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Abstract

Language model (LM) pretraining can learn various knowl-
edge from text corpora, helping downstream tasks. However,
existing methods such as BERT model a single document,
and do not capture dependencies or knowledge that span
across documents. In this work, we propose LinkBERT, an
LM pretraining method that leverages links between doc-
uments, e.g., hyperlinks. Given a text corpus, we view it
as a graph of documents and create LM inputs by plac-
ing linked documents in the same context. We then pretrain
the LM with two joint self-supervised objectives: masked
language modeling and our new proposal, document rela-
tion prediction. We show that LinkBERT outperforms BERT
on various downstream tasks across two domains: the gen-
eral domain (pretrained on Wikipedia with hyperlinks) and
biomedical domain (pretrained on PubMed with citation
links). LinkBERT is especially effective for multi-hop rea-
soning and few-shot QA (+5% absolute improvement on
HotpotQA and TriviaQA), and our biomedical LinkBERT
sets new states of the art on various BioNLP tasks (+7% on
BioASQ and USMLE). We will release our pretrained mod-
els, LinkBERT and BioLinkBERT, as well as code and data at
https://github.com/michiyasunaga/LinkBERT.

1 Introduction
Pretrained language models (LMs), like BERT and GPTs (Devlin
et al. 2019; Brown et al. 2020), have shown remarkable performance
on many natural language processing (NLP) tasks, such as text
classification and question answering, becoming the foundation of
modern NLP systems (Bommasani et al. 2021). By performing self-
supervised learning, such as masked language modeling (Devlin
et al. 2019), LMs learn to encode various knowledge from text
corpora and produce informative representations for downstream
tasks (Petroni et al. 2019; Bosselut et al. 2019; Raffel et al. 2020).

However, existing LM pretraining methods typically consider
text from a single document in each input context (Liu et al. 2019;
Joshi et al. 2020) and do not model links between documents. This
can pose limitations because documents often have rich dependen-
cies (e.g. hyperlinks, references), and knowledge can span across
documents. As an example, in Figure 1, the Wikipedia article “Tidal
Basin, Washington D.C.” (left) describes that the basin hosts “Na-
tional Cherry Blossom Festival”, and the hyperlinked article (right)
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The Tidal Basin is a man-made 
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Festival held each spring. The 
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Franklin Delano Roosevelt 
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of Washington, D.C. Mayor Ozaki 
gifted the trees to enhance the 
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Figure 1: Document links (e.g. hyperlinks) can provide salient multi-hop
knowledge. For instance, the Wikipedia article “Tidal Basin” (left) describes
that the basin hosts “National Cherry Blossom Festival”. The hyperlinked
article (right) reveals that the festival celebrates “Japanese cherry trees”.
Taken together, the link suggests new knowledge not available in a single
document (e.g. “Tidal Basin has Japanese cherry trees”), which can be useful
for various applications, including answering a question “What trees can
you see at Tidal Basin?”. We aim to leverage document links to incorporate
more knowledge into language model pretraining.

reveals the background that the festival celebrates “Japanese cherry
trees”. Taken together, the hyperlink offers new, multi-hop knowl-
edge “Tidal Basin has Japanese cherry trees”, which is not available
in the single article “Tidal Basin” alone. Acquiring such multi-hop
knowledge in pretraining could be useful for various applications in-
cluding question answering. In fact, document links like hyperlinks
and references are ubiquitous (e.g. web, books, scientific litera-
ture), and guide how we humans acquire knowledge and even make
discoveries (Margolis et al. 1999).

In this work, we propose LinkBERT, an effective language model
pretraining method that incorporates document link knowledge.
Given a text corpus, we obtain links between documents such as
hyperlinks, and create LM inputs by placing linked documents in
the same context, besides the existing option of placing a single
document or random documents as in BERT. Specifically, as in
Figure 2, after sampling an anchor text segment, we place either (1)
the contiguous segment from the same document, (2) a random doc-
ument, or (3) a document linked from anchor segment, as the next
segment in the input. We then train the LM with two joint objectives:
We use masked language modeling (MLM) to encourage learning
multi-hop knowledge of concepts brought into the same context by

https://github.com/michiyasunaga/LinkBERT
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Figure 2: Overview of our approach, LinkBERT. Given a pretraining corpus, we view it as a graph of documents, with links such as hyperlinks (§4.1).
To incorporate the document link knowledge into LM pretraining, we create LM inputs by placing a pair of linked documents in the same context (linked),
besides the existing options of placing a single document (contiguous) or a pair of random documents (random) as in BERT. We then train the LM with two
self-supervised objectives: masked language modeling (MLM), which predicts masked tokens in the input, and document relation prediction (DRP), which
classifies the relation of the two text segments in the input (contiguous, random, or linked) (§4.2).

document links (e.g. “Tidal Basin” and “Japanese cherry” in Figure
1). Simultaneously, we propose a Document Relation Prediction
(DRP) objective, which classifies the relation of the second segment
to the first segment (contiguous, random, or linked). DRP encour-
ages learning the relevance and bridging concepts (e.g. “National
Cherry Blossom Festival”) between documents, beyond the ability
learned in the vanilla next sentence prediction objective in BERT.

Viewing the pretraining corpus as a graph of documents,
LinkBERT is also motivated as self-supervised learning on the
graph, where DRP and MLM correspond to link prediction and
node feature prediction in graph machine learning (Yang et al. 2015;
Hu et al. 2020). Our modeling approach thus provides a natural
fusion of language-based and graph-based self-supervised learning.

We train LinkBERT in two domains: the general domain, using
Wikipedia articles with hyperlinks (§4), and the biomedical domain,
using PubMed articles with citation links (§6). We then evaluate
the pretrained models on a wide range of downstream tasks such
as question answering, in both domains. LinkBERT consistently
improves on baseline LMs across domains and tasks. For the gen-
eral domain, LinkBERT outperforms BERT on MRQA benchmark
(+4% absolute in F1-score) as well as GLUE benchmark. For the
biomedical domain, LinkBERT exceeds PubmedBERT (Gu et al.
2020) and sets new states of the art on BLURB biomedical NLP
benchmark (+3% absolute in BLURB score) and MedQA-USMLE
reasoning task (+7% absolute in accuracy). Overall, LinkBERT at-
tains notably large gains for multi-hop reasoning, multi-document
understanding, and few-shot question answering, suggesting that
LinkBERT internalizes significantly more knowledge than existing
LMs by pretraining with document link information.

