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Abstract

Natural language inference (NLI) aims to determine
the logical relationship between two sentences, such as
Entailment, Contradiction, and Neutral. In re-
cent years, deep learning models have become a prevail-
ing approach to NLI, but they lack interpretability and ex-
plainability. In this work, we address the explainability of
NLI by weakly supervised logical reasoning, and propose an
Explainable Phrasal Reasoning (EPR) approach. Our model
first detects phrases as the semantic unit and aligns corre-
sponding phrases in the two sentences. Then, the model pre-
dicts the NLI label for the aligned phrases, and induces the
sentence label by fuzzy logic formulas. Our EPR is almost
everywhere differentiable and thus the system can be trained
end to end. In this way, we are able to provide explicit expla-
nations of phrasal logical relationships in a weakly supervised
manner. We further show that such reasoning results help tex-
tual explanation generation.

Introduction
Natural language inference (NLI) aims to determine the log-
ical relationship between two sentences (called a premise
and a hypothesis), and target labels include Entailment,
Contradiction, and Neutral (Bowman et al. 2015;
MacCartney and Manning 2008). Figure 1 gives an example,
where the hypothesis contradicts the premise. NLI is impor-
tant to natural language processing, because it involves log-
ical reasoning and is a key problem in artificial intelligence.
Previous work shows that NLI can be used in various down-
stream tasks, such as information retrieval (Karpukhin et al.
2020) and text summarization (Liu and Lapata 2019).

In recent years, deep learning has become a prevailing
approach to NLI (Bowman et al. 2015; Mou et al. 2016;
Wang and Jiang 2016; Yoon, Lee, and Lee 2018). Especially,
pretrained language models with the Transformer architec-
ture (Vaswani et al. 2017) achieve state-of-the-art perfor-
mance for the NLI task (Radford et al. 2018; Zhang et al.
2020). However, such deep learning models are black-box
machinery and lack interpretability. In real applications, it
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Input:

Premise: Several men helping each other pull in a fishing net.

Hypothesis: There is one man holding the net.

Sentence-Level Prediction:
Entailment Contradiction Neutral

Phrase-Level Reasoning:

Entailment Contradiction Neutral Unaligned

Figure 1: The natural language inference (NLI) task and de-
sired phrasal reasoning.

is important to understand how these models make deci-
sions (Rudin 2019).

In this work, we address the explainability for NLI by
weakly supervised phrasal logical reasoning. Intuitively,
an NLI system with an explainable reasoning mechanism
should be equipped with the following functionalities:

1. The system should be able to detect corresponding
phrases and tell their logical relationship, e.g., several
men contradicting one man, but pull in a fishing net en-
tailing holding the net (Figure 1).

2. The system should be able to induce sentence labels from
phrasal reasoning. In the example, the two sentences
are contradictory because there exists one contradictory
phrase pair.

3. More importantly, such reasoning should be trained in a
weakly supervised manner, i.e., the phrase-level predic-
tions are trained from sentence labels only. Otherwise,
the reasoning mechanism becomes multi-task learning,
which requires massive fine-grained human annotations.

To this end, we propose an Explainable Phrasal
Reasoning (EPR) approach to the NLI task. Our model
obtains phrases as semantic units, and aligns correspond-
ing phrases by embedding similarity. Then, we predict the
NLI labels (namely, Entailment, Contradiction,
and Neutral) for the aligned phrases. Finally, we propose
to induce the sentence-level label from phrasal labels in a
fuzzy logic manner (Zadeh 1988, 1996). Our model is differ-
entiable and the phrasal reasoning component can be trained
with the weak supervision of sentence NLI labels. In this



way, our EPR approach satisfies all the desired properties
mentioned above.

In our experiments, we developed a comprehensive
methodology (data annotation and evaluation metrics)
to quantitatively evaluate phrasal reasoning performance,
which has not been accomplished in previous work. We ex-
tend previous studies and obtain plausible baseline models.
Results show that our EPR yields much more meaningful
explanation in terms of F scores against human annotation.

To further demonstrate the quality of extracted phrasal re-
lationships, we feed them to a textual explanation model.
Results show that our EPR reasoning leads to an improve-
ment of 2 points in BLEU scores, achieving a new state of
the art on the e-SNLI dataset (Camburu et al. 2018).

Related Work
Natural Language Inference. (MacCartney and Manning
2009) propose seven natural logic relations in addition to
Entailment, Contradiction, and Neutral. (Mac-
Cartney and Manning 2007) also distinguish upward entail-
ment (every mammal upward entailing some mammal) and
downward entailment (every mammal downward entailing
every dog) as different categories. Manually designed lex-
icons and rules are used to interpret Entailment in a
finer-grained manner, such as downward and upward entail-
ment (Hu et al. 2020; Chen, Gao, and Moss 2021). (Feng
et al. 2020) apply such natural logic to NLI reasoning in the
word level; however, our experiments will show that their
word-level treatment is not an appropriate granularity, and
they fail to achieve meaningful reasoning performance.

The above reasoning schema focuses more on the quanti-
fiers of first-order logic (Beltagy et al. 2016). However, the
SNLI dataset (Bowman et al. 2015) we use only contains
less than 5% samples with explicit quantifiers, and seven-
category schema complicates reasoning in the weakly su-
pervised setting. Instead, we adopt three-category NLI la-
bels following the SNLI dataset. Our focus is entity-based
reasoning, and the treatment of quantifiers is absorbed into
phrases.

We also notice that previous work lacks explicit eval-
uation on the reasoning performance for NLI. For exam-
ple, the SNLI dataset only provides sentence-level labels.
The HELP (Yanaka et al. 2019b) and MED (Yanaka et al.
2019a) datasets concern monotonicity inference problems,
where the label is also at the sentence level; they only
consider Entailment, ignoring Contradiction and
Neutral. Thus, we propose a comprehensive framework
for the evaluation of NLI reasoning.

e-SNLI. Camburu et al. (2018) propose the e-SNLI task
of textual explanation generation and use LSTM as a base-
line. Kumar and Talukdar (2020) propose the NILE ap-
proach, using multiple decoders to generate explanations for
all E, C, and N labels, and then predicting which to be se-
lected. Zhao and Vydiswaran (2021) propose the LIREx ap-
proach, using additionally annotated rationales for explana-
tion generation. Narang et al. (2020) finetune T5 with mul-
tiple explanation generation tasks. Although these systems
can generate explanations, the nature of such finetuning ap-
proaches renders the explanation generator per se unexplain-

able. By contrast, we design a textual explanation generation
model that utilizes EPR’s phrasal reasoning, obtained in a
weakly supervised manner.

