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Abstract

Integrating structured knowledge into language model rep-
resentations increases recall of domain-specific information
useful for downstream tasks. Matching between knowledge
graph entities and text entity mentions can be easily per-
formed when entity names are unique or there exists en-
tity linking data. When extending this setting to new do-
mains, newly mined knowledge contains ambiguous and in-
correct information, with no explicit linking information. In
such settings, we design a framework to robustly link rele-
vant knowledge to input texts as an intermediate modeling
step while performing end-to-end domain fine-tuning tasks.
This is done by first computing the similarity of the exist-
ing task labels with candidate knowledge triplets to gener-
ate relevance labels. We use these labels to train a relevance
model, which predicts the relevance of the inserted triplets to
the original text. This relevance model is integrated within a
language model, leading to our Knowledge Relevance BERT
(KR-BERT) framework. We test KR-BERT for linking and
ranking tasks on a real-world e-commerce dataset as well as
a public entity linking task, where we show performance im-
provements over strong baselines.

Introduction
Learning language representations is a fundamental task for
many natural language applications, such as classification,
question answering, summarization, and topic modeling.
These language representations have recently been learned
from deep self-attention based Transformers(Vaswani et al.
2017), BERT(Devlin et al. 2019) and their variants (Liu et al.
2019; Lan et al. 2019). Such models learn contextualized in-
put text embeddings, but many tasks benefit from external
knowledge beyond the input text through knowledge graphs
(KGs). These KG-integrated Transformers (Liu et al. 2020;
Sun et al. 2019; Wang et al. 2021; Peters et al. 2019) can
leverage well-curated knowledge linked to their text repre-
sentations. This linked knowledge enables explicitly recall-
ing sparse facts or decoupled information related to the input
text, which improves performance on domain-specific tasks
over their standard Transformer counterparts. Given these
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successes, how can we leverage these KG-integrated Trans-
formers in new domains where such well-curated knowledge
and linking data may not exist? We investigate this noisy
knowledge incorporation into Transformers within new do-
mains.

New Domain Knowledge When curating knowledge for
a domain that is specialized, such as e-commerce or molec-
ular chemistry, corresponding KGs for these domains may
not exist. While such structured KG information is unavail-
able, typically unstructured information is present through
documents within that domain. For example, there are prod-
uct details or research papers within e-commerce and chem-
istry domains respectively. Knowledge can be weakly mined
from these unstructured data sources, where heuristics or
knowledge extraction techniques transferred from other do-
mains are used. Since KG construction within the new do-
main is not studied, the mined graph will inevitably con-
tain ambiguous and incorrect knowledge. Therefore a model
leveraging the mined KG in this domain must be robust to
such noise.

Mined Knowledge Noise By mining documents, entities
corresponding to common or ambiguous terms appear and
can be associated with different intents. For example, in e-
commerce, we want to find products associated with hiking.
We have mined knowledge (water, occurs in, nature) and
the product text “Merrell Moab 2 Boot: New Merrell water
resistant boots...”. We can associate “Merrel Moab 2” to hik-
ing since a model can learn that hiking products are used in
nature. However, if there are multiple valid triplets such as
(water, required for, painting), we need to choose the cor-
rect triplet to augment our product. When the incorrect in-
tent is inserted into the text representations, they can detract
from the original text’s meaning. Typically such ambiguous
knowledge can be resolved by entity linking methods. How-
ever, in new domains such linking datasets are not available,
thus we must disambiguate relevant knowledge only through
the available data for that domain.

Additionally, Our newly mined KGs are also more likely
to have incorrect triplets when the mining techniques used
are not well researched or fine-tuned within that domain.
Methods that leverage KGs for their task must be able to
mitigate the effects of these triplets as well without explicit
supervision.



