6XEMHFW��1DWXUDO�VFLHQFH��7RSLF��%LRORJ\��&DWHJRU\��$GDSWDWLRQV��6NLOO��$QLPDO�DGDSWDWLRQV��EHDNV��PRXWKV��DQG�QHFNV�

*ROG�H[DPSOH�LQ�$SSHQGL[�
����

(a) A natural science example with the correct answer and a gold explanation.

4XHVWLRQ��6XSSRVH�0DVRQ�GHFLGHV�WR�EDNH�EOXHEHUU\�PXIILQV��:KLFK�UHVXOW�ZRXOG�EH�D�FRVW"
&RQWH[W��0DVRQ�LV�GHFLGLQJ�ZKHWKHU�WR�EDNH�EOXHEHUU\�PXIILQV�RU�FUDQEHUU\�PXIILQV��+H�ZDQWV�WKH�PXIILQV�WR�EH�WDVW\��%XW�KH�
DOVR�ZDQWV�WR�PDNH�D�ORW�RI�PXIILQV�
2SWLRQV���$��0DVRQ�ZLOO�JHW�WR�HDW�EOXHEHUU\�PXIILQV��+H�WKLQNV�EOXHEHUU\�PXIILQV�DUH�WDVWLHU�WKDQ�FUDQEHUU\�PXIILQV���%��
0DVRQ�ZLOO�JLYH�XS�VRPH�PXIILQV��+H�FRXOG�KDYH�PDGH�PRUH�FUDQEHUU\�PXIILQV�WKDQ�EOXHEHUU\�PXIILQV�
$QVZHU��7KH�DQVZHU�LV�%��%(&$86(��$�FRVW�LV�DQ\WKLQJ�WKDW�\RX�KDYH�WR�JLYH�XS�WR�JHW�VRPHWKLQJ�HOVH�
,Q�WKLV�FDVH��0DVRQ�ZLOO�KDYH�WR�JLYH�XS�VRPH�PXIILQV��+H�FRXOG�KDYH�PDGH�PRUH�FUDQEHUU\�PXIILQV�WKDQ�EOXHEHUU\�PXIILQV��
6R��WKH�FRVW�RI�PDNLQJ�EOXHEHUU\�PXIILQV�LV�WKH�RSSRUWXQLW\�FRVW�RI�QRW�PDNLQJ�FUDQEHUU\�PXIILQV�

�6XEMHFW��6RFLDO�VFLHQFH��7RSLF��HFRQRPLFV��&DWHJRU\��%DVLF�HFRQRPLF�SULQFLSOHV��6NLOO��&RVWV�DQG�EHQHILWV�

*ROG�H[DPSOH�LQ�$SSHQGL[�
�����

(b) A social science example with a correct answer and a gold explanation.

4XHVWLRQ��:KLFK�VHQWHQFH�XVHV�D�PHWDSKRU"
&RQWH[W��1�$
2SWLRQV���$��7KH�FDW
V�VLOYHU�H\HV�ZHUH�WZR�VKLQ\�FRLQV���%��7KH�FDW
V�VLOYHU�H\HV�ZHUH�OLNH�WZR�VKLQ\�FRLQV�
$QVZHU��7KH�DQVZHU�LV�$��%(&$86(��$�PHWDSKRU�LV�D�ILJXUH�RI�VSHHFK�WKDW�XVHV�RQH�WKLQJ�WR�GHVFULEH�DQRWKHU��$�PHWDSKRU�
LV�D�W\SH�RI�DQDORJ\�¬I
,Q�D�PHWDSKRU��RQH�WKLQJ�LV�VDLG�WR�EH�DQRWKHU�WKLQJ�¬I
)RU�H[DPSOH��\RX�PLJKW�VD\���0\�GDG�LV�D�EHDU��¬I
7KLV�PHDQV�WKDW�\RXU�GDG�LV�ELJ�DQG�VWURQJ��QRW�WKDW�KH�LV�DFWXDOO\�D�EHDU�¬I
7KH�VHQWHQFH��7KH�FDW
V�VLOYHU�H\HV�ZHUH�WZR�VKLQ\�FRLQV��LV�D�PHWDSKRU�¬I
7KH�VHQWHQFH��7KH�FDW
V�VLOYHU�H\HV�ZHUH�OLNH�WZR�VKLQ\�FRLQV��LV�QRW�D�PHWDSKRU��,W�LV�D�VLPLOH�¬I
$�VLPLOH�LV�D�ILJXUH�RI�VSHHFK�WKDW�XVHV�WKH�ZRUGV��OLNH��RU��DV��WR�FRPSDUH�WZR�WKLQJV�

�6XEMHFW��/DQJXDJH�VFLHQFH��7RSLF��)LJXUDWLYH�ODQJXDJH��&DWHJRU\��/LWHUDU\�GHYLFHV��6NLOO��,GHQWLI\�VLPLOHV�DQG�PHWDSKRUV�

*ROG�H[DPSOH�LQ�$SSHQGL[�
����

(c) A language science example with a correct answer and a gold explanation.

Figure 13: Three examples with a correct answer and a gold explanation predicted by GPT-3 (CoT).



4XHVWLRQ��:KLFK�LV�WKH�PDLQ�SHUVXDVLYH�DSSHDO�XVHG�LQ�WKLV�DG"
&RQWH[W��$�EODFN�GRJ�VWDQGLQJ�LQ�IURQW�RI�D�IHQFH�
2SWLRQV���$��ORJRV��UHDVRQ���%��HWKRV��FKDUDFWHU���&��SDWKRV��HPRWLRQ�

$QVZHU��7KH�DQVZHU�LV�&��%(&$86(��7KH�DG�LV�WU\LQJ�WR�PDNH�\RX�IHHO�D�FHUWDLQ�ZD\�DERXW�WKH�SURGXFW��,W�LV�QRW�WU\LQJ�WR�
SHUVXDGH�\RX�ZLWK�ORJLF�RU�ZLWK�DQ�DSSHDO�WR�FKDUDFWHU�

�6XEMHFW��/DQJXDJH�VFLHQFH��7RSLF��:ULWLQJ�VWUDWHJLHV��&DWHJRU\��3HUVXDVLYH�VWUDWHJLHV��6NLOO��,GHQWLI\�DSSHDOV�WR�HWKRV��SDWKRV��
DQG�ORJRV�LQ�DGYHUWLVHPHQWV�

&RUUHFW�$QVZHU���1RW�5HOHYDQW�([SODQDWLRQ
����

(a) An example with a correct answer but an irrelevant explanation.

4XHVWLRQ��:KDW�GR�WKHVH�WZR�FKDQJHV�KDYH�LQ�FRPPRQ"
PL[LQJ�VDQG�DQG�JUDYHO
FUXVKLQJ�D�PLQHUDO�LQWR�SRZGHU
&RQWH[W��1�$
2SWLRQV���$��%RWK�DUH�FKHPLFDO�FKDQJHV���%��%RWK�DUH�RQO\�SK\VLFDO�FKDQJHV���&��%RWK�DUH�FDXVHG�E\�FRROLQJ���'��%RWK�DUH�
FDXVHG�E\�KHDWLQJ�
$QVZHU��7KH�DQVZHU�LV�%��%(&$86(��$�SK\VLFDO�FKDQJH�LV�D�FKDQJH�WR�D�VXEVWDQFH�WKDW�GRHV�QRW�FKDQJH�ZKDW�WKH�VXEVWDQFH�
LV��$�SK\VLFDO�FKDQJH�RQO\�FKDQJHV�WKH�VXEVWDQFH
V�SK\VLFDO�SURSHUWLHV�¬I
)RU�H[DPSOH��ZKHQ�\RX�FXW�D�PLQHUDO��\RX�FKDQJH�LWV�VKDSH��%XW�WKH�PLQHUDO�LV�VWLOO�WKH�VDPH�VXEVWDQFH��6R��FXWWLQJ�D�PLQHUDO�LV�D�
SK\VLFDO�FKDQJH�¬I
$�FKHPLFDO�FKDQJH�LV�D�FKDQJH�WR�D�VXEVWDQFH�WKDW�FKDQJHV�ZKDW�WKH�VXEVWDQFH�LV��$�FKHPLFDO�FKDQJH�FKDQJHV�WKH�VXEVWDQFH
V�
FKHPLFDO�SURSHUWLHV�¬I
)RU�H[DPSOH��ZKHQ�\RX�PL[�VDQG�DQG�JUDYHO��\RX�PDNH�FRQFUHWH��&RQFUHWH�LV�D�QHZ�VXEVWDQFH�ZLWK�GLIIHUHQW�SURSHUWLHV�IURP�
VDQG�DQG�JUDYHO��6R��PL[LQJ�VDQG�DQG�JUDYHO�LV�D�FKHPLFDO�FKDQJH�¬I
&UXVKLQJ�D�PLQHUDO�LQWR�SRZGHU�LV�D�SK\VLFDO�FKDQJH��7KH�PLQHUDO�LV�VWLOO�WKH�VDPH�VXEVWDQFH�

�6XEMHFW��1DWXUDO�VFLHQFH��7RSLF��&KHPLVWU\��&DWHJRU\��3K\VLFDO�DQG�FKHPLFDO�FKDQJH��6NLOO��&RPSDUH�SK\VLFDO�DQG�FKHPLFDO�
FKDQJHV�

&RUUHFW�$QVZHU���1RW�&RUUHFW�([SODQDWLRQ
�����

(b) An example with a correct answer but an incorrect explanation.

4XHVWLRQ��,V�WKH�IROORZLQJ�WUDLW�LQKHULWHG�RU�DFTXLUHG"
0DUVKDOO�KDV�ILYH�ILQJHUV�RQ�HDFK�KDQG�
&RQWH[W��+LQW��0DUVKDOO�ZDV�ERUQ�ZLWK�ILYH�ILQJHUV�RQ�HDFK�KDQG�
2SWLRQV���$��DFTXLUHG��%��LQKHULWHG
$QVZHU��7KH�DQVZHU�LV�%��%(&$86(��0DUVKDOO�ZDV�ERUQ�ZLWK�ILYH�ILQJHUV�RQ�HDFK�KDQG��7KLV�WUDLW�ZDV�LQKHULWHG�IURP�
0DUVKDOO
V�SDUHQWV�

�6XEMHFW��1DWXUDO�VFLHQFH��7RSLF��%LRORJ\��&DWHJRU\��+HUHGLW\��6NLOO��,GHQWLI\�LQKHULWHG�DQG�DFTXLUHG�WUDLWV�

&RUUHFW�$QVZHU���1RW�&RPSOHWH�([SODQDWLRQ
�����

(c) An example with a correct answer but an incomplete explanation.

Figure 14: Three examples with predictions from GPT-3 (CoT). The answers are correct but the generated explanations are
irrelevant, incorrect, or incomplete.



4XHVWLRQ��:KLFK�PRQWK�LV�WKH�ZHWWHVW�RQ�DYHUDJH�LQ�&KULVWFKXUFK"
&RQWH[W��8VH�WKH�JUDSK�WR�DQVZHU�WKH�TXHVWLRQ�EHORZ��$�VHULHV�RI�SKRWRJUDSKV�VKRZLQJ�
D�YDULHW\�RI�FRORUIXO�REMHFWV�
2SWLRQV���$��$SULO��%��'HFHPEHU��&��0D\