Neuro-Symbolic Approaches. In recent years, neuro-
symbolic approaches have attracted increasing interest in
the AI and NLP communities for interpreting deep learn-
ing models. Typically, these approaches are trained by rein-
forcement learning or its relaxation, such as attention and
Gumbel-softmax (Jang, Gu, and Poole 2017), to reason
about certain latent structures in a downstream task.

For example, (Lei, Barzilay, and Jaakkola 2016) extract
key phrases for a text classification task, and (Liu et al.
2018) extract key sentences for paragraph classification. (Lu
et al. 2018) extract entities and relations for document under-
standing. (Liang et al. 2017) and (Mou et al. 2017) perform
SQL-like execution based on input text for semantic pars-
ing. (Xiong, Hoang, and Wang 2017) hop over a knowledge
graph for reasoning the relationships between entities. Our
work addresses logical reasoning for the NLI task, which is
not tackled in previous neuro-symbolic studies.

Fuzzy Logic. Fuzzy logic (Zadeh 1988, 1996) models
an assertion and performs logic calculation with probability.
For example, a quantifier (e.g., “most”) and assertion (e.g.,
“ill”) are modeled by a score in (0, 1); the score of a con-
junction s(x1∧x2) is the product of s(x1) and s(x2). In old-
school fuzzy logic studies, the mapping from language to the
score is usually given by human-defined heuristics (Zadeh
1988; Nozaki, Ishibuchi, and Tanaka 1997), and may not be
suited to the task of interest. By contrast, we train neural net-
works to predict the probability of phrasal logical relations,
and induce the sentence NLI label by fuzzy logic formulas.
Thus, our approach takes advantage of both worlds of sym-
bolism and connectionism.

Our Approach
In this section, we describe our EPR approach in detail, also
shown in Figure 2. It has three main components: phrase de-
tection and alignment, phrasal NLI prediction, and sentence
label induction.

Phrase Detection and Alignment
In NLI, a data point consists of two sentences, a premise
and a hypothesis. We first extract content phrases from both
input sentences by rules. For example, “[AUX] + [NOT] +
VERB + [RP]” is treated as a verb phrase. Full details are pre-
sented in Appendix. Compared with the word level (Parikh
et al. 2016; Feng et al. 2020), a phrase is a more meaningful
semantic unit for logical reasoning.

We then align corresponding phrases in the two sentences
based on cosine similarity. Let P = (p1, · · · ,pM ) and
H = (h1, · · · ,hN ) be the premise and hypothesis, respec-
tively, where pm and hn are extracted phrases. We apply
Sentence-BERT (Reimers and Gurevych 2019) to each indi-
vidual phrase and obtain the local phrase embeddings by

p(L)
m = SBERT(pm), h(L)

n = SBERT(hn) (1)

We also apply Sentence-BERT to the entire premise and hy-
pothesis sentences to obtain the global phrase embeddings
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Figure 2: An overview of our Explainable Phrasal Reasoning model.
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(G)
n by mean-pooling the features of the time

steps corresponding to the words in the phrase. The phrase
similarity is given by

sim(pm,hn) = γ cos(p(G)
m ,h(G)

n ) + (1− γ) cos(p(L)
m ,h(L)

n )
(2)

where γ is a hyper-parameter balancing the lexical and con-
textual representations of a phrase (Hewitt and Manning
2019). It is noted that Sentence-BERT is fine-tuned on para-
phrase datasets, and thus is more suitable for phrasal similar-
ity matching than pretrained language model (Devlin et al.
2019).

We obtain phrase alignment between the premise and hy-
pothesis in a heuristic way. For every phrase pm in the
premise, we look for the most similar phrase hn from the
hypothesis by

n = argmaxn′ sim(pm,hn′) (3)

Likewise, for every phrase hn in the hypothesis, we look
for the most similar phrase pm from the premise. A phrase
pair (pm,hn) is considered to be aligned if hn is selected
as the closest phrase to pm, and pm is the closest to hn.
Such hard alignment is different from commonly used soft
attention-based approaches (Parikh et al. 2016). Our align-
ment method can ensure the quality of phrase alignment, and
more importantly, leave other phrases unaligned (e.g., help-
ing each other in Figure 1), which are common in the NLI
task. The process is illustrated in Figure 2a.

Phrasal NLI Prediction
Our model then predicts the logical relationship of an
aligned phrase pair (p,h) among three target labels:
Entailment, Contradiction, and Neutral. While
previous work (Feng et al. 2020) identifies finer-grained la-
bels for NLI, we do not follow their categorization, because
it complicates the reasoning process and makes weakly su-
pervised training more difficult. Instead, we adopt three-way
phrasal classification, which is also consistent with sentence
NLI labels.

We represent a phrase, say, p in the premise, by a vec-
tor embedding, and we consider two types of features: a lo-
cal feature p(L) and a global feature p(G), re-used from the
phrase alignment component.

They are concatenated as the phrase representation p =
[p(L);p(G)]. Likewise, the phrase representation for a hy-
pothesis phrase h is obtained in a similar way. Intuitively,
local features force the model to perform reasoning in a se-
rious manner, but global features are important to sentence-
level prediction.

Then, we use a neural network to predict the phrasal NLI
label (Entailment, Contradiction, and Neutral).
This is given by the standard heuristic matching (Mou et al.
2016) based on phrase embeddings, followed by a multi-
layer perceptron (MLP) and a three-way softmax layer:

[Pphrase(E|p,h);Pphrase(C|p,h);Pphrase(N|p,h)]
= softmax(MLP([p;h; |p− h|;p ◦ h])) (4)

where ◦ is element-wise product and a semicolon refers
to column vector concatenation. E, C, and N refer to the
Entailment, Contradiction, and Neutral labels,
respectively.

It should be mentioned that a phrase may be unaligned,
but plays an important role in sentence-level NLI prediction,
as shown in Table 1. Thus, we would like to predict phrasal
NLI labels for unaligned phrases as well, but pair them with
a special token (p⟨EMPTY⟩ or h⟨EMPTY⟩), whose embedding is
randomly initialized and learned by back-propagation.

Sentence Label Induction
We observe the sentence NLI label can be logically induced
from phrasal NLI labels. Based on the definition of the NLI
task (Bowman et al. 2015), we develop the following induc-
tion rules.