Contributions We focus on optimizing new domain-
specific end tasks with noisy KGs by exploring tractable
approaches to identify ambiguous and incorrect knowl-
edge as intermediate modeling steps. We present these
steps within our Knowledge Relevance BERT (KR-BERT)
pipeline, where we contribute the following:
• To prevent ambiguous knowledge, we present a knowl-

edge ranking scheme to source the top most relevant KG
triplets.

• We further suppress ambiguous and incorrect triplets
through a triplet relevance model, which only uses
domain-specific task data for supervision. This relevance
model is integrated directly into our Transformer for end-
to-end training.

• We present our framework’s performance on a real-
world e-commerce dataset and a public entity linking
task, where we show that KR-BERT outperforms exist-
ing baseline KG integrated Transformers.

Related Works
To understand how to integrate knowledge into language
representations we first look at how entities are generally
linked to texts, and then how linking done within existing
language models.

Entity Linking Entity linking associates which specific
entity in the KG is associated with a found entity mentioned
in the text. They traditionally have been carried out using
features-based methods to operate on short texts, such as
Twitter data (Guo, Chang, and Kiciman 2013; Yang and
Chang 2016). Similarly linking is performed over larger
KGs in domains with more complex document data, such
as in news articles (Kolitsas, Ganea, and Hofmann 2018) or
the biomedical setting (Angell et al. 2021).

In our setting with new domains, there will not be high
quality KGs and supervision. Here neural-based models
have been proposed to learn representations of the entity in
its text context and match them to entities in KGs with lim-
ited to no supervision (Nayak and Bach 2020; Logeswaran
et al. 2019; Wu et al. 2019). However there are many candi-
date triplets to be checked within the same input text, thus
a large computational overhead is required to perform such
disambiguation. This makes it unclear how to efficiently in-
tegrate such large-scale entity linkers within Transformers
to optimize end-to-end. We address this by computing the
embedding similarity of the triplets to the sample labels as
a lightweight method of selecting the most relevant top-k
triplets.

KG integrated Transformers Once entities are linked to
the text some works fuse external triplet information into
text representations. One method is to insert knowledge
triplets at the input text level, as done in K-BERT (Liu et al.
2020). ERNIE (Sun et al. 2019) learns a cross-modal KG
entity and token embeddings within the intermediate Trans-
former layers. KEPLER (Wang et al. 2021) keeps the orig-
inal Transformer architecture and adds a KG entity embed-
ding objective(Bordes et al. 2013) based on the triplets found
in the text to fine-tune their token representations. These

methods don’t explicitly disambiguate between similar en-
tities to use since they often use well curated KGs, such as
Wikidata1, DBpedia2, or YAGO(Pellissier Tanon, Weikum,
and Suchanek 2020), which contain minimal ambiguous
knowledge. KnowBERT(Peters et al. 2019) integrates an en-
tity linking sub-module to infer the correct entity, but re-
quires entity linking data or relies on heuristics to perform
embedding alignment when such linking data doesn’t ex-
ist. In KR-BERT we relax the entity linking data require-
ment through our relevance model, which we integrate into
our KG-based Transformer to optimize knowledge relevance
and our domain-specific task end-to-end.

Method
Preliminaries
To define our problem, we are provided a dataset where each
sample consists of a text string and domain labels (T,y),
where the task is to infer the labels from the text T → y.
We further refer to the token level strings in the sentence
as [x1, x2, . . . , xN ] = T for a text with N tokens. For our
e-commerce example the input pairs consist of product text
T and concept labels y that we want to predict. For tasks
such as entity linking the problem is similarly posed for the
reference text and the entity labels associated to the text.

To better associate the text to the labels, we leverage a
knowledge graph (KG) consisting of subject, relation, and
object (s, r, o) triplets. We integrate this knowledge by aug-
menting the input level text T . This is done by finding all
subject text s mentions in T , and then inserting the corre-
sponding relation r and object o text right after each subject
text. For example, given the triplet (water, occurs in, nature)
and the text T “...Merrell water resistant boots...”, our aug-
mented text T ′ would be “...Merrell water occurs in nature
resistant boots...”. Such KG information is useful to infer the
concept labels, such as y = {hiking}, from T ′.