$QVZHU��7KH�DQVZHU�LV�%��%(&$86(��7KH�JUDSK�VKRZV�WKH�DYHUDJH�PRQWKO\�UDLQIDOO�LQ�&KULVWFKXUFK�IURP������WR������¬I
7KH�ZHWWHVW�PRQWK�RQ�DYHUDJH�LV�'HFHPEHU��ZLWK�DQ�DYHUDJH�UDLQIDOO�RI�������PP�¬I
7KH�VHFRQG�ZHWWHVW�PRQWK�LV�0D\��ZLWK�DQ�DYHUDJH�UDLQIDOO�RI�������PP�¬I
7KH�WKLUG�ZHWWHVW�PRQWK�LV�$SULO��ZLWK�DQ�DYHUDJH�UDLQIDOO�RI�������PP�

�6XEMHFW��1DWXUDO�VFLHQFH��7RSLF��(DUWK�VFLHQFH��&DWHJRU\��:HDWKHU�DQG�FOLPDWH��6NLOO��8VH�FOLPDWH�GDWD�WR�PDNH�SUHGLFWLRQV�

:URQJ�$QVZHU
�����

(a) An example with a wrong answer and a wrong explanation.

4XHVWLRQ��:KLFK�RFHDQ�LV�KLJKOLJKWHG"
&RQWH[W��$�SDLQWLQJ�RI�D�SHQJXLQ�RQ�D�EOXH�EDFNJURXQG�
2SWLRQV���$��WKH�,QGLDQ�2FHDQ��%��WKH�$UFWLF�2FHDQ��&��WKH�3DFLILF�2FHDQ��'��WKH�
6RXWKHUQ�2FHDQ

$QVZHU��7KH�DQVZHU�LV�&��%(&$86(��7KH�3DFLILF�2FHDQ�LV�WKH�ODUJHVW�RFHDQ��,W�FRYHUV�PRUH�WKDQ�RQH�WKLUG�RI�WKH�(DUWK
V�
VXUIDFH�

�6XEMHFW��6RFLDO�VFLHQFH��7RSLF��*HRJUDSK\��&DWHJRU\��3K\VLFDO�*HRJUDSK\��6NLOO��2FHDQV�DQG�FRQWLQHQWV�

:URQJ�$QVZHU
����

(b) An example with a wrong answer and a wrong explanation.

4XHVWLRQ��&RPSOHWH�WKH�VHQWHQFH�VR�WKDW�LW�XVHV�SHUVRQLILFDWLRQ�
$W�QLJKW��ZKHQ�WKH�PDFKLQHV�ZHUH����WKH�IDFWRU\�VHHPHG�WR�EH�DQ�HQWLUHO\�GLIIHUHQW�SODFH�
&RQWH[W��1�$
2SWLRQV���$��RII��%��DVOHHS
$QVZHU��7KH�DQVZHU�LV�$��%(&$86(��3HUVRQLILFDWLRQ�LV�D�ILJXUH�RI�VSHHFK�WKDW�JLYHV�KXPDQ�TXDOLWLHV�WR�QRQKXPDQ�WKLQJV�¬I
)RU�H[DPSOH��WKH�VHQWHQFH�³7KH�ZLQG�ZDV�KRZOLQJ´�XVHV�SHUVRQLILFDWLRQ��,W�JLYHV�WKH�KXPDQ�TXDOLW\�RI�VRXQG�WR�WKH�QRQKXPDQ�
WKLQJ�ZLQG�¬I
7KH�VHQWHQFH�³7KH�VXQ�ZDV�VPLOLQJ´�XVHV�SHUVRQLILFDWLRQ��,W�JLYHV�WKH�KXPDQ�TXDOLW\�RI�H[SUHVVLRQ�WR�WKH�QRQKXPDQ�WKLQJ�
VXQ�¬I
,Q�WKH�VHQWHQFH�³$W�QLJKW��ZKHQ�WKH�PDFKLQHV�ZHUH�RII��WKH�IDFWRU\�VHHPHG�WR�EH�DQ�HQWLUHO\�GLIIHUHQW�SODFH�´�WKH�PDFKLQHV�DUH�
JLYHQ�WKH�KXPDQ�TXDOLW\�RI�VRXQG�

�6XEMHFW��/DQJXDJH�VFLHQFH��7RSLF��:ULWLQJ�VWUDWHJLHV��&DWHJRU\��&UHDWLYH�WHFKQLTXHV��6NLOO��8VH�SHUVRQLILFDWLRQ�

:URQJ�$QVZHU
����

(c) An example with a wrong answer and a wrong explanation.