Entailment Rule: According to Bowman et al. (2015), a
premise entailing a hypothesis means that, if the premise
is true, then the hypothesis must be true. We find that this
can be oftentimes transformed to phrasal relationships: a
premise entails the hypothesis if all paired phrases have the
label Entailment.



Premise People are shopping for fruit. People are shopping for fruit in the market .
Hypothesis People are shopping for fruit in the market . People are shopping for fruit.
Sentence NLI [ ] Entailment [ ] Contradiction [✓] Neutral [✓] Entailment [ ] Contradiction [ ] Neutral

Table 1: An example showing the importance of handling unaligned phrases (in highlight).

Let {(pk,hk)}Kk=1

⋃
{(pk,hk)}K

′

k=K+1 be all phrase
pairs. For k = 1, · · · ,K, they are aligned phrases; for
k = K + 1, · · · ,K ′, they are unaligned phrases paired with
the special token, i.e., pk = p⟨EMPTY⟩ or hk = h⟨EMPTY⟩.
Then, we induce a sentence-level Entailment score by

Ssentence(E|P,H) =
[∏K′

k=1
Pphrase(E|pk,hk)

] 1
K′ (5)

This works in a fuzzy logic fashion (Zadeh 1988,
1996), deciding whether the sentence-level label should be
Entailment considering the average of phrasal predic-
tions.2 Here, we use the geometric mean, because it is bi-
ased towards low scores, i.e., if there exists one phrase pair
with a low Entailment score, then the chance of sen-
tence label being Entailment is also low. Unaligned pairs
should be considered in Eq. (5), because an unaligned phrase
may indicate Entailment, shown in the second example
of Table 1. Notice that the resulting value Ssentence(E|P,H)
is not normalized with respect to Contradiction and
Neutral; thus, we call it a score (instead of probability),
which will be normalized afterwards.

Contradiction Rule: Two sentences are contradictory
if there exists (at least) one paired phrase labeled as
Contradiction. The fuzzy logic version of this induc-
tion rule is given by

Ssentence(C|P,H) = maxk=1,··· ,K Pphrase(C|pk,hk) (6)

Here, the max operator is used in the induction, because
the contradiction rule is an existential statement, i.e., there
exist(s) · · · . Also, unaligned phrases are excluded in cal-
culating the sentence-level Contradiction score, be-
cause an unaligned phrase indicates the corresponding in-
formation is missing in the other sentence and it cannot be
Contradiction (recall examples in Table 1).

Rule for Neutral: Two sentences are neutral if there exists
(at least) one neutral phrase pair, but there does not exist
any contradictory phrase pair. The fuzzy logic formula is

Ssentence(N|P,H) =
[
maxk=1,··· ,K′ Pphrase(N|pk,hk)

]
·
[
1− Ssentence(C|P,H)] (7)

The first factor determines whether there exists a Neutral
phrase pair (including unaligned phrases, illustrated in the
first example in Table 1). The second factor evaluates the
negation of “at least one contradictory phrase,” as suggested
in the second clause of the Rule for Neutral.
2In traditional fuzzy logic, the conjunction is given by prob-
ability product (Zadeh 1988). We find that this gives a too
small Entailment score compared with Contradiction
and Neutral scores, causing difficulties in end-to-end training.
Thus, we take the geometric mean and maintain all the scores in
the same magnitude.

Finally, we normalize the scores into probabilities by di-
viding the sum, since all the scores are already positive. This
is given by

Psentence(L|·) = 1
ZSsentence(L|·) (8)

where L ∈ {E,C,N}, and Z = Ssentence(E|·)+Ssentence(C|·)+
Ssentence(N|·) is the normalizing factor.

Training and Inference.
We use cross-entropy loss to train our EPR model by min-
imizing − logPsentence(t|·), where t ∈ {E,C,N} is the
groundtruth sentence-level label.

Our underlying logical reasoning component can be
trained end-to-end by back-propagation in a weakly super-
vised manner, because the fuzzy logic rules are almost ev-
erywhere differentiable. While certain points in the max op-
erators in Eqs. (6) and (7) may not be differentiable at certain
points, max operators are common in max-margin learning
and the rectified linear unit (ReLU) activation functions, and
do not cause trouble in back-propagation. Once our EPR
model is trained, we can obtain both phrasal and sentence-
level labels. This is accomplished by performing argmax on
predicted probabilities (4) and (8), respectively.

Improving Textual Explanation.
Camburu et al. (2018) annotated a dataset to address NLI
interpretability by predicting an explanation sentence. For
the example in Figure 1, the reference explanation is “There
cannot be one man and several men at same time.”

In this part, we apply the predicted phrasal logical re-
lationships to textual explanation generation and examine
whether our EPR’s output can help a downstream task.

Figure 3 shows the overview of our textual explanation
generator. We concatenate the premise and hypothesis in the
form of “Premise : · · · Hypothesis : · · · ”, and feed it to a
standard Transformer encoder (Vaswani et al. 2017).

We utilize the phrase pairs and our predicted phrasal la-
bels as factual knowledge to enhance the decoder. Specifi-
cally, our EPR model yields a set of tuples {(pk,hk, lk)}Kk=1
for a sample, where lk ∈ {E,N,C} is the predicted phrasal
label for the aligned phrases, pk and hk. We embed phrases
by Sentence-BERT: p(L) and h(L) as in Eq. (1); the phrasal
label is represented by a one-hot vector lk = onehot(lk).
They are concatenated as a vector mk = [pk;hk; lk]. We
compose the vectors as a factual memory matrix M =
[m⊤

1 ; · · · ;m⊤
K ] ∈ RK×d, where d is the dimension of mk.

Our decoder follows a standard Transformer architec-
ture (Vaswani et al. 2017), but is equipped with additional
attention mechanisms to the factual memory. Consider the
ith decoding step. We feed the factual memory to an MLP
as M̃ = MLP(M). We compute attention af over M̃ with
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Figure 3: Overview of the model for textual explanation gen-
eration.

the embedding of the input yi−1, and aggregate factual in-
formation cf for the rows mt in Mf :

af = softmax(M̃yi−1), cf =
∑K

k=1
afkm̃

⊤
t

where afk is the kth element of the af vector and m̂t is the
kth row of the M̃ matrix. The factual information cf is fed
to another layer gi = MLP([cf ;yi−1]) + cf .