If there are multiple candidate triplets to insert, we would
have to choose the most relevant triplets through entity link-
ing methods. In our previous example we might also insert
the triplet (water, required for, painting), but does not fit into
the context of the product. To address this we design KR-
BERT, which first sources the relevant knowledge triplets,
predicts if the selected triplets are relevant for the corre-
sponding text, and finally controls the knowledge augmen-
tation through a gating mechanism within the Transformer’s
self-attention mechanism.

Knowledge Triplet Selection
Triplet Candidate Sourcing In the triplet candidate
sourcing step, we form a match set C that contains all triplets
with subject tokens s that text match tokens in the original
text T . We then apply a simple unsupervised filtering step
leveraging each sample label y ∈ y to refine the knowledge
triplet match set.

Specifically, we compute eyi , the averaged token embed-
ding of each label y ∈ y as well as eoj , the averaged token

1https://www.wikidata.org/
2https://www.dbpedia.org/
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Figure 1: In (1) we show triplet sourcing where we deter-
mine the score of triplets based on the objects embedding
similarity with the sample label. It generates weak labels for
triplet relevance modeling in (2), which predicts the similar-
ity using the triplet and the text.

embedding for each triplet object o in the candidate set C.
We use a pre-trained Word2vec (Mikolov et al. 2013) model
to generate the embeddings. Next we compute the cosine
similarity between each pairwise label eyi and triplet object
embedding eoj . For each triplet, we take its max score across
all label embeddings ey to determine the triplet’s overall rel-
evance score. This triplet score scorej is computed for all
candidate triplets as shown in Equation 1, where S is the set
of scores for all triplets.

scorej = max
eyi∈ey

cos(eyi , eoj) ∀ scorej ∈ S (1)

We provide a visual example of the triplet scoring on the
left of Figure 1. In the next step, we refine our candidate set
C by the top-k scoring triplets C = {(s, r, o)j | scorej ∈
top-k(S)}, which are then inserted into our sentence T to
produce our model’s text input T ′.

Even though we rank the triplets to insert, we don’t guar-
antee that the triplets are relevant within context. The best
triplets in our KG can still have a low score, so we still need
a model to determine if the inserted triplets are truly rele-
vant to the text as a whole. Therefore we also use the triplet
scores as weak labels to train a triplet relevance model.

Triplet Relevance Prediction Given the sourced top-k
triplets, we use a binary classifier to predict the relevance
of these triplets to the text. This is done through a triplet
relevance model, a 2-layer MLP with 100 hidden units con-
taining two inputs, as shown on the right of Figure 1.

The first input is an average embedding ec of the context
text T c. This context text is a representative sub-text of the
original text T c ⊆ T , such as a product title. The second is
an average embedding et of all triplet tokens T ∗ obtained
from our top-k candidate triplets C.

The triplet relevance model outputs the relevance prob-
ability score of the top-k triplets for the context text: p =
σ(MLP(et; ec)) ∈ [0, 1]. We use weak labels generated in

Equation 2 to train the relevance prediction model.

yweak =

{
1, if min(top-k(S)) > 0.5

0, otherwise
(2)

Given top-k(S) we consider the top-k triplets as relevant if
all scores are above a threshold, otherwise they are irrele-
vant.

We then optimize a standard cross entropy loss between
the MLP output and the weak labels Lrel = CE(p, yweak).
To summarize, we first leverage triplet sourcing to score rel-
evant triplets based on the similarity of the triplet object to
the sample labels. Then we threshold these scores to gen-
erate labels to train a small MLP model to predict the rel-
evance of the triplet embedding to the text. This relevance
model is integrated into a Transformer to efficiently com-
pute relevance during end-to-end training, described in the
next section.