2 Related work
Retrieval-augmented LMs. Several works (Lewis et al. 2020b;
Karpukhin et al. 2020; Oguz et al. 2020; Xie et al. 2022) introduce a
retrieval module for LMs, where given an anchor text (e.g. question),
retrieved text is added to the same LM context to improve model
inference (e.g. answer prediction). These works show the promise
of placing related documents in the same LM context at inference
time, but they do not study the effect of doing so in pretraining. Guu
et al. (2020) pretrain an LM with a retriever that learns to retrieve
text for answering masked tokens in the anchor text. In contrast, our
focus is not on retrieval, but on pretraining a general-purpose LM
that internalizes knowledge that spans across documents, which is
orthogonal to the above works (e.g., our pretrained LM could be
used to initialize the LM component of these works). Additionally,
we focus on incorporating document links such as hyperlinks, which

can offer salient knowledge that common lexical retrieval methods
may not provide (Asai et al. 2020).

Pretrain LMs with related documents. Several concurrent
works use multiple related documents to pretrain LMs. Caciularu
et al. (2021) place documents (news articles) about the same topic
into the same LM context, and Levine et al. (2021) place sentences
of high lexical similarity into the same context. Our work provides a
general method to incorporate document links into LM pretraining,
where lexical or topical similarity can be one instance of document
links, besides hyperlinks. We focus on hyperlinks in this work, be-
cause we find they can bring in salient knowledge that may not
be obvious via lexical similarity, and yield a more performant LM
(§5.5). Additionally, we propose the DRP objective, which improves
modeling multiple documents and relations between them in LMs
(§5.5).

Hyperlinks and citation links for NLP. Hyperlinks are often
used to learn better retrieval models. Chang et al. (2020); Asai et al.
(2020); Seonwoo et al. (2021) use Wikipedia hyperlinks to train
retrievers for open-domain question answering. Ma et al. (2021)
study various hyperlink-aware pretraining tasks for retrieval. While
these works use hyperlinks to learn retrievers, we focus on using
hyperlinks to create better context for learning general-purpose
LMs. Separately, Calixto et al. (2021) use Wikipedia hyperlinks to
learn multilingual LMs. Citation links are often used to improve
summarization and recommendation of academic papers (Qazvinian
& Radev 2008; Yasunaga et al. 2019; Bhagavatula et al. 2018;
Khadka et al. 2020; Cohan et al. 2020). Here we leverage citation
networks to improve pretraining general-purpose LMs.

Graph-augmented LMs. Several works augment LMs with
graphs, typically, knowledge graphs (KGs) where the nodes cap-
ture entities and edges their relations. Zhang et al. (2019); He et al.
(2020); Wang et al. (2021b) combine LM training with KG embed-
dings. Sun et al. (2020); Yasunaga et al. (2021); Zhang et al. (2022)
combine LMs and graph neural networks (GNNs) to jointly train
on text and KGs. Different from KGs, we use document graphs to
learn knowledge that spans across documents.

3 Preliminaries
A language model (LM) can be pretrained from a corpus of doc-
uments, X = {X(i)}. An LM is a composition of two functions,
fhead(fenc(X)), where the encoder fenc takes in a sequence of tokens
X = (x1, x2, ..., xn) and produces a contextualized vector repre-
sentation for each token, (h1,h2, ...,hn). The head fhead uses these
representations to perform self-supervised tasks in the pretraining



step and to perform downstream tasks in the fine-tuning step. We
build on BERT (Devlin et al. 2019), which pretrains an LM with the
following two self-supervised tasks.

Masked language modeling (MLM). Given a sequence of tokens
X , a subset of tokens Y ⊆ X is masked, and the task is to predict
the original tokens from the modified input. Y accounts for 15% of
the tokens in X; of those, 80% are replaced with [MASK], 10% with
a random token, and 10% are kept unchanged.

Next sentence prediction (NSP). The NSP task takes two text
segments (XA, XB) as input, and predicts whether XB is the direct
continuation of XA. Specifically, BERT first samples XA from the
corpus, and then either (1) takes the next segment XB from the
same document, or (2) samples XB from a random document in the
corpus. The two segments are joined via special tokens to form an
input instance, [CLS] XA [SEP] XB [SEP], where the prediction
target of [CLS] is whether XB indeed follows XA (contiguous or
random).

In this work, we will further incorporate document link informa-
tion into LM pretraining. Our approach (§4) will build on MLM and
NSP.

4 LinkBERT
We present LinkBERT, a self-supervised pretraining approach that
aims to internalize more knowledge into LMs using document link
information. Specifically, as shown in Figure 2, instead of view-
ing the pretraining corpus as a set of documents X = {X(i)},
we view it as a graph of documents, G = (X , E), where E =

{(X(i), X(j))} denotes links between documents (§4.1). The links
can be existing hyperlinks, or could be built by other methods that
capture document relevance. We then consider pretraining tasks
for learning from document links (§4.2): We create LM inputs by
placing linked documents in the same context window, besides the
existing options of a single document or random documents. We
use the MLM task to learn concepts brought together in the context
by document links, and we also introduce the Document Relation
Prediction (DRP) task to learn relations between documents. Fi-
nally, we discuss strategies for obtaining informative pairs of linked
documents to feed into LM pretraining (§4.3).

4.1 Document graph
Given a pretraining corpus, we link related documents so that the
links can bring together knowledge that is not available in single
documents. We focus on hyperlinks, e.g., hyperlinks of Wikipedia
articles (§5) and citation links of academic articles (§6). Hyperlinks
have a number of advantages. They provide background knowledge
about concepts that the document writers deemed useful—the links
are likely to have high precision of relevance, and can also bring in
relevant documents that may not be obvious via lexical similarity
alone (e.g., in Figure 1, while the hyperlinked article mentions
“Japanese” and “Yoshino” cherry trees, these words do not appear in
the anchor article). Hyperlinks are also ubiquitous on the web and
easily gathered at scale (Aghajanyan et al. 2021). To construct the
document graph, we simply make a directed edge (X(i), X(j)) if
there is a hyperlink from document X(i) to document X(j).