Our Transformer decoder layer starts with self-attention
q̃i = SelfAttn(gi). Then, residual connection and layer
normalization are applied as qi = LayerNorm(q̃i + gi).
A cross-attention mechanism obtains input information by
vi = CrossAttn(qi,H), where H is the representation
given by the encoder. vi is fed to the Transformer’s resid-
ual connection and layer normalization sub-layer. Multiple
Transformer layers as mentioned above are stacked to form
a deep architecture. The model is trained by standard cross-
entropy loss against the reference explanation as in previ-
ous work (Kumar and Talukdar 2020; Zhao and Vydiswaran
2021; Narang et al. 2020).

In this way, our model is enhanced with factual informa-
tion, given by our EPR weakly supervised reasoning. Exper-
iments will show that our approach largely improves BLEU
scores by 2 points, achieving a new state of the art. This fur-
ther verifies that our EPR indeed yields meaningful phrasal
explanations.

Experiments
Datasets and Evaluation Metrics
The main dataset we used in our experiments is the Stan-
ford Natural Language Inference (SNLI) dataset (Bowman
et al. 2015), which consists of 550K training samples, 10K
validation samples, and another 10K test samples. Each data
sample consists of two sentences (premise and hypothesis)
and a sentence-level groundtruth label.3 For sentence-level
NLI prediction, we still use accuracy to evaluate our ap-
proach, following previous work (Parikh et al. 2016; Chen
et al. 2017; Radford et al. 2018).

3A groundtruth label is for a data point, which consists of two sen-
tences. We call it a sentence-level label, as opposed to phrasal la-
bels.

To evaluate the phrasal reasoning performance, we need
additional human annotation and evaluation metrics, be-
cause most previous work only considers sentence-level per-
formance (Feng et al. 2020) and has not performed quantita-
tive phrasal reasoning evaluation. Although Camburu et al.
(2018) annotated phrase highlights in their e-SNLI dataset,
they are incomplete and do not provide logical relationships.
Specifically, our annotators selected relevant phrases from
two sentences and tagged them with phrasal NLI labels; they
also selected and tagged unaligned phrases.

We further propose a set of F -scores, which are a
balanced measure of precision and recall between hu-
man annotation and model output for Entailment,
Contradiction, Neutral, and Unaligned in terms
of word indexes. Details of human annotation and evaluation
metrics are shown in Appendix.

Inter-annotator agreement is presented in Table 2 in com-
parison with model performance (detailed in the next part).
Here, we compute the agreement by treating one annota-
tor as the ground truth and another as the system output;
the score is averaged among all annotator pairs. As seen,
humans generally achieve high agreement with each other,
whereas model performance is relatively low. This shows
that our task and metrics are well-defined, yet phrasal logical
reasoning is a challenging task for machine learning models.

We evaluated our textual explanation approach on the
e-SNLI dataset (Camburu et al. 2018), which extends the
SNLI dataset with one reference explanation for each train-
ing sample, and three reference explanations for each val-
idation or test samples. Each reference explanation comes
with highlighted rationales, a set of annotated words in the
premise or hypothesis considered as the reason for the ex-
planation annotation. We do not use these highlighted ratio-
nales, but enhance the neural model with EPR output for tex-
tual explanation generation. We follow previous work (Cam-
buru et al. 2018; Narang et al. 2020), adopting BLEU (Pap-
ineni et al. 2002) and SacreBLEU (Post 2018) scores as the
evaluation metrics; they mainly differ in the tokenizer. Cam-
buru et al. (2018) also report low consistency of the third
annotated reference, and thus use only two references for
evaluation. In our study, we consider both two-reference and
three-reference BLEU/SacreBLEU. Appendix provides ad-
ditional implementation details of textual explanation gen-
eration.

Results
Phrasal Reasoning Performance. To the best of our
knowledge, phrasal reasoning for NLI was not explicitly
evaluated in previous literature. Therefore, we propose plau-
sible extensions to previous studies as our baselines.

We consider the study of Neural Natural Logic (NNL,
Feng et al. 2020) as the first baseline. It applies an attention
mechanism (Parikh et al. 2016), so that each word in
the hypothesis is softly aligned with the words in the
premise. Then, each word in the hypothesis is predicted
with one of the seven natural logic relations proposed
by MacCartney and Manning (2009). We consider the
maximum attention score as the alignment, and map
their seven natural logic relations to our three-category



Model Sent Acc Reasoning Performance
FE FC FN FUP FUH GM AM

Human – 84.71 71.01 55.12 82.46 61.80 70.07 71.02
Non-reasoning
Mahabadi, Mai, and Henderson (2020)† 85.1 – – – – – – –
LSTM (Wang and Jiang 2016)† 86.1 – – – – – – –
Transformer (Radford et al. 2018) 89.9 – – – – – – –
Baselines
NNL (Feng et al. 2020)‡ 79.91 62.72 17.49 1.50 66.22 0.00 0.00 29.59
STP 81.44 71.34 36.84 31.09 76.61 51.80 50.37 53.54
Ours
EPR (Local, LM unfinetuned) 76.33±0.48 83.11±0.29 38.73±0.85 44.63±0.88 76.61 51.80 56.39±0.43 58.98±0.34
EPR (Local, LM finetuned) 79.36±0.13 82.44±0.26 44.10±1.32 44.69±3.22 76.61 51.80 57.77±0.85 59.93±0.67
EPR (Concat, LM unfinetuned) 84.53±0.19 73.29±0.68 37.95±1.16 40.56±1.10 76.61 51.80 53.73±0.39 56.04±0.33
EPR (Concat, LM finetuned) 87.56±0.15 69.91±1.21 39.97±2.12 43.31±2.78 76.61 51.80 54.46±1.35 56.32±1.13

Table 2: Main results. †Quoted from respective papers. ‡Obtained from the checkpoint sent by the authors. Other results are
obtained by our experiments. GM and AM are the geometric and arithmetic means of the F scores.

NLI labels: Equivalence, ForwardEntailment
7→ Entailment; Negation, Alternation 7→
Contradiction; and ReverseEntailment, Cover,
Independence 7→ Neutral.

Table 2 shows that the word-level NNL approach cannot
perform meaningful phrasal reasoning, although our met-
rics have already excluded explicit evaluation of phrases.
The low performance is because their soft attention leads
to a large number of mis-alignments, whereas their seven-
category logical relations are too fine-grained and cause
complications in weakly supervised reasoning. In addition,
NNL does not allow unaligned words in the hypothesis,
showing that such a model is inadequate for NLI reasoning.
By contrast, our EPR model extracts phrases of meaningful
semantic units, being an appropriate granularity of logical
reasoning. Moreover, we work with three-category NLI la-
bels following the sentence-level NLI task formulation. This
actually restricts the model capacity, forcing the model to
perform serious phrasal reasoning.