Knowledge Relevance BERT
Building on top of K-BERT (Liu et al. 2020), we propose
Knowledge Relevance BERT (KR-BERT), which integrates
the triplet relevance model into a transformer to regulate the
impact of the inserted triplets during concept linking.

Knowledge Masking In K-BERT, the text is also aug-
mented by directly inserting triplets into the text. Concretely
the original text T and the triplet tokens T ∗ make up the full
augmented text T ∪T ∗ = T ′ used as the model input. How-
ever, attention across the input text and inserted triplets may
corrupt the original semantic meaning of the text. In our ex-
ample “...Merrell water occurs in nature resistant boots...”
we don’t want the inserted triplet tokens “occurs in nature”
to attend to “Merrell” or “resistant” since it was not in the
original context.

To address this problem, K-BERT utilizes a visible ma-
trix M (Equation 3) to mask out the self-attention weights
between text and knowledge triplet text tokens.

Mij =

{
0 if xi, xj ∈ T or xi, xj ∈ T ∗

−∞ otherwise
(3)

Since it uses triplet subjects s as anchor points for triplet
text insertion, s will be available in both T and T ∗ (T ∩
T ∗ = s). With the visible matrix M as a mask, all text tokens
in T will attend to subject tokens s, but not to r and o in
T ∗. Conversely, the triplet tokens r and o can attend to the
subject tokens s, but not the rest of T . Therefore only the
subject tokens s will be contextualized by both the input text
and knowledge triplet within the self-attention layer.

Knowledge Relevance To integrate our triplet relevance
model we first define a triplet position matrix P in Equation
4 which is a self-attention mask between triplet tokens.

Pij =

{
1 if xi, xj ∈ T ∗

0 otherwise (xi or xj ∈ T − s)
(4)

Given the relevance score p computed from our relevance
model, we update the self-attention scores between text and
triplet tokens using D = 1 − (1 − p) · P . Given the visible
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Figure 2: Our KR-BERT framework with key steps: (1) We insert triplet tokens into the text input. (2) The triplet relevance
model determines if the triplet inserted into the input is relevant to the text context. (3) This relevance score is used to gate the
impact of the triplet’s attention scores on other tokens if deemed irrelevant.

matrix M and knowledge relevance scaling D, we define the
knowledge relevant self-attention as in Equation 5.

self-attn = (D ⊙ softmax(
QK⊤ +M√

d
))V (5)

Here ⊙ indicates element-wise multiplication. We illus-
trate this full process in the attention layer in the center of
Figure 2. Note that in case p is 0 (low relevance), D will
mask out the attention weights between the original text and
inserted triplet tokens, reverting to the original text T self-
attention. In case p is 1 (high relevance), D will not change
any attention weights, and it uses the K-BERT self-attention
over the augmented text T ′. This full KR-BERT model is
illustrated in Figure 2.

Model Training We first pre-train the model with a
masked language model (MLM) objective to predict masked
out tokens from T ′, which are randomly masked out 15%
of the time. During pre-training, we remove the relevance
model since it may try to suppress a triplet token that the
MLM objective is trying to simultaneously predict.

After pre-training we train our triplet relevance MLP on
our relevance weak labels, using the pre-trained frozen input
embeddings from the MLM stage. This ensures the input
embeddings used for the relevance model and the pre-trained
KR-BERT layers are aligned for future fine-tuning.

Finally, the pre-trained KR-BERT weights and rele-
vance weights are loaded to start the fine-tuning proce-
dure. Here we train our classifier heads to predict our labels
ŷ = classifier(BERT(T ′)), where our classifier heads are a
dropout layer followed by a single dense layer. This is opti-
mized through cross entropy as Lcls = CE(ŷ,y). We also
keep our relevance optimization objective during fine-tuning
to maintain consistent relevance predictions for knowledge
regulation. This gives our final end-to-end fine tuning loss as
L = Lcls + Lrel.

