
Efficient and effective training of language and graph neural network models

Vassilis N. Ioannidis, Xiang Song, Da Zheng, George Karypis
Amazon Web Services AI, USA

Houyu Zhang, Jun Ma, Yi Xu, Belinda Zeng, Trishul Chilimbi
Amazon Search AI, USA

Abstract

Can we combine heterogenous graph structure with text to
learn high-quality semantic and behavioural representations?
Current GNN approaches are challenged by textual features,
which typically need to be encoded to a numerical vector be-
fore provided to the GNN that may incur some information
loss. In this paper, we put forth an efficient and effective frame-
work termed language model GNN (LM-GNN) to jointly train
large-scale language models and graph neural networks. The
effectiveness in our framework is achieved by applying stage-
wise fine-tuning of the BERT model first with heterogenous
graph information and then with a GNN model. Several sys-
tem and design optimizations are proposed to enable scalable
and efficient training. We evaluate the LM-GNN framework
in different datasets and tasks and showcase the effectiveness
of the proposed approach.

Introduction

GNNs have shown remarkable success in a variety of graph
machine learning tasks both in supervised and unsupervised
learning settings (Hamilton, Ying, and Leskovec 2017b). Typ-
ically, the graphs used for profiling GNN models have node
features as numerical attributes. These numerical attributes
may be the output of network that encodes a much richer
original information that is in the form of text or picture. One
could apply such a general pre-trained network to extract the
represenations and use them as feature vectors in a GNN.
However, as we detail in this work such an approach is not
optimal. This raises the question of how can we train better
GNN models with rich text features. This work presents a
stage-wise fine-tuning framework termed LM-GNN for en-
coding text data with transformers and GNN models. Our
stage-wise fine-tuning, besides achieving good performance,
significantly reduces training time compared to end-to-end
training. Further, LM-GNN is a distributed framework which
can scale to hundreds of millions nodes.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
Accepted to Workshop on Knowledge Augmented Methods for
Natural Language Processing, in conjunction with AAAI 2023.

Related work
GNNs achieve state-of-the-art performance in node classi-
fication by utilizing regular graph convolution (Kipf and
Welling 2017) or graph attention (Veličković et al. 2018),
while these models have later been extended in the heteroge-
neous graph setting (Schlichtkrull et al. 2018; Fu et al. 2020;
Wang et al. 2019). Similarly, GNNs excel in performance for
link prediction with numerous applications in recommenda-
tion systems (Wang et al. 2017) and drug discovery (Zhou
et al. 2020; Ioannidis, Zheng, and Karypis 2020). Knowledge-
graph (KG) embedding models for link prediction rely on
mapping the nodes and edges of the KG to a vector space by
maximizing a score function for existing KG edges (Wang
et al. 2017; Yang et al. 2014; Zheng et al. 2020).

Language models (LM)s are powerful in modeling text
data (Devlin et al. 2018). Harnessing the power of LMs with
graph data is under-explored. This work details a framework
for training large-scale LMs jointly with GNNs. (Wu et al.
2021) details recent works for learning graph structure from
text, which also explores GNNs for modeling text data. How-
ever, in this work our focus is in improving the prediction per-
formance given a known graph structure. Recent work (Chien
et al. 2021) also identifies that pre-training BERT models in
graph data can be beneficial and exploits a neighborhood
prediction objective to enrich the BERT model with graph
information. However, this work (Chien et al. 2021) did not
explore to fine-tune the BERT and GNN model together. An-
other prominent work in (Li et al. 2021; Zhu et al. 2021)
trains GNN models for improving the search results in spon-
sored search. The work there can be seen as a special case of
this framework, although (Li et al. 2021; Zhu et al. 2021) did
not explore the stage-wise fine-tuning that we introduce in
this work.

LM-GNN Models : Adapt and fine-tune
The LM-GNN framework learns informative representations
by stage-wise fine-tuning that gradually fuses the transformer
with graph information.

Semantic encoder
We employ the BERT model (Devlin et al. 2018) as the
transformer in the LM-GNN framework to encode the nodes
textual semantics. Given a node’s text BERT encodes the



Purchased

Running shoes

Hiking shoes Nike ZoomX Vaporfly

Addidas swift

Product

Query

Timberland boots

(a) Query to products graph.

Running shoes

Hiking shoes

Nike ZoomX Vaporfly

Addidas swift

Timberland boots

(b) Transformer embeddings.

Running shoes

Hiking shoes

Nike ZoomX Vaporfly

Addidas swift

Timberland boots

(c) Graph-aware transformer
embeddings.

Running shoes

Hiking shoes

Nike ZoomX Vaporfly

Addidas swift

Timberland boots

(d) LM-GNN embedding.