In addition, we include another intuitive BERT-based
competing model for comparison. We first apply our own
heuristics of phrase detection and alignment (thus, the model
will have the same FUP and FUH scores); then, we directly
train the phrasal NLI predictor by sentence-level labels. We
call this STP (Sentence label Training Phrases). As seen,
STP provides some meaningful phrasal reasoning results,
because the training can smooth out the noise of phrasal la-
bels, which are directly set as the sentence-level labels. But
still, its performance is significantly lower than our EPR.

Moreover, we see that EPR with local phrase embeddings
achieves the highest reasoning performance, and that EPR
with concatenated features achieve a good balance between
sentence-level accuracy and reasoning. Our EPR variants
were ran 5 times with different initialization, and standard
deviations are also reported in Table 4. As seen, our im-
provement compared with the best baseline is around 8 times
of the standard deviation in mean F scores, which is a large
margin. Suppose the F scores are Gaussian distributed,4 the

4When the score has a low standard deviation, a Gaussian distribu-

improvement is also statistically significant (p-value <1e-15
comparing our worse variant with the best competing model
by one-sided test).

We further compare our EPR with non-reasoning models,
which are unable to provide phrasal explanations but may or
may not achieve high sentence accuracy. Specifically, Ma-
habadi, Mai, and Henderson (2020) apply fuzzy logic to sen-
tence embeddings. They manage to reduce the number of
model parameters, but their model is not interpretable.

Analysis. We consider three ablated models to verify the
effect of every component in our EPR model: (1) Ran-
dom chunker, which splits the sentence randomly based on
the number of chunks detected by our system; (2) Random
aligner, which randomly aligns phrases but keeps the num-
ber of aligned phrases unchanged; and (3) Mean induction,
which induces the sentence NLI label by the geometric mean
of phrasal NLI prediction. In addition, we consider local
phrase embedding features, global features, and their con-
catenation for the above model variants. Due to the large
number of settings, each variant was run only once; we do
not view this as a concern because Table 2 shows low vari-
ance of our approach. Also, the underlying language model
is un-finetuned in our ablation study, as it yields slightly
lower performance but is much more efficient.

As seen in Table 3, the random chunker and aligner yield
poor phrasal reasoning performance, showing that working
with meaningful semantic units and their alignments is im-
portant to logical reasoning. This also verifies that our word
index-based metrics are able to evaluate phrase detection
and alignment in an implicit manner.

Interestingly, local features yield higher reasoning perfor-
mance, but global and concatenated features yield higher
sentence accuracy. This is because global features provide
aggregated information of the entire sentence, but also allow
the model to bypass meaningful reasoning. In the variant of
the mean induction, for example, the phrasal predictor can
simply learn to predict the sentence-level label with global

tion is a reasonable assumption because its probability of exceed-
ing the range of F scores is extremely low.



Model Features Sent Acc Reasoning Performance
FE FC FN FUP FUH GM AM

Full model
Local 76.33±0.48 83.11±0.29 38.73±0.85 44.63±0.88 76.61 51.80 56.39±0.43 58.98±0.34
Global 84.03±0.12 70.84±0.60 35.12±0.90 36.37±1.52 76.61 51.80 51.41±0.62 54.15±0.41
Concat 84.53±0.19 73.29±0.68 37.95±1.16 40.56±1.10 76.61 51.80 53.73±0.39 56.04±0.33

Random chunker
Local 72.44 63.21 22.65 32.04 65.94 36.13 40.53 43.99
Global 82.81 58.09 30.64 27.49 65.94 36.13 41.05 43.66
Concat 83.09 58.75 32.41 31.14 65.94 36.13 42.66 44.87

Random alignment
Local 68.52 59.32 21.79 26.20 51.43 16.50 31.02 35.05
Global 81.99 53.85 35.10 31.39 51.43 16.50 34.71 37.66
Concat 82.49 57.22 34.83 30.91 51.43 16.50 34.97 38.18

Mean induction
Local 79.61 77.38 37.14 36.13 76.61 51.80 52.84 55.81
Global 83.82 55.08 29.92 24.70 76.61 51.80 43.82 47.62
Concat 84.96 57.12 31.93 31.41 76.61 51.80 46.92 49.77

Table 3: Results of ablation studies.

Model Info BLEU SacreBLEU
L H 2 refs 3 refs 2 refs 3 refs

Camburu et al. (2018)† – – 27.58 – – –
NILE (Kumar and Talukdar 2020)∥ ✓ – 28.57 37.73 32.51 41.78
NILE (Kumar and Talukdar 2020)‡ ✓ – 28.67 37.84 32.74 42.06
FinetunedWT5220M (Narang et al. 2020)† ✓ – – – 32.40 –
FinetunedWT511B (Narang et al. 2020)† ✓ – – – 33.70 –
LIREx (Zhao and Vydiswaran 2021)∥ ✓ ✓ 17.22 22.40 21.24 26.68
Finetune T560M – – 27.75 36.78 31.74 40.89

+ Annotated Highlights64M ✓ ✓ 27.91 36.90 32.20 41.21
+ EPR Outputs64M (ours) – – 29.91 38.30 33.96 42.63

Table 4: Textual explanation results. Previous work uses
auxiliary information (L: the groundtruth NLI label; H:
human-annotated highlights), but we use neither. †Quoted
from respective papers. ‡Evaluated by checkpoints. ∥Our
replication with provided code.

sentence information; then, the mean induction is an ensem-
ble of multiple predictors. In this way, it achieves the highest
sentence accuracy (0.43 points higher than our full model
with concatenated features), but is 6 points lower in reason-
ing performance.

This reminds us of the debate between old schools of
AI (Chandrasekaran, Goel, and Allemang 1988; Boucher
and Dienes 2003; Goel 2022). Recent deep learning mod-
els take the connectionists’ view, and generally outperform
symbolists’ approaches in terms of the ultimate prediction,
but they lack expressible explanations. Combining neural
and symbolic methods becomes a hot direction in recent AI
research (Liang et al. 2017; Dong et al. 2018; Yi et al. 2018).
In general, our EPR model with global features achieves
high performance in both reasoning and ultimate prediction
for the NLI task.

Results of Textual Explanation Generation. In this
part, we apply EPR’s predicted output—phrasal logical
relationships—as factual knowledge to textual explana-
tion generation. Most previous studies use the groundtruth
sentence-level NLI label and/or highlighted rationales. This
requires human annotations, which are resource consuming
to obtain. By contrast, we require no extra human-annotated
resources; our factual knowledge is based on our weakly su-
pervised reasoning approach.