Model Inference During model training we will have la-
bels y for the triplet candidate sourcing, while at inference
we do not. Therefore during inference we first predict the
task labels ŷpre without the sourcing step. Then we can pro-
vide ŷpre to bootstrap the triplet sourcing step to provide
triplets for the rest of the pipeline and predict the final labels.
This can be thought as a two step process to first compute an
initial estimation of the distribution of labels ŷpre, similar to
models such as K-BERT or ERNIE that are triplet agnostic.
Then in the second pass, we source triplets using ŷpre to in-
sert relevant triplets into the text and re-rank the final label
predictions ŷ.

E-Commerce Experiments
We first test KR-BERT on e-commerce product linking and
search tasks, where product descriptions and KGs provide



rich information for e-commerce applications. Having prod-
uct level data provides precision on which products are most
relevant to a user query. Conversely, a knowledge graph link-
ing products would enable better recall of relevant or useful
products beyond a typical query.

The challenge to enable this recall is that there are no
established KGs that focus on linking products to com-
mon concepts, or high-level topics of interest that customers
search for. For example, if the query pertains to the concept
of hiking, an existing product taxonomy might show prod-
ucts related to hiking boots and poles. However, we would
also want to extend the coverage of these products to in-
clude categories such as water bottles, bug spray, small first
aid kits, etc. which would also be relevant to the user and
would ideally come from a KG.

Before mining a KG, we first define a set of concepts that
customers are interested in, where we use the Wikipedia list
of hobbies page3. Examples of such hobby concepts are hik-
ing, baking, sketching, e-sports, and so forth spanning 572
unique concepts. These concepts are common entities with
which we can associate relevant products in a KG.

Concept KG Construction
Starting from these hobby concepts, we next construct a
knowledge graph of products via rule-based extraction from
the corresponding wiki pages. For each hobby concept wiki
page, we look for subsections containing the following key-
words: tool, material, equipment, and accessories. If such
subsection exists, we check two structures for products: 1)
linked pages which may lead to another product page, such
as a hiking boots page link within the equipment section in
the hiking page. 2) items in comma delimited lists, which
often describe products required for that hobby concept. We
then insert triplets in the form of (product, required for,
hobby concept) into the KG. As a result, our final product
to concept KG contains 2.6k triplets covering 87 out of 572
total hobby concepts. With these heuristics, we mine a KG
that covers a spectrum of e-commerce products but contains
significant noise as well.

Task Data Set Construction
To build our dataset we use customer search logs which con-
tain search queries associated with purchased products. We
then assign our hobby concepts as labels to these query-
product pairs if the concept text occurs in the search query.
To overcome the low-recall issues due to direct text match-
ing, we expanded by also linking the matched concepts with
all queries and purchased products within the same search
session. This led to 4M query-product pairs associated with
multi-label concepts. These include over 2M unique prod-
ucts spanning 273 hobby concepts, which are used to de-
velop our e-commerce tasks. With this e-commerce dataset
and KG we generated, we test two tasks.

Product Concept Linking The first task is product con-
cept linking, where given a product we predict the con-
cept label. Such classification benefits customers who ex-
plore and purchase products grouped by common concepts.
3https://en.wikipedia.org/wiki/List of hobbies

For the product text T we concatenate its title, description,
and any bullet points. For evaluation we sample 10 product-
concept pairs for each concept and manually cleaned the
concept labels. After correction, we had a gold test set of
2.7k samples spanning 253 unique hobby concepts.

Search Ranking The second task we test is a search rank-
ing task. Given our query-product pairs, the query is con-
catenated with augmented product text T ′ to serve as the
input. Then the model predicts if the product was purchased
given the query as a binary prediction task. For each query,
we sampled 100 products that didn’t have the same concept
label to serve as negative samples during training. For test-
ing, we use the query-products from our manually corrected
test set as positive pairs. Given a fixed query and its corre-
sponding concept, we use two strategies to obtain products
for negative sampling:
• Any products where the corresponding concept is in the

original test labels, but removed during test set correc-
tion. The concept corresponding to these products was
incorrect, but likely a close match (hard cases).