4XHVWLRQ��&RPSOHWH�WKH�VHQWHQFH�
$�GLQRVDXU�ERQH�WXUQLQJ�LQWR�URFN�RYHU�PLOOLRQV�RI�\HDUV�LV�D����
&RQWH[W��1�$
2SWLRQV���$��FKHPLFDO�FKDQJH��%��SK\VLFDO�FKDQJH
$QVZHU��7KH�DQVZHU�LV�%��%(&$86(��$�SK\VLFDO�FKDQJH�LV�D�FKDQJH�WR�D�VXEVWDQFH�WKDW�GRHV�QRW�FKDQJH�ZKDW�WKH�VXEVWDQFH�
LV�PDGH�RI�¬I
$�FKHPLFDO�FKDQJH�LV�D�FKDQJH�WR�D�VXEVWDQFH�WKDW�GRHV�FKDQJH�ZKDW�WKH�VXEVWDQFH�LV�PDGH�RI�¬I
,Q�WKLV�VHQWHQFH��WKH�ZRUG�
FKDQJH
�LV�D�YHUE��,W�LV�DQ�DFWLRQ�ZRUG��7KH�ZRUG�
FKDQJH
�LV�DOVR�D�QRXQ��,W�LV�D�WKLQJ�¬I
7KH�ZRUG�
FKDQJH
�FDQ�EH�D�SK\VLFDO�FKDQJH�RU�D�FKHPLFDO�FKDQJH�¬I
$�SK\VLFDO�FKDQJH�LV�D�FKDQJH�WR�D�VXEVWDQFH�WKDW�GRHV�QRW�FKDQJH�ZKDW�WKH�VXEVWDQFH�LV�PDGH�RI��)RU�H[DPSOH��ZKHQ�ZDWHU�
IUHH]HV��LW�FKDQJHV�IURP�D�OLTXLG�WR�D�VROLG��%XW�LW�LV�VWLOO�PDGH�RI�ZDWHU�PROHFXOHV��6R��IUHH]LQJ�LV�D�SK\VLFDO�FKDQJH�¬I
$�FKHPLFDO�FKDQJH�LV�D�FKDQJH�WR�D�VXEVWDQFH�WKDW�GRHV�FKDQJH�ZKDW�WKH�VXEVWDQFH�LV�PDGH�RI��)RU�H[DPSOH��ZKHQ�ZDWHU�
HYDSRUDWHV��LW�FKDQJHV�IURP�D�OLTXLG�WR�D�JDV��%XW�LW�LV�VWLOO�PDGH�RI�ZDWHU�PROHFXOHV��6R��HYDSRUDWLQJ�LV�D�SK\VLFDO�FKDQJH�¬I
,Q�WKLV�VHQWHQFH��WKH�ZRUG�
FKDQJH
�LV�D�SK\VLFDO�FKDQJH��$�GLQRVDXU�ERQH�WXUQLQJ�LQWR�URFN�RYHU�PLOOLRQV�RI�\HDUV�LV�D�SK\VLFDO�
FKDQJH�

�6XEMHFW��1DWXUDO�VFLHQFH��7RSLF��&KHPLVWU\��&DWHJRU\��3K\VLFDO�DQG�FKHPLFDO�FKDQJH��6NLOO��&RPSDUH�SK\VLFDO�DQG�FKHPLFDO�
FKDQJHV�

:URQJ�$QVZHU
�����

(d) An example with a wrong answer and a wrong explanation.

Figure 15: Four failure examples with predictions from GPT-3 (CoT). The answers are wrong, and the generated explanations
fail to follow the right chain-of-thought reasoning process.