Table 4 shows our explanation generation performance on
e-SNLI. Since evaluation metrics are not consistently used
for explanation generation in previous studies, we replicate
the approaches when the code or checkpoint is available. For
large pretrained models, we quote results from the previous
paper (Narang et al. 2020). Their model is called WT5, hav-
ing 220M or 11B parameters depending on the underlying
T5 model. Profoundly, we achieve higher performance with
60M-parameter T5-small, which is 3.3x and 170x smaller in
model size than the two WT5 variants.

In addition, we conducted a controlled experiment using
the rationale highlights annotated by Camburu et al. (2018)
for e-SNLI. It achieves a relatively small increase of 0.2–
0.5 BLEU points, whereas our EPR’s outputs yield a 2-point
improvement. The difference in the performance gains show
that our EPR’s phrasal logical relationships provide more
valuable information than human-annotated highlights. In
general, we achieve a new state of the art on e-SNLI with
a small language model, demonstrating the importance of
phrasal reasoning in textual explanations.

Additional Results. We show additional results as appen-
dices: Reasoning performance on the MNLI dataset; Error
analysis; Case studies of our EPR model; and Case studies
of textual explanation generation.

Conclusion

The paper proposes an explainable phrasal reasoning (EPR)
model for NLI with neural fuzzy logic. Our reasoning com-
ponent can be trained in a weakly supervised manner, as it is
almost everywhere differentiable. To evaluate our approach,
we propose an experimental design, including data anno-
tation, evaluation metrics, and plausible baselines. Results
show that phrasal reasoning for NLI is a meaningfully de-
fined task, as humans can achieve high agreements. Our EPR
achieves decent sentence-level accuracy, but much higher
reasoning performance than all competing models. We also
achieve a new state-of-the-art performance on e-SNLI tex-
tual explanation generation by applying EPR’s phrasal logi-
cal relationships.



Limitation and Future Work. This paper performs
phrase detection and alignment by heuristics. They work
well empirically in our experiments, although further im-
provement is possible (for example, by considering syntactic
structures). However, our main focus is neural fuzzy logic
for weakly supervised reasoning. This largely differs from
previous work based on manually designed lexicons and
rules (Hu et al. 2020; Chen, Gao, and Moss 2021).

Our long-term goal is to develop a weakly supervised,
end-to-end trained neuro-symbolic system that can extract
semantic units and perform reasoning for a given down-
stream NLP task. This paper is an important milestone to-
wards the long-term goal.
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Implementation Details
Phrase Detection
We present more details about our phrase detection. We use
SpaCy5 to obtain the part-of-speech (POS) tag6 of every
word. SpaCy also tags noun phrases. However, if a noun
phrase follows a preposition (with a fine-grained POS tag
being IN), we remove it from noun phrases but tag it as a
prepositional phrase.

In addition, we extract verbs by the POS tag VERB. A verb
may be followed by a particle with the fine-grained POS tag
being RP (e.g., show off ). It is treated as a verb phrase. In or-
der to handle negation, we allow optional AUX NOT before
a verb, (e.g., could not help). This, however, only counts less
than 1% in the dataset, and does not affect our model much.

To capture all possible phrase-level semantic units, we
treat remaining open class words7 as individual phrases. Fi-
nally, the remaining non-content words (in the categories of
closed words and others) are discarded (e.g., “there is”). This
is appropriate, because they do not represent meaningful se-
mantics or play a role in reasoning. Table 5 summarizes all
the rules used in our approach. They are executed in order
and extracted phrases are exclusive. For example, the play-
ground in the phrase at the playground will not be treated as
a standalone noun phrase, as it is already part of a preposi-
tional phrase.

Empirically, our rule-based approach works well for the
NLI dataset, and our logical reasoning is at the granularity of
the extracted phrases. It should be mentioned that our rules
are effective, easy to implement, and generalizable to differ-
ent tasks. In fact, they are used by third-party researchers for
summarization after our paper was preprinted. In their work,
our rules are adopted to extract phrases for generating fac-
tually consistent and faithful summaries. (Citations will be
given after double-blind review.) Therefore, these rules can
be considered as additional contributions (instead of disad-
vantages) of this paper. Our long-term research goal is to de-
velop a fully automated mechanism that can perform phrase
detection/alignment and logical reasoning in an end-to-end
fashion.

Settings
Details of the EPR Model. We chose the pre-trained
model all-mpnet-base-v28 from the Sentence-BERT
study (Reimers and Gurevych 2019) and obtained 768-
dimensional local and global phrase embeddings. Our MLP
had the same dimension as the embeddings, i.e., 768D for

5https://spacy.io
6See definitions in https://spacy.io/usage/linguistic-features
7https://universaldependencies.org/u/pos/
8https://www.sbert.net/docs/pretrained models.html



Example: The woman is showing off her blue dog at the playground.
# Phrase type Rule Extracted phrase(s)
1 Prepositional phrase IN + NP at the playground
2 Noun phrase NP The woman; her blue dog
3 Verb phrase [AUX] + [NOT] + VERB + [RP] is showing off
4 Others Other open class words -

Table 5: Our rule for phrase detection. “[]” means the item is optional.

Figure 4: Results of tuning the coefficient of global features.

the local and global variants, or 1536D for the concatena-
tion variant. We chose the coefficient for the global feature in
Eq. (2) from a candidate set of {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.
Figure 4 shows the hyperparameter tuning results on SNLI
and MNLI. We find that 0.4 yields the best sentence ac-
curacy in SNLI, and that 1.0 is the best for MNLI. As
our focus is on reasoning, we set the coefficient to be
0.6, because it yields the highest phrasal reasoning perfor-
mance and decent sentence-level performance for both ex-
periments and in terms of both geometric mean and arith-
metic mean of F scores. During training, the pre-trained
language model (LM) was either finetuned or un-finetuned.
Fine-tuning yields higher performance (Table 2), whereas
un-finetuned LM is more efficient for in-depth analyses (Ta-
ble 3). We trained the model with a batch size of 256. We
used Adam (Kingma and Ba 2015) with learning rate of 5e-
5, β1=0.9, β2=0.999, learning rate warmup over the first 10
percent of the total steps, and linear decay of the learning
rate. The model was trained up to 3 epochs, following the
common practice (Dodge et al. 2020). Our main model vari-
ants were trained 5 times with different parameter initializa-
tions, and we report the mean and standard deviation.