• Random product sampling to fill in the rest of the nega-
tive labels (easier cases).

For each positive test query-product pair, we generate 99
other negative product samples using these two strategies
and test the model’s product recall over 100 products.

Baselines and Experimental Setup
During our experiments we used a 12 layer ALBERT (Lan
et al. 2019) as our backbone, which is used for all our mod-
els and baselines to establish a fair comparison. The base-
lines we test against are:
• Keyword Search: A keyword baseline that searches for

the concept token in the text.
• KG Lookup: Since our concepts and knowledge graphs

were mined from Wikipedia pages, we also test a KG
lookup. In this setting, if a candidate triplet subject (prod-
uct) matches a text substring, then the triplet’s object
(hobby concept) is predicted.

• ALBERT: The standard ALBERT model with MLM pre-
training and fine-tuning on the task.

• K-BERT: This is the K-BERT implementation, but with
the ALBERT backbone. Unlike the original paper, we run
MLM pre-training given the knowledge insertions, which
improves performance on our tasks.

• ERNIE: We use the ERNIE implementation with the AL-
BERT backbone. We perform pre-training using MLM
and entity prediction as described in the ERNIE paper
(Sun et al. 2019). For its entity embeddings, we trained a
TransE (Bordes et al. 2013) model on top of our KG.

For all methods use the AdamW optimizer (Loshchilov
and Hutter 2018) with the default settings provided in the
original paper, except we updated our learning rate to 1e−5

for all experiments. For MLM pre-training we used our
product text corpus, where we randomly masked out the to-
ken 15% of the time. We pre-trained and fine-tuned all mod-
els till we see training loss convergence, which usually hap-
pened within 5 epochs.



Method Micro Macro
F1 P R F1 P R

Keyword Search .407 .343 .760 .565 .564 .743
KG Lookup .361 .422 .580 .446 .497 .606
ALBERT .574 .602 .655 .692 .695 .788
ERNIE .576 .555 .707 .701 .671 .825

K-BERT .586 .574 .684 .711 .686 .817

KR-BERT .598 .582 .725 .717 .697 .826

Table 1: Results for predicting the hobby concept given a
product. The best results are in bold while the runner ups
are underlined.

Method Micro Macro
R@1 R@5 R@10 R@1 R@5 R@10

TF-IDF .642 .900 .945 .694 .941 .973
ERNIE .869 .956 .977 .874 .973 .984

K-BERT .865 .953 .976 .885 .977 .987

KR-BERT .864 .957 .978 .891 .977 .987

Table 2: Results for ranking the correct product given the
query.

Method Relevance Model Triplet Sourcing Micro Macro
F1 P R F1 P R

ERNIE no yes .554 .545 .671 .690 .664 .807
K-BERT no yes .567 .542 .708 .699 .677 .803

KR-BERT yes (frozen) no .589 .615 .655 .708 .687 .821
KR-BERT yes (Lcls only) no .583 .611 .633 .707 .686 .822
KR-BERT yes (Lcls + Lrel) no .568 .572 .680 .702 .686 .808

KR-BERT yes (frozen) yes .591 .581 .675 .703 .673 .814
KR-BERT yes (Lcls only) yes .583 .603 .646 .700 .696 .793

KR-BERT (full) yes (Lcls + Lrel) yes .598 .582 .725 .717 .697 .826

Table 3: Ablating the triplet sourcing and relevance model in KR-BERT as well as our baselines for the concept linking task.

Task Evaluation Results
Product Concept Linking We present the concept link-
ing results in Table 1. Since keyword search matches all
concepts, it has the best recall but poor precision. The KG
lookup results prove that the mined KG is too noisy to use
directly to predict concept labels. Our neural baselines can
further adapt to this noise, where ERNIE and K-BERT also
directly leverage knowledge. However, our full KR-BERT
best adapts to the noisy knowledge and provides the best
performance.