For comparison, we also experiment with a document graph built
by lexical similarity between documents. For each document X(i),
we use the common TF-IDF cosine similarity metric (Chen et al.
2017; Yasunaga et al. 2017) to obtain top-k documents X(j)’s and
make edges (X(i), X(j)). We use k = 5.

A segment is typically a sentence or a paragraph.

4.2 Pretraining tasks
Creating input instances. Several works (Gao et al. 2021; Levine
et al. 2021) find that LMs can learn stronger dependencies between
words that were shown together in the same context during training,
than words that were not. To effectively learn knowledge that spans
across documents, we create LM inputs by placing linked documents
in the same context window, besides the existing option of a single
document or random documents. Specifically, we first sample an
anchor text segment from the corpus (Segment A; XA ⊆ X(i)). For
the next segment (Segment B; XB), we either (1) use the contiguous
segment from the same document (XB ⊆ X(i)), (2) sample a
segment from a random document (XB ⊆ X(j) where j ̸= i),
or (3) sample a segment from one of the documents linked from
Segment A (XB ⊆ X(j) where (X(i), X(j)) ∈ E). We then join
the two segments via special tokens to form an input instance: [CLS]
XA [SEP] XB [SEP].

Training objectives. To train the LM, we use two objectives. The
first is the MLM objective to encourage the LM to learn multi-hop
knowledge of concepts brought into the same context by document
links. The second objective, which we propose, is Document Re-
lation Prediction (DRP), which classifies the relation r of segment
XB to segment XA (r ∈ {contiguous, random, linked}). By dis-
tinguishing linked from contiguous and random, DRP encourages
the LM to learn the relevance and existence of bridging concepts
between documents, besides the capability learned in the vanilla
NSP objective. To predict r, we use the representation of [CLS]
token, as in NSP. Taken together, we optimize:

L = LMLM + LDRP (1)

= −
∑
i

log p(xi | hi)− log p(r | h[CLS]) (2)

where xi is each token of the input instance, [CLS]XA [SEP]XB

[SEP], and hi is its representation.

Graph machine learning perspective. Our two pretraining tasks,
MLM and DRP, are also motivated as graph self-supervised learning
on the document graph. In graph self-supervised learning, two types
of tasks, node feature prediction and link prediction, are commonly
used to learn the content and structure of a graph. In node feature
prediction (Hu et al. 2020), some features of a node are masked, and
the task is to predict them using neighbor nodes. This corresponds to
our MLM task, where masked tokens in Segment A can be predicted
using Segment B (a linked document on the graph), and vice versa.
In link prediction (Bordes et al. 2013; Wang et al. 2021a), the task is
to predict the existence or type of an edge between two nodes. This
corresponds to our DRP task, where we predict if the given pair
of text segments are linked (edge), contiguous (self-loop edge), or
random (no edge). Our approach can be viewed as a natural fusion
of language-based (e.g. BERT) and graph-based self-supervised
learning.

4.3 Strategy to obtain linked documents
As described in §4.1, §4.2, our method builds links between doc-
uments, and for each anchor segment, samples a linked document
to put together in the LM input. Here we discuss three key axes to
consider to obtain useful linked documents in this process.

Relevance. Semantic relevance is a requisite when building links
between documents. If links were randomly built without relevance,
LinkBERT would be same as BERT, with simply two options of LM
inputs (contiguous or random). Relevance can be achieved by using
hyperlinks or lexical similarity metrics, and both methods yield
substantially better performance than using random links (§5.5).



Salience. Besides relevance, another factor to consider (salience)
is whether the linked document can offer new, useful knowledge that
may not be obvious to the current LM. Hyperlinks are potentially
more advantageous than lexical similarity links in this regard: LMs
are shown to be good at recognizing lexical similarity (Zhang et al.
2020), and hyperlinks can bring in useful background knowledge
that may not be obvious via lexical similarity alone (Asai et al.
2020). Indeed, we empirically find that using hyperlinks yields a
more performant LM (§5.5).

Diversity. In the document graph, some documents may have
a very high in-degree (e.g., many incoming hyperlinks, like the
“United States” page of Wikipedia), and others a low in-degree. If
we uniformly sample from the linked documents for each anchor
segment, we may include documents of high in-degree too often
in the overall training data, losing diversity. To adjust so that all
documents appear with a similar frequency in training, we sample
a linked document with probability inversely proportional to its
in-degree, as done in graph data mining literature (Henzinger et al.
2000). We find that this technique yields a better LM performance
(§5.5).

5 Experiments
We experiment with our proposed approach in the general domain
first, where we pretrain LinkBERT on Wikipedia articles with hy-
perlinks (§5.1) and evaluate on a suite of downstream tasks (§5.2).
We compare with BERT (Devlin et al. 2019) as our baseline. We
experiment in the biomedical domain in §6.

5.1 Pretraining setup
Data. We use the same pretraining corpus used by BERT:
Wikipedia and BookCorpus (Zhu et al. 2015). For Wikipedia, we use
the WikiExtractor to extract hyperlinks between Wiki articles. We
then create training instances by sampling contiguous, random, or
linked segments as described in §4, with the three options appearing
uniformly (33%, 33%, 33%). For BookCorpus, we create training
instance by sampling contiguous or random segments (50%, 50%)
as in BERT. We then combine the training instances from Wikipedia
and BookCorpus to train LinkBERT. In summary, our pretraining
data is the same as BERT, except that we have hyperlinks between
Wikipedia articles.

Implementation. We pretrain LinkBERT of three sizes, -tiny,
-base and -large, following the configurations of BERTtiny (4.4M pa-
rameters), BERTbase (110M params), and BERTlarge (340M params)
(Devlin et al. 2019; Turc et al. 2019). We use -tiny mainly for abla-
tion studies.

For -tiny, we pretrain from scratch with random weight initial-
ization. We use the AdamW (Loshchilov & Hutter 2019) optimizer
with (β1, β2) = (0.9, 0.98), warm up the learning rate for the first
5,000 steps and then linearly decay it. We train for 10,000 steps
with a peak learning rate 5e-3, weight decay 0.01, and batch size
of 2,048 sequences with 512 tokens. Training took 1 day on two
GeForce RTX 2080 Ti GPUs with fp16.

For -base, we initialize LinkBERT with the BERTbase checkpoint
released by Devlin et al. (2019) and continue pretraining. We use
a peak learning rate 3e-4 and train for 40,000 steps. Other training
hyperparameters are the same as -tiny. Training took 4 days on four
A100 GPUs with fp16.