Details of Textual Explanation Generation. We used the
pretrained T5-small model for fine-tuning with a batch size
of 32. The optimizer was Adam with an initial learning rate
of 3e-4, β1=0.9, β2=0.999, learning rate warm-up for the
first 2 epochs, and linear decay of the learning rate up to
10 epochs; then we decreased the learning rate to 3e-6 and

trained the model until the validation BLEU score did not
increase for 2 epochs.

Data Annotation and Reasoning Evaluation
Metrics

Previous studies have not explicitly evaluated reasoning per-
formance. Typically, they resort to sentence-level classifica-
tion accuracy (Wang and Jiang 2016; Mahabadi, Mai, and
Henderson 2020) or case studies (Parikh et al. 2016; Feng
et al. 2020) to demonstrate the effectiveness of their alleged
interpretable models, which we believe is inadequate.

Therefore, we annotated a model-agnostic corpus about
phrasal logical relationships and developed a set of met-
rics to quantitatively evaluate the phrasal reasoning perfor-
mance.

Data Annotation
We annotated the phrases and their logical relationships in
a data sample. The annotators were asked to select corre-
sponding phrases from both premise and hypothesis, and
label them as either Entailment, Contradiction, or
Neutral, with the sentence-level NLI label being given.
Annotators could also select a phrase from either a premise
or a hypothesis and label it as Unaligned. The process
can be repeated until all phrases are labeled for a data sam-
ple. Figure 5 shows a screenshot of our annotation page. In
the left panel, the annotator could select phrases in the two
sentences and mark them with NLI labels. In the right panel,



the annotator is able to view the annotated phrases of a sam-
ple, as well as navigating through different samples.

The annotation was performed by three in-lab researchers
who are familiar with the NLI task. Our preliminary study
shows low agreement when the annotators are unfamiliar
with the task; thus it is inappropriate to recruit Mechanical
Turkers for annotation. We randomly selected 100 samples
for annotation, following previous work on textual explana-
tion for SNLI (Camburu et al. 2018), which is adequate to
show statistical significance. Since our annotation only con-
cerns data samples, it is agnostic to any machine learning
model.

Evaluation Metrics for Phrasal Reasoning
We propose a set of F -scores in Entailment,
Contradiction, Neutral, and Unaligned to
quantitatively evaluate the phrasal reasoning performance.
We first introduce our metric for one data sample and then
explain the extension to a corpus.

Consider the Entailment category as an example. We
first count the number of “hits” (true positives) between
the word indexes of model output and annotation. Using
word indexes (instead of words) rules out hitting the words
in mis-aligned phrases (Example 1, Table 6). Then, we
calculate precision scores for the premise and hypothesis,
denoted by P

(P )
E and P

(H)
E , respectively. Their geometric

mean PE = (P
(P )
E P

(H)
E )1/2 is considered as the precision

for Entailment. Here, the geometric mean rules out in-
correct reasoning that hits either the premise or the hypothe-
sis, but not both (Example 2, Table 6). Further, we compute
the recall score RE in a similar way, and finally obtain the
F -score by FE = 2PERE

PE+RE
. Likewise, FC and FN are calcu-

lated for Contradiction and Neutral. In addition, we
also compute the F -score for unaligned phrases in premise
and hypothesis, denoted by FUP and FUH, respectively.

When calculating our F -scores for a corpus, we use
micro-average, i.e., the precision and recall ratios are cal-
culated in the corpus level. This is more stable, especially
considering the varying lengths of sentences. Moreover, we
compare model output against three annotators and perform
an arithmetic average, further reducing the variance caused
by ambiguity.

It should be emphasized that our metrics evaluate phrase
detection and alignment in an implicit manner. A poor
phrase detector and aligner will result in a low reasoning
score (shown in our ablation study), but we do not calcu-
late phrase detection and alignment accuracy explicitly. This
helps us cope with the ambiguity of the phrase granularity
(Example 3, Table 6).

To summarize, we propose an evaluation framework in-
cluding data annotation and evaluation metric. This is our
contribution in formulating the phrasal reasoning task for
NLI.

Additional Results
Results on MNLI
In this appendix, we provide additional results on the
matched section of the MNLI dataset (Williams, Nangia,

and Bowman 2018), which consists of 393K training sam-
ples, 10K validation samples, and another 10K test samples.
It has the same format as the SNLI dataset, but samples
come from multiple domains and are more diverse. We use
the same protocol to create the phrasal reasoning annotation
for MNLI dataset based on 100 randomly selected samples.
However, we found that MNLI is much noisier than SNLI;
particularly, the sentences labeled as Neutral in MNLI
share few related phrases. For example, the two sentences
do not have much in common in the sample “Premise: If you
still want to join, it might be worked.” and “Hypothesis: Your
membership is the only way that this could work”. Moreover,
inter-human agreement is low in terms of the Neutral cat-
egory. Therefore, we believe the corpus quality is low for
Neutral. To ensure meaningful evaluation, we ignored
the evaluation of Neutral in this experiment, although
our reasoning approach is not changed. The remaining 60
samples containing Entailment and Contradiction
serve as the MNLI phrasal reasoning corpus.

We consider the EPR variant with concatenated local and
global features, since the SNLI experiment shows it achieves
a good balance between sentence-level accuracy and reason-
ing. Our models were run 5 times with different initializa-
tions.

As seen in Table 7, our EPR approach is again worse than
humans, but largely improves the reasoning performance
compared with NNL and STP baselines. Its sentence-level
prediction is also comparable to (although slightly lower
than) finetuning Transformers. The results are highly con-
sistent with SNLI experiments, showing the robustness of
our approach.

Error Analysis
To show how phrasal reasoning affects sentence-level pre-
diction, we perform an error analysis in Table 8. Specif-
ically, we examine the reasoning performance (arithmetic
mean of F -scores) when the sentence label is correctly and
incorrectly predicted in the SNLI dataset (Bowman et al.
2015). As shown, EPR models with both local and con-
catenated features have much higher reasoning performance
when sentence labels are correctly predicted than incorrectly
predicted. The positive correlation between the phrasal rea-
soning performance and sentence-level accuracy shows the
meaningfulness of our fuzzy logic induction rule.

We also find that the model with local features has a
higher reasoning performance than with concatenated fea-
tures, even when the sentence-level prediction is wrong. This
is because the local model is unaware of the context of the
sentences. Thus, it must perform strict phrasal reasoning
based on the induction rules, even if in this case the reason-
ing process is imperfect and leads to sentence-level errors.