Search Ranking For our retrieval task in Table 2 KR-
BERT also shows strong performance. Here the baseline
Transformer methods also show comparable performance
in this task. Learning from query-product pairs leads to
large performance improvements for all Transformer meth-
ods over traditional lexical retrievers, such as TF-IDF.

Model Ablation Studies
We further investigate how the different components of our
model lead to performance differences. First, we investigate
the interaction of our triplet sourcing and relevance mod-
eling stages. Then we further dive into selecting the top-k
triplets used to augment our text. Finally, we view the effi-
cacy of our triplet relevance model.

Triplet Sourcing and Relevance Within KR-BERT we
ablate multiple setups for the relevance model during the
fine-tuning stage as shown in Table 3. Without triplet sourc-
ing, simply freezing the pre-trained relevance model weights
outperforms end-to-end task fine-tuning. This is because we

Method top-k Micro F1 Macro F1

ERNIE 1 .576 .701
3 .571 .674

K-BERT 1 .586 711
3 .577 .700

KR-BERT 1 .598 .717
3 .589 .705

Table 4: Product concept linking performance with varying
number of triplet insertions.

cannot efficiently sample positive triplets during fine-tuning
Lrel, thus mostly predict negative labels. Then during in-
ference, any input triplets are suppressed. Adding the triplet
sourcing, we produce better relevance labels and jointly tune
the classification loss, providing better results.

We also test our triplet sourcing method within ERNIE
and K-BERT and observe that even with triplet sourc-
ing, the performance does not improve. Therefore an addi-
tional mechanism needs to filter relevant triplets, performed
through the relevance model in KR-BERT.

Top-k Analysis In Table 4, we show the impact of our
top-k hyper-parameter for number of inserted triplets. We
find that inserting more than 1 triplet leads to degraded per-
formance regardless of the model choice. This is likely due
to the noise introduced by more insertions under the noisy
knowledge setting, as opposed to inserting all triplets from
well curated KGs (Sun et al. 2019; Liu et al. 2020). Using



(Subject, Object) Category yweak Pred p

(bikini, swimming) swimwear 1 .99
(foundation, makeup) concealer 1 .94
(racket, table tennis) sport table 1 .99

(action figure, dolls) toy figure 0 .97
(marker, journaling) writing 0 .99
(trail shoe, hiking) shoes 0 .99

Table 5: Relevance success cases and generalization.

(Subject, Object) Category yweak Pred p

(height, table tennis) shoes 0 .99
(strike, cricket) sandal 0 .97

(protection, rock climbing) sunglasses 0 .97

(sew, sewing) sewing button 1 .06
(compressed air, paintball) air gun 1 .01

Table 6: Relevance prediction failure cases.

k = 1 makes it easier for the model to understand the rele-
vance for each triplet disjointly, rather than jointly estimat-
ing the relevance of multiple k > 1 insertions.

Relevance Model Predictions We observe the predictions
made by our relevance model to see if it is learning useful
relevance scores. This is an important step to verify correctly
operating model logic, instead of having performance gains
just from the additional free parameters from additional the
relevance model.

In Table 5 we observe where the model was able to cor-
rectly predict a positive weak label yweak from our relevance
prediction training. For brevity, we only show the subject
and the object for the triplet and the category of the corre-
sponding product for which we are predicting the relevance
score of. We also see generalization successes, where even
though we had negative weak labels, our model still predicts
the relevance between the triplet and context correctly. We
also observe false positive and false negative cases in Ta-
ble 6. Here we see relevance prediction failure, as well as in
some cases failure to suppress incorrectly mined triplets, as
seen in row 1. Notably, this example shows noisy knowledge
and how models are susceptible to it.