For -large, we follow the same procedure as -base, except that
we use a peak learning rate of 2e-4. Training took 7 days on eight
A100 GPUs with fp16.

https://github.com/attardi/wikiextractor

Baselines. We compare LinkBERT with BERT. Specifically, for
the -tiny scale, we compare with BERTtiny, which we pretrain from
scratch with the same hyperparameters as LinkBERTtiny. The only
difference is that LinkBERT uses document links to create LM
inputs, while BERT does not.

For -base scale, we compare with BERTbase, for which we take
the BERTbase release by Devlin et al. (2019) and continue pretrain-
ing it with the vanilla BERT objectives on the same corpus for the
same number of steps as LinkBERTbase.

For -large, we follow the same procedure as -base.

5.2 Evaluation tasks
We fine-tune and evaluate LinkBERT on a suite of downstream
tasks.

Extractive question answering (QA). Given a document (or
set of documents) and a question as input, the task is to identify an
answer span from the document. We evaluate on six popular datasets
from the MRQA shared task (Fisch et al. 2019): HotpotQA (Yang
et al. 2018), TriviaQA (Joshi et al. 2017), NaturalQ (Kwiatkowski
et al. 2019), SearchQA (Dunn et al. 2017), NewsQA (Trischler et al.
2017), and SQuAD (Rajpurkar et al. 2016). As the MRQA shared
task does not have a public test set, we split the dev set in half
to make new dev and test sets. We follow the fine-tuning method
BERT (Devlin et al. 2019) uses for extractive QA. More details are
provided in Appendix B.

GLUE. The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al. 2018) is a popular suite of sentence-
level classification tasks. Following BERT, we evaluate on CoLA
(Warstadt et al. 2019), SST-2 (Socher et al. 2013), MRPC (Dolan
& Brockett 2005), QQP, STS-B (Cer et al. 2017), MNLI (Williams
et al. 2017), QNLI (Rajpurkar et al. 2016), and RTE (Dagan et al.
2005; Haim et al. 2006; Giampiccolo et al. 2007), and report the
average score. More fine-tuning details are provided in Appendix B.

5.3 Results
Table 1 shows the performance (F1 score) on MRQA datasets.
LinkBERT substantially outperforms BERT on all datasets. On
average, the gain is +4.1% absolute for the BERTtiny scale, +2.6%
for the BERTbase scale, and +2.5% for the BERTlarge scale. Table 2
shows the results on GLUE, where LinkBERT performs moderately
better than BERT. These results suggest that LinkBERT is especially
effective at learning knowledge useful for QA tasks (e.g. world
knowledge), while keeping performance on sentence-level language
understanding.

5.4 Analysis
We further study when LinkBERT is especially useful in down-
stream tasks.

Improved multi-hop reasoning. In Table 1, we find that
LinkBERT obtains notably large gains on QA datasets that require
reasoning with multiple documents, such as HotpotQA (+5% over
BERTtiny), TriviaQA (+6%) and SearchQA (+8%), as opposed to
SQuAD (+1.4%) which just has a single document per question. To
further gain qualitative insights, we studied in what QA examples
LinkBERT succeeds but BERT fails. Figure 3 shows a representative
example from HotpotQA. Answering the question needs 2-hop rea-
soning: identify “Roden Brothers were taken over by Birks Group”
from the first document, and then “Birks Group is headquartered in
Montreal” from the second document. While BERT tends to simply
predict an entity near the question entity (“Toronto” in the first docu-
ment, which is just 1-hop), LinkBERT correctly predicts the answer
in the second document (“Montreal”). Our intuition is that because

https://github.com/attardi/wikiextractor


HotpotQA TriviaQA SearchQA NaturalQ NewsQA SQuAD Avg.

BERTtiny 49.8 43.4 50.2 58.9 41.3 56.6 50.0
LinkBERTtiny 54.6 50.0 58.6 60.3 42.8 58.0 54.1

BERTbase 76.0 70.3 74.2 76.5 65.7 88.7 75.2
LinkBERTbase 78.2 73.9 76.8 78.3 69.3 90.1 77.8

BERTlarge 78.1 73.7 78.3 79.0 70.9 91.1 78.5
LinkBERTlarge 80.8 78.2 80.5 81.0 72.6 92.7 81.0

Table 1: Performance (F1) on MRQA question answering datasets. LinkBERT consistently outperforms BERT
on all datasets across the -tiny, -base, and -large scales. The gain is especially large on datasets that require
reasoning with multiple documents in the context, such as HotpotQA, TriviaQA, SearchQA.

GLUE score

BERTtiny 64.3
LinkBERTtiny 64.6

BERTbase 79.2
LinkBERTbase 79.6

BERTlarge 80.7
LinkBERTlarge 81.1

Table 2: Performance on the GLUE bench-
mark. LinkBERT attains comparable or
moderately improved performance.

SQuAD SQuAD distract

BERTbase 88.7 85.9
LinkBERTbase 90.1 89.6

Table 3: Performance (F1) on SQuAD when distracting documents are
added to the context. While BERT incurs a large drop in F1, LinkBERT does
not, suggesting its robustness in understanding document relations.

HotpotQA TriviaQA NaturalQ SQuAD

BERTbase 64.8 59.2 64.8 79.6
LinkBERTbase 70.5 66.0 70.2 82.8

Table 4: Few-shot QA performance (F1) when 10% of fine-tuning data
is used. LinkBERT attains large gains, suggesting that it internalizes more
knowledge than BERT in pretraining.

HotpotQA TriviaQA NaturalQ SQuAD

LinkBERTtiny 54.6 50.0 60.3 58.0
No diversity 53.5 48.0 60.0 57.8
Change hyperlink to TF-IDF 50.0 48.2 59.6 57.6
Change hyperlink to random 49.8 43.4 58.9 56.6

Table 5: Ablation study on what linked documents to feed into LM pretrain-
ing (§4.3).

HotpotQA TriviaQA NaturalQ SQuAD SQuAD
distract

LinkBERTbase 78.2 73.9 78.3 90.1 89.6
No DRP 76.5 72.5 77.0 89.3 87.0

Table 6: Ablation study on the document relation prediction (DRP) objective
in LM pretraining (§4.2).