Case Study of EPR
We present case studies of EPR in Figure 6. We see that
our EPR indeed performs impressive reasoning for the NLI
task, which is learned in a weakly supervised manner with
only sentence-level labels.

In Example (a), the two sentences are predicted
Entailment because three young boys entails the boys



Figure 5: A screenshot of the annotation page.

Table 6: Examples illustrating the proposed metrics, where we consider the Entailment category. “|” refers to a phrase
segmentation.

Example annotation of entailment (in highlight):
Premise: A kid in red is playing in a garden.
Hypothesis: A child in red is watching TV in the bedroom.

# Example Output P
(P )
E P

(H)
E PE R

(P )
E R

(H)
E RE FE Explanation

1 P in a garden 0 0 0 0 0 0 0 Although in occurs in the annotation, the word
H in the bedroom indexes are different. The reasoning is wrong.

2 P a kid in red 1 0 0 1 0 0 0 Mis-matched phrases in hypothesis.
H watching TV The reasoning is wrong.

3 P a kid | in red 1 1 1 1 1 1 1 All word indexes match the annotation.
H a child | in red The reasoning is correct.

Model Sent Acc Reasoning Performance
FE FC FUP FUH GM AM

Human – 85.15 73.44 73.18 46.31 67.85 69.52
Non-reasoning methods
Mahabadi, Mai, and Henderson (2020)† 73.8 – – – – – –
LSTM (Wang et al. 2019)† 72.2 – – – – – –
Transformer (Radford et al. 2018) 82.1 – – – – – –
Reasoning methods
NNL (Feng et al. 2020)‡ 61.28 50.33 32.00 49.78 0.00 0.00 33.03
STP 64.46 58.01 34.79 64.32 37.57 46.99 48.67
EPR (Concat, LM finetuned) 79.65±0.19 61.76±0.32 52.09±0.41 64.32 37.57 52.80±0.07 53.93±0.07

Table 7: Results on MNLI. †Quoted from respective papers. ‡Our replication.

and at the beach entails in the beach, whereas unaligned
phrases enjoying and a day are allowed in the premise for
Entailment. In Example (b), playing contradicts asleep,
and the two sentences are also predicted Contradiction.
Likewise, Example (c) is predicted Neutral because the

aligned phrases on a concrete boardwalk and near the beach
are neutral.

In our study, we also find several interesting examples
where EPR’s reasoning provides clues suggesting that the
target labels may be incorrect in the SNLI dataset. In Exam-



Sentence-level prediction Count Reasoning performance (AMF)
Local finetuned Concat finetuned Local finetuned Concat finetuned

Correct 75.4±1.36 87.8±0.75 65.71±0.83 58.68±0.67
Wrong 24.6±1.36 12.2±0.75 40.74±2.01 37.58±3.28
Overall 100.0±0.00 100.0±0.00 59.93±0.67 56.32±1.13

Table 8: Sentence-level prediction count and arithmetic average reasoning performance (F -score) when the sentence label is
correctly and incorrectly predicted on the SNLI dataset.

      People shopping for vegetables at an outdoor market.

(d)

      People shopping for veggies and fruit at a market.

      An elderly couple in heavy coats are looking at black and white photos displayed on a wall.

(d)

      Octogenarians admiring the old photographs that decorated the wall.

      Three young boys enjoying a day at the beach.

(a)

      The boys are in the beach.

      A man playing fetch with two brown dogs.

(b)

      The dogs are asleep.

      Walkers on a concrete boardwalk under a blue sky.

(c)

      Walkers under a blue sky near the beach.

Entailment

Contradiction

Neutral

Unaligned

Groundtruth: Entailment   Prediction: 
Neutral

Groundtruth: Entailment   Prediction: Entailment Groundtruth: Contradiction   Prediction: Contradiction

Groundtruth: Neutral   Prediction: Neutral Groundtruth: Entailment   Prediction: Neutral

Figure 6: Examples of explainable phrasal reasoning predicted by our EPR model. Words in one color block are a detected
phrase, a dotted line shows the alignment of two phrases, and the color represents the predicted phrasal NLI label. In Example
(d), EPR’s prediction suggests the provided label in SNLI is incorrect.

ple (d), our model predicts Neutral for looking and admir-
ing, as well as for at black and white photos and the old pho-
tographs. Thus, the two sentences are predicted Neutral,
as opposed to the provided label Entailment. We believe
our model’s reasoning and prediction are correct, because
people looking at something may or may not admire it; a
black-and-white photo may or may not be an old photo ei-
ther (as it could be a black-and-white artistic photo).

Case Study of the Textual Explanation Generation
We conduct another case study to show how EPR’s rea-
soning is used in the textual explanation generation task.
As seen in Figure 7, factual information given by EPR’s
weakly supervised reasoning yields meaningful structured
factual tuples, namely, on a deserted beach entailing at the
beach, Some dogs contradicting only one dog, and running
unaligned (matched with a special token [EMPTY]). Our
explanation generation model attends to these factual tuples,
and the heat map shows that our model gives the most at-
tention weights (with an average of 0.61) to the tuple, Some
dogs contradicting only one dog, to generate the explanation
“Some dogs is more than one dog.” This example illustrates
that the factual tuples given by our EPR model provides
meaningful information to and improves textual explanation
generation.



E
C
E

at the beach
only one dog
[EMPTY]

23.16
61.22
15.62

EPR’s Reasoning Output

on a deserted beach
Some dogs
running

Input  Premise : Some dogs are running on a deserted beach. 
Hypothesis : There is only one dog at the beach.

Output explanation Some dogs is more than one dog.
Reference explanations: 
(1) Some is more than one, therefore there can’t be only one dog.
(2) Some indicates more than one dog. One dog is not  some dogs. 
(3) Some dogs are not one dog.

Premise phrase Hypothesis phrase EPR label Attention score

Label Contradiction (not used during our explanation generation)

some dogs is more than one dog . [EOS]
on a deserted beach

 at the beach

Some dogs
only one dog

running
[EMPTY]

0.10 0.23 0.28 0.25 0.19 0.24 0.30 0.30 0.32

0.57 0.62 0.50 0.59 0.70 0.54 0.66 0.68 0.58

0.33 0.15 0.22 0.16 0.11 0.22 0.04 0.02 0.10

Average
attention

score

0.23

0.61

0.16
0.0

0.5

1.0

Figure 7: Case study of the textual explanation generation. The heat map shows the step-by-step and average attention weights
to the factual tuples (vertical axis).