Triplet Label Overlap Due to the nature of our e-
commerce dataset construction, the hobby concepts in our
triplets are also the concept labels that we are trying to pre-
dict. For example, during triplet sourcing we will be match-
ing sample labels y = {hiking} directly to triplets con-
taining hiking as well as other closely related triplet objects
such as nature. However, we don’t have these ground truth
concept labels during inference and are sourcing triplets
given inferred labels. Therefore our model still learns the
appropriate triplet insertions to do well in our tasks. Addi-
tionally, this concept-label overlap is not always present in
general and our model still shows benefits, as shown in fur-
ther entity linking experiments.

Model top-k F1 P R

ALBERT - .564 .600 .641
K-BERT no-limit .554 .544 .635
ERNIE no-limit .593 .601 .670

KnowBERT no-limit .489 .475 .568
+ LMLM no-limit .556 .599 .631

+ LMLM + Lrel 1 .570 .589 .641
+ LMLM + Lrel 3 .578 .591 .655
+ LMLM + Lrel no-limit .582 .591 .661

KR-BERT 1 .599 .644 .610
KR-BERT 3 .601 .622 .658
KR-BERT no-limit .582 .615 .631

Table 7: Performance results on FIGER data.

FIGER Entity Linking

In addition to e-commerce data, we also tested KR-BERT
on Wikipedia sentences tagged by FIGER (Ling and Weld
2012), a public fine-grained entity linking framework. Each
sentence has on average 4.4 entities, of which one of the
entities is labeled with a subset of 112 unique entity type la-
bels. For example, if the relevant entity in the sentence was
Tom Cruise, the corresponding entity labels would be [per-
son, person/actor]. The data set contains 2M training sam-
ples, 10k validation, and 563 test samples obtained from the
ERNIE codebase4.

Following the training setup from ERNIE, the Wikidata
KG was used to augment the representations for this task.
Unlike the product linking data where there were overlaps
between the labels and concepts, this is not enforced with
the Wikidata KG. For example, the labels of Tom Cruise are
person/actor while the closest Wikidata entry is human. This
provides an opportunity to test KR-BERT’s entity linking
performance.

From the results in Table 7 we see strong performance
versus the baselines, even with the fact that Wikidata KG is
significantly cleaner than the e-commerce KG. ERNIE pro-
vides competitive performance, where it has the best recall.
One explanation is that since it leverages the entire Wikidata
KG for its embedding, it can capture more variance for the
entity representations. This pattern similarly continues with
KnowBERT where we also test adding pre-training (LMLM )
and our additional relevance weak label tuning (Lrel). It
demonstrates the benefits of controlling which entities are
used when no gold entity-linking labels are available.

We see benefits going from 1 to 3 insertions in both
KnowBERT and KR-BERT since Wikidata is a clean KG.
However, in KR-BERT, adding all the triplets lowers the
performance overall since only a subset of the triplets is rel-
evant to the target entity in each sample. Interestingly, this is
not the case for KnowBERT which learns more dense neural
representations to capture the interaction between entities,
similar to ERNIE.

4https://github.com/thunlp/ERNIE#fine-tune



Conclusion and Future Work
We develop our KR-BERT framework for noisy KG-based
inference, which occurs when working on new domains. It
first ranks the candidate triplets based on the similarity be-
tween triplet objects and sample labels. Then a relevance
model looks at the top-k ranked triplets and determines if
the triplets are relevant to the text context. Finally, based on
the relevance, the triplet tokens are gated within the Trans-
former self-attention mechanism. We empirically evaluate
our method and our design choices for concept linking and
ranking tasks on an e-commerce dataset and on a public
entity linking task, where we outperform existing KG in-
tegrated transformers.

For future work, such a framework can be improved by
computing the relevance prediction at the individual triplet
level instead of the aggregate level, similar to KnowBERT,
for finer control and reducing the constraint on setting top-
k. We saw the recall benefits of using KG embeddings with
ERNIE and KnowBERT, so a relevance model using entity
and relevance embeddings could better capture this variance.
By controlling the quality of the knowledge inserted into dif-
ferent layers of the model, we can better understand how
to best leverage these noisy representations for end-to-end
tasks.
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