LinkBERT is pretrained with pairs of linked documents rather than
purely single documents, it better learns how to flow information
(e.g., do attention) across tokens when multiple related documents
are given in the context. In summary, these results suggest that pre-
training with linked documents helps for multi-hop reasoning on
downstream tasks.

Improved understanding of document relations. While the
MRQA datasets typically use ground-truth documents as context for
answering questions, in open-domain QA, QA systems need to use
documents obtained by a retriever, which may include noisy doc-
uments besides gold ones (Chen et al. 2017; Dunn et al. 2017). In
such cases, QA systems need to understand the document relations
to perform well (Yang et al. 2018). To simulate this setting, we mod-
ify the SQuAD dataset by prepending or appending 1–2 distracting
documents to the original document given to each question. Table
3 shows the result. While BERT incurs a large performance drop
(-2.8%), LinkBERT is robust to distracting documents (-0.5%). This
result suggests that pretraining with document links improves the
ability to understand document relations and relevance. In particular,
our intuition is that the DRP objective helps the LM to better recog-
nize document relations like (anchor document, linked document)
in pretraining, which helps to recognize relations like (question,
right document) in downstream QA tasks. We indeed find that ablat-

Three days after undergoing a laparoscopic Whipple's procedure, a 
43-year-old woman has swelling of her right leg. ... She was diagnosed 
with pancreatic cancer 1 month ago. ... Her temperature is 38°C (100.4°
F), pulse is 90/min, and blood pressure is 118/78 mm Hg. Examination 
shows mild swelling of the right thigh to the ankle; there is no 
erythema or pitting edema. ... Which of the following is the most 
appropriate next step in management?

(A)  CT pulmonary angiography     (B)  Compression ultrasonography
(C)  D-dimer level                                 (D)  2 sets of blood cultures

LinkBERT predicts: B (✓)    PubmedBERT predicts: D (✗)

Leg swelling, pancreatic cancer
(symptom) 

Deep vein thrombosis
(possible cause)

Compression ultrasonography
(next step for diagnosis)

Doc A: ... Pancreatic cancer can induce deep 
vein thrombosis in leg ...      (e.g. Ansari et al. 2015)

Doc B: ... Deep vein thrombosis is tested by 
compression ultrasonography ... 

(e.g. Piovella et al. 2002)

[Tidal Basin, Washington D.C.]
The Tidal Basin is a man-made 
reservoir located between the 
Potomac River and the 
Washington Channel in 
Washington, D.C. It is part of 
West Potomac Park, is near the 
National Mall and is a focal point 
of the National Cherry Blossom 
Festival held each spring. The 
Jefferson Memorial, the Martin 
Luther King Jr. Memorial, the 
Franklin Delano Roosevelt 
Memorial, and the George Mason 
Memorial are situated adjacent 
to the Tidal Basin. 

MedQA-USMLE example
Need multi-hop reasoning

[The National Cherry Blossom Festival] … 
It is a spring celebration commemorating 
the March 27, 1912, gift of Japanese cherry 
trees from Mayor of Tokyo City to the city of 
Washington, D.C. ... Of the initial gift of 12 
varieties of 3,020 trees, the Yoshino Cherry 
now dominates. ...

Knowledge learned via document links

Reference

Question: Roden Brothers were taken over in 1953 by a group 
headquartered in which Canadian city?

Doc A: Roden Brothers was founded June 1, 1891 in Toronto, Ontario, 
Canada by Thomas and Frank Roden.  In the 1910s the firm became 
known as Roden Bros.  Ltd. and were later taken over by Henry Birks 
and Sons in 1953.  ... In 1974 Roden Bros.  Ltd. published the book, 
"Rich Cut Glass" with Clock House Publications in Peterborough, 
Ontario, which was a reprint of the 1917 edition published by Roden 
Bros., Toronto. 

Doc B: Birks Group (formerly Birks & Mayors) is a designer, 
manufacturer and retailer of jewellery, timepieces, silverware and gifts, 
with stores and manufacturing facilities located in Canada and the 
United States.  As of June 30, 2015, it operates stores under three 
different retail banners: … The company is headquartered in Montreal, 
Quebec, with American corporate offices located in Tamarac, Florida.

LinkBERT prediction: “Montreal” (✓)                                

 

BERT prediction: “Toronto” (✗)

HotpotQA example

Question: Roden Brothers were taken over in 1953 by a group 
headquartered in which Canadian city?

Doc A: Roden Brothers was founded June 1, 1891 in Toronto, Ontario, 
Canada by Thomas and Frank Roden.  In the 1910s the firm became known 
as Roden Bros.  Ltd. and were later taken over by Henry Birks and Sons 
in 1953.  ... In 1974 Roden Bros.  Ltd. published the book, "Rich Cut 
Glass" with Clock House Publications in Peterborough, Ontario, which was 
a reprint of the 1917 edition published by Roden Bros., Toronto. 

Doc B: Birks Group (formerly Birks & Mayors) is a designer, 
manufacturer and retailer of jewellery, timepieces, silverware and gifts, 
with stores and manufacturing facilities located in Canada and the United 
States.  As of June 30, 2015, it operates stores under three different retail 
banners: ... The company is headquartered in Montreal, Quebec, with 
American corporate offices located in Tamarac, Florida.

LinkBERT prediction: “Montreal” (✓)     BERT prediction: “Toronto” 
(✗)

HotpotQA example

LinkBERT predicts: “Montreal” (✓)      BERT predicts: “Toronto” (✗)

Figure 3: Case study of multi-hop reasoning on HotpotQA. Answering the
question needs to identify “Roden Brothers were taken over by Birks Group”
from the first document, and then “Birks Group is headquartered in Mon-
treal” from the second document. While BERT tends to simply predict an
entity near the question entity (“Toronto” in the first document), LinkBERT
correctly predicts the answer in the second document (“Montreal”).

ing the DRP objective from LinkBERT hurts performance (§5.5).
The strength of understanding document relations also suggests
the promise of applying LinkBERT to various retrieval-augmented
methods and tasks (e.g. Lewis et al. 2020b), either as the main LM
or the dense retriever component.