Figure 1: (a) The underlying graph among products and queries where an edge signifies that a query leads to the purchase of a
product. (b-d) The 2-D projected embeddings as generated by different pipelines. (b) The transformer maps entities solely on text
and fails to capture semantic similarity, besides language based e.g., shoes are close to boots. (c) The graph-aware transformer
maps connected entities close, however fails at capturing higher order relations and embeds the two running shoes in different
regions. (d)The proposed LM-GNN captures the connectivity, higher order structure, text semantics and provides a refined
representations useful for retrieval tasks.

textual information to a F × 1 embedding vector xnt . This
embedding vector corresponds to the [CLS] token embed-
ding of the BERT model and the mapping from the text to the
embedding is defined as xnt := gBERT(nt;WBERT). The map-
ping is controlled by the learnable parameters WBERT. These
parameters can be instantiated by any language model pre-
training approach, e.g., masked language modeling (MLM).
Pre-training BERT models on large unlabeled text data has
shown significant benefit in different LM applications. How-
ever, transferring this benefit for graph ML applications is
not straightforward. We employ the technique in Sec. to
pre-train BERT models with graph data. For different node-
types t ∈ {1, . . . , T} in the graph consider different semantic
encoders; e.g. queries and products.

Graph Encoder
Although the LM-GNN framework can utilize any GNN
model as an encoder (Wu et al. 2020), in this paper LM-GNN
uses a modified RGCN encoder (Schlichtkrull et al. 2018).
RGCNs extend the graph convolution operation (Kipf and
Welling 2017) to heterogeneous graphs. The lth self-RGCN
layer computes the nth node representation h

(l+1)
n as follows

h(l+1)
n := σ

W
(l)
selfh

(l)
n +

R∑
r=1

∑
n′∈N r

n

W(l)
r h

(l)
n′


where N r

n is the neighborhood of node n under relation r, σ
the rectified linear unit non linear function, W(l)

r is a learn-
able matrix associated with the rth relation, and W

(l)
self is a

projection matrix for the nodes embedding in layer l.

Structure prediction task
Structure prediction models utilize a contrastive loss function
scores positive and negative examples (Zheng et al. 2020).
Positive examples are the set of existing links in the graph.
Negative examples are typically sampled from the missing
links in the graph. For each positive triplet q = (nt, r, n

′
t′) a

number of negative links is generated by corrupting the head

and tail entities at random (nt, r, ν
′
t′) and (νt, r, n

′
t′). The

minimization function for link prediction can be defined as
follows ∑

(nt,r,n′
t′ )∈D+∪D−

log(1 + exp(−y × c(nt, r, n
′
t′)), (1)

where c is a scoring function that return as scalar given the
head, and tail nodes and the relation such as the DistMult
model (Yang et al. 2014), D+ and D− are the positive and
negative sets of triplets and y = 1 if the triplet corresponds
to a positive example and −1 otherwise.

LM-GNN: Training at scale
A straightforward approach would directly use the LM en-
coder as a semantic encoder that feeds representations to the
GNN encoder, and train such an architecture in an end-to-
end fashion. However, training large scale language models
and graph neural networks involves challenges relating to
efficiency and effectiveness.

Effectiveness challenges stem from the fact that the pre-
trained language model is well optimized in language tasks
but has not trained before in graph tasks, which surfaces
three main issues. (1) Using such pre-trained transfomers
may not be the most appropriate initialization and may trap
the GNN to a sub-optimal local minimum. (2) Further, the
well optimized transformer for the text tasks, may be more
resistant in parameter updates. (3) Another hurdle stems from
the random initialization of the GNN weights relative to the
well-attuned transformer model, which may challenge the
optimization of such an end-to-end framework.

Efficiency challenges relate to the large number of neigh-
bors required by message passing in GNNs. In mini-batch
training of a k-layer GNN the k-hop ego-network of ev-
ery target node is created and the target node embedding is
computed as a function of all the node in the expanded ego-
network (also known as source nodes). The number of source
nodes in an ego-network may be very large even for shallow
GNNs. Alleviating this issue, recent GNN approaches ap-
ply random sampling (Hamilton, Ying, and Leskovec 2017a)



to reduce the number of neighbors. However, even with a
shallow GNN (2 layers) and modest sampling (20 neighbors
per layer), there are up to 400 source nodes. This remains a
serious challenge in our unique setting where the transformer
model needs to make 400 forward passes to calculate the
embedding of a single target node. As a consequence the size
of the required GPU is quite large even for small mini-batch
sizes, which is a unique challenge in our framework.

Addressing effectiveness
Consider the search graph among products and queries de-
picted in Fig. 1a. Such a graph is typically encountered in cat-
alog systems for query-product datasets. One could attempt
to directly use the embedding generated by a transformer as
an input to a GNN model for further fine-tuning. However,
the transfomer embedding of such a model will only take into
account the text information and may introduce noise at mes-
sage passing. Indeed, Fig. 1b shows that embeddings that are
connected in the graph may be located in different regions
of the embedding space. The poor performance of such a
scheme is also detailed in the experiments; see Section . Our
contribution in this context is to pre-fine-tune the transformer
with graph information, which will endow the text embed-
dings with relational semantics and boost the performance
when used as a semantic encoder.

Graph-aware pre-fine-tuning. We consider the structure
prediction decoder that directly uses the scoring function c
instantiated in Section . The graph-aware transformer model
directly uses the structure prediction decoder as a supervision.
Specifically, the transformer generates the CLS token embed-
dings for the text associated with the nodes and the vectors
are contributing to the loss (1). The resulting graph-aware
transformer embeddings respect both the semantics intro-
duced by the language as well as the relations imposed by
the graph; see also Fig. 1c. The graph-aware pre-fine-tuning
also results LM that is more suitable for the end-to-end train-
ing with the GNN, which is also supported in Section . The
top part of Fig. 2 showcases the graph-aware pre-fine-tuning
pipeline