Improved few-shot QA performance. We also find that
LinkBERT is notably good at few-shot learning. Concretely, for
each MRQA dataset, we fine-tune with only 10% of the available
training data, and report the performance in Table 4. In this few-
shot regime, LinkBERT attains more significant gains over BERT,
compared to the full-resource regime in Table 1 (on NaturalQ, 5.4%
vs 1.8% absolute in F1, or 15% vs 7% in relative error reduction).
This result suggests that LinkBERT internalizes more knowledge
than BERT during pretraining, which supports our core idea that
document links can bring in new, useful knowledge for LMs.

5.5 Ablation studies
We conduct ablation studies on the key design choices of LinkBERT.

What linked documents to feed into LMs? We study the strate-
gies discussed in §4.3 for obtaining linked documents: relevance,
salience, and diversity. Table 5 shows the ablation result on MRQA
datasets. First, if we ignore relevance and use random document
links instead of hyperlinks, we get the same performance as BERT
(-4.1% on average; “random” in Table 5). Second, using lexical



similarity links instead of hyperlinks leads to 1.8% performance
drop (“TF-IDF”). Our intuition is that hyperlinks can provide more
salient knowledge that may not be obvious from lexical similarity
alone. Nevertheless, using lexical similarity links is substantially
better than BERT (+2.3%), confirming the efficacy of placing rel-
evant documents together in the input for LM pretraining. Finally,
removing the diversity adjustment in document sampling leads to
1% performance drop (“No diversity”). In summary, our insight
is that to create informative inputs for LM pretraining, the linked
documents must be semantically relevant and ideally be salient and
diverse.

Effect of the DRP objective. Table 6 shows the ablation result on
the DRP objective (§4.2). Removing DRP in pretraining hurts down-
stream QA performance. The drop is large on tasks with multiple
documents (HotpotQA, TriviaQA, and SQuAD with distracting doc-
uments). This suggests that DRP facilitates LMs to learn document
relations.

6 Biomedical LinkBERT (BioLinkBERT)
Pretraining LMs on biomedical text is shown to boost performance
on biomedical NLP tasks (Beltagy et al. 2019; Lee et al. 2020; Lewis
et al. 2020a; Gu et al. 2020). Biomedical LMs are typically trained
on PubMed, which contains abstracts and citations of biomedical
papers. While prior works only use their raw text for pretraining,
academic papers have rich dependencies with each other via cita-
tions (references). We hypothesize that incorporating citation links
can help LMs learn dependencies between papers and knowledge
that spans across them.

With this motivation, we pretrain LinkBERT on PubMed with
citation links (§6.1), which we term BioLinkBERT, and evaluate on
biomedical downstream tasks (§6.2). As our baseline, we follow and
compare with the state-of-the-art biomedical LM, PubmedBERT
(Gu et al. 2020), which has the same architecture as BERT and is
trained on PubMed.

6.1 Pretraining setup

Data. We use the same pretraining corpus used by PubmedBERT:
PubMed abstracts (21GB). We use the Pubmed Parser to extract
citation links between articles. We then create training instances by
sampling contiguous, random, or linked segments as described in
§4, with the three options appearing uniformly (33%, 33%, 33%). In
summary, our pretraining data is the same as PubmedBERT, except
that we have citation links between PubMed articles.

Implementation. We pretrain BioLinkBERT of -base size (110M
params) from scratch, following the same hyperparamters as the
PubmedBERTbase (Gu et al. 2020). Specifically, we use a peak
learning rate 6e-4, batch size 8,192, and train for 62,500 steps. We
warm up the learning rate in the first 10% of steps and then linearly
decay it. Training took 7 days on eight A100 GPUs with fp16.

Additionally, while the original PubmedBERT release did not
include the -large size, we pretrain BioLinkBERT of the -large size
(340M params) from scratch, following the same procedure as -base,
except that we use a peak learning rate of 4e-4 and warm up steps
of 20%. Training took 21 days on eight A100 GPUs with fp16.

Baselines. We compare BioLinkBERT with PubmedBERT re-
leased by Gu et al. (2020).

https://pubmed.ncbi.nlm.nih.gov. We use papers published before Feb.
2020 as in PubmedBERT.
https://github.com/titipata/pubmed parser

PubMed-
BERTbase

BioLink-
BERTbase

BioLink-
BERTlarge

Named entity recognition
BC5-chem (Li et al. 2016) 93.33 93.75 94.04
BC5-disease (Li et al. 2016) 85.62 86.10 86.39
NCBI-disease (Doğan et al. 2014) 87.82 88.18 88.76
BC2GM (Smith et al. 2008) 84.52 84.90 85.18
JNLPBA (Kim et al. 2004) 80.06 79.03 80.06

PICO extraction
EBM PICO (Nye et al. 2018) 73.38 73.97 74.19

Relation extraction
ChemProt (Krallinger et al. 2017) 77.24 77.57 79.98
DDI (Herrero-Zazo et al. 2013) 82.36 82.72 83.35
GAD (Bravo et al. 2015) 82.34 84.39 84.90

Sentence similarity
BIOSSES (Soğancıoğlu et al. 2017) 92.30 93.25 93.63

Document classification
HoC (Baker et al. 2016) 82.32 84.35 84.87

Question answering
PubMedQA (Jin et al. 2019) 55.84 70.20 72.18
BioASQ (Nentidis et al. 2019) 87.56 91.43 94.82

BLURB score 81.10 83.39 84.30

Table 7: Performance on BLURB benchmark. BioLinkBERT attains im-
provement on all tasks, establishing new state of the art on BLURB. Gains
are notably large on document-level tasks such as PubMedQA and BioASQ.

Methods Acc. (%)

BioBERTlarge (Lee et al. 2020) 36.7
QAGNN (Yasunaga et al. 2021) 38.0
GreaseLM (Zhang et al. 2022) 38.5

PubmedBERTbase (Gu et al. 2020) 38.1
BioLinkBERTbase (Ours) 40.0

BioLinkBERTlarge (Ours) 44.6

Table 8: Performance on MedQA-USMLE. BioLinkBERT outperforms all
previous biomedical LMs.

6.2 Evaluation tasks

For downstream tasks, we evaluate on the BLURB benchmark (Gu
et al. 2020), a diverse set of biomedical NLP datasets, and MedQA-
USMLE (Jin et al. 2021), a challenging biomedical QA dataset.

BLURB consists of five named entity recognition tasks, a PICO
(population, intervention, comparison, and outcome) extraction task,
three relation extraction tasks, a sentence similarity task, a document
classification task, and two question answering tasks, as summarized
in Table 7. We follow the same fine-tuning method and evaluation
metric used by PubmedBERT (Gu et al. 2020).

MedQA-USMLE is a 4-way multi-choice QA task that tests
biomedical and clinical knowledge. The questions are from practice
tests for the US Medical License Exams (USMLE). The questions
typically require multi-hop reasoning, e.g., given patient symptoms,
infer the likely cause, and then answer the appropriate diagnosis
procedure (Figure 4). We follow the fine-tuning method in Jin et al.
(2021). More details are provided in Appendix B.

MMLU-professional medicine is a multi-choice QA task that
tests biomedical knowledge and reasoning, and is part of the popular
MMLU benchmark (Hendrycks et al. 2021) that is used to evaluate
massive language models. We take the BioLinkBERT fine-tuned on
the above MedQA-USMLE task, and evaluate on this task without
further adaptation.

https://pubmed.ncbi.nlm.nih.gov
https://github.com/titipata/pubmed_parser


Three days after undergoing a laparoscopic Whipple's procedure, a 
43-year-old woman has swelling of her right leg. ... She was diagnosed 
with pancreatic cancer 1 month ago. ... Her temperature is 38°C (100.4°
F), pulse is 90/min, and blood pressure is 118/78 mm Hg. Examination 
shows mild swelling of the right thigh to the ankle; there is no 
erythema or pitting edema. ... Which of the following is the most 
appropriate next step in management?

(A)  CT pulmonary angiography     (B)  Compression ultrasonography
(C)  D-dimer level                                 (D)  2 sets of blood cultures

LinkBERT predicts: B (✓)    PubmedBERT predicts: D (✗)

Leg swelling, pancreatic cancer
(symptom) 

Deep vein thrombosis
(possible cause)

Compression ultrasonography
(next step for diagnosis)

Doc A: ... Pancreatic cancer can induce deep 
vein thrombosis in leg ...      (e.g. Ansari et al. 2015)

Doc B: ... Deep vein thrombosis is tested by 
compression ultrasonography ... 

(e.g. Piovella et al. 2002)

[Tidal Basin, Washington D.C.]
The Tidal Basin is a man-made 
reservoir located between the 
Potomac River and the 
Washington Channel in 
Washington, D.C. It is part of 
West Potomac Park, is near the 
National Mall and is a focal point 
of the National Cherry Blossom 
Festival held each spring. The 
Jefferson Memorial, the Martin 
Luther King Jr. Memorial, the 
Franklin Delano Roosevelt 
Memorial, and the George Mason 
Memorial are situated adjacent 
to the Tidal Basin. 

MedQA-USMLE example
Need multi-hop reasoning

[The National Cherry Blossom Festival] … 
It is a spring celebration commemorating 
the March 27, 1912, gift of Japanese cherry 
trees from Mayor of Tokyo City to the city of 
Washington, D.C. ... Of the initial gift of 12 
varieties of 3,020 trees, the Yoshino Cherry 
now dominates. ...

Knowledge learned via document links

Reference

Question: Roden Brothers were taken over in 1953 by a group 
headquartered in which Canadian city?

Doc A: Roden Brothers was founded June 1, 1891 in Toronto, Ontario, 
Canada by Thomas and Frank Roden.  In the 1910s the firm became 
known as Roden Bros.  Ltd. and were later taken over by Henry Birks 
and Sons in 1953.  ... In 1974 Roden Bros.  Ltd. published the book, 
"Rich Cut Glass" with Clock House Publications in Peterborough, 
Ontario, which was a reprint of the 1917 edition published by Roden 
Bros., Toronto. 

Doc B: Birks Group (formerly Birks & Mayors) is a designer, 
manufacturer and retailer of jewellery, timepieces, silverware and gifts, 
with stores and manufacturing facilities located in Canada and the 
United States.  As of June 30, 2015, it operates stores under three 
different retail banners: … The company is headquartered in Montreal, 
Quebec, with American corporate offices located in Tamarac, Florida.

LinkBERT prediction: “Montreal” (✓)                                

 

BERT prediction: “Toronto” (✗)

HotpotQA example

Question: Roden Brothers were taken over in 1953 by a group 
headquartered in which Canadian city?

Doc A: Roden Brothers was founded June 1, 1891 in Toronto, Ontario, 
Canada by Thomas and Frank Roden.  In the 1910s the firm became known 
as Roden Bros.  Ltd. and were later taken over by Henry Birks and Sons 
in 1953.  ... In 1974 Roden Bros.  Ltd. published the book, "Rich Cut 
Glass" with Clock House Publications in Peterborough, Ontario, which was 
a reprint of the 1917 edition published by Roden Bros., Toronto. 

Doc B: Birks Group (formerly Birks & Mayors) is a designer, 
manufacturer and retailer of jewellery, timepieces, silverware and gifts, 
with stores and manufacturing facilities located in Canada and the United 
States.  As of June 30, 2015, it operates stores under three different retail 
banners: ... The company is headquartered in Montreal, Quebec, with 
American corporate offices located in Tamarac, Florida.

LinkBERT prediction: “Montreal” (✓)     BERT prediction: “Toronto” 
(✗)

HotpotQA example

LinkBERT predicts: “Montreal” (✓)       BERT predicts: “Toronto” 
(✗)

Figure 4: Case study of multi-hop reasoning on MedQA-USMLE. Answering the question (left) needs 2-hop reasoning (center): from the patient symptoms
described in the question (leg swelling, pancreatic cancer), infer the cause (deep vein thrombosis), and then infer the appropriate diagnosis procedure (compression
ultrasonography). While the existing PubmedBERT tends to simply predict a choice that contains a word appearing in the question (“blood” for choice D),
BioLinkBERT correctly predicts the answer (B). Our intuition is that citation links bring relevant documents together in the same context in pretraining (right),
which readily provides the multi-hop knowledge needed for the reasoning (center).

Methods Acc. (%)

GPT-3 (175B params) (Brown et al. 2020) 38.7
UnifiedQA (11B params) (Khashabi et al. 2020) 43.2

BioLinkBERTlarge (Ours) 50.7

Table 9: Performance on MMLU-professional medicine. BioLinkBERT
significantly outperforms the largest general-domain LM or QA model,
despite having just 340M parameters.

6.3 Results
BLURB. Table 7 shows the results on BLURB. BioLinkBERTbase

outperforms PubmedBERTbase on all task categories, attaining
a performance boost of +2% absolute on average. Moreover,
BioLinkBERTlarge provides a further boost of +1%. In total, Bi-
oLinkBERT outperforms the previous best by +3% absolute, estab-
lishing a new state of the art on the BLURB leaderboard. We see
a trend that gains are notably large on document-level tasks such
as question answering (+7% on BioASQ and PubMedQA). This
result is consistent with the general domain (§5.3) and confirms that
LinkBERT helps to learn document dependencies better.

MedQA-USMLE. Table 8 shows the results. BioLinkBERTbase

obtains a 2% accuracy boost over PubmedBERTbase, and
BioLinkBERTlarge provides an additional +5% boost. In total, Bi-
oLinkBERT outperforms the previous best by +7% absolute, setting
a new state of the art. To further gain qualitative insights, we stud-
ied in what QA examples BioLinkBERT succeeds but the baseline
PubmedBERT fails. Figure 4 shows a representative example. An-
swering the question (left) needs 2-hop reasoning (center): from the
patient symptoms described in the question (leg swelling, pancreatic
cancer), infer the cause (deep vein thrombosis), and then infer the
appropriate diagnosis procedure (compression ultrasonography).
We find that while the existing PubmedBERT tends to simply pre-
dict a choice that contains a word appearing in the question (“blood”
for choice D), BioLinkBERT correctly predicts the answer (B). Our
intuition is that citation links bring relevant documents and concepts
together in the same context in pretraining (right), which readily
provides the multi-hop knowledge needed for the reasoning (cen-
ter). Combined with the analysis on HotpotQA (§5.4), our results

For instance, as in Figure 4 (right), Ansari et al. (2015) in PubMed mention
that pancreatic cancer can induce deep vein thrombosis in leg, and it cites
a paper in PubMed, Piovella et al. (2002), which mention that deep vein
thrombosis is tested by compression ultrasonography. Placing these two doc-
uments in the same context yields the complete multi-hop knowledge needed
to answer the question (“pancreatic cancer” → “deep vein thrombosis” →
“compression ultrasonography”).

suggest that pretraining with document links consistently helps for
multi-hop reasoning across domains (e.g., general documents with
hyperlinks and biomedical articles with citation links).

MMLU-professional medicine. Table 9 shows the performance.
Despite having just 340M parameters, BioLinkBERTlarge achieves
50% accuracy on this QA task, significantly outperforming the
largest general-domain LM or QA models such as GPT-3 175B
params (39% accuracy) and UnifiedQA 11B params (43% accuracy).
This result shows that with an effective pretraining approach, a small
domain-specialized LM can outperform orders of magnitude larger
language models on QA tasks.

7 Conclusion
We presented LinkBERT, a new language model (LM) pretrain-
ing method that incorporates document link knowledge such as
hyperlinks. In both the general domain (pretrained on Wikipedia
with hyperlinks) and biomedical domain (pretrained on PubMed
with citation links), LinkBERT outperforms previous BERT models
across a wide range of downstream tasks. The gains are notably
large for multi-hop reasoning, multi-document understanding and
few-shot question answering, suggesting that LinkBERT effectively
internalizes salient knowledge through document links. Our results
suggest that LinkBERT can be a strong pretrained LM to be applied
to various knowledge-intensive tasks.

Reproducibility
Pretrained models, code and data are available at
https://github.com/michiyasunaga/LinkBERT.
Experiments are available at
https://worksheets.codalab.org/worksheets/
0x7a6ab9c8d06a41d191335b270da2902e.
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C., Ryan, J., Ré, C., Sadigh, D., Sagawa, S., Santhanam, K., Shih,
A., Srinivasan, K., Tamkin, A., Taori, R., Thomas, A. W., Tramèr,
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A Ethics, limitations and risks
We outline potential ethical issues with our work below. First,
DRAGON is trained on the same text corpora (e.g., Wikipedia,
Books, PubMed) as in existing language models. Consequently,
DRAGON could reflect the same biases and toxic behaviors exhib-
ited by language models, such as biases about race, gender, and
other demographic attributes (Sheng et al. 2020).

Another source of ethical concern is the use of the MedQA-
USMLE evaluation (Jin et al. 2021). While we find this clinical
reasoning task to be an interesting testbed for DRAGON and for
multi-hop reasoning in general, we do not encourage users to use
the current models for real world clinical prediction.

B Fine-tuning details
We apply the following fine-tuning hyperparameters to all models,
including the baselines.

MRQA. For all the extractive question answering datasets, we
use max seq length = 384 and a sliding window of size 128 if the
lengths are longer than max seq length.

For the -tiny scale (BERTtiny, LinkBERTtiny), we choose learn-
ing rates from {5e-5, 1e-4, 3e-4}, batch sizes from {16, 32, 64},
and fine-tuning epochs from {5, 10}.

For -base (BERTbase, LinkBERTbase), we choose learning rates
from {2e-5, 3e-5}, batch sizes from {12, 24}, and fine-tuning
epochs from {2, 4}.

For -large (BERTlarge, LinkBERTlarge), we choose learning
rates from {1e-5, 2e-5}, batch sizes from {16, 32}, and fine-tuning
epochs from {2, 4}.

GLUE. We use max seq length = 128.
For the -tiny scale (BERTtiny, LinkBERTtiny), we choose learn-

ing rates from {5e-5, 1e-4, 3e-4}, batch sizes from {16, 32, 64},
and fine-tuning epochs from {5, 10}.

For -base and -large (BERTbase, LinkBERTbase, BERTlarge,
LinkBERTlarge), we choose learning rates from {5e-6, 1e-5, 2e-
5, 3e-5, 5e-5}, batch sizes from {16, 32, 64} and fine-tuning epochs
from 3–10.

BLURB. We use max seq length = 512 and choose learning
rates from {1e-5, 2e-5, 3e-5, 5e-5, 6e-5}, batch sizes from {16, 32,
64} and fine-tuning epochs from 1–120.

MedQA-USMLE. We use max seq length = 512 and choose
learning rates from {1e-5, 2e-5, 3e-5}, batch sizes from {16, 32,
64} and fine-tuning epochs from 1–6.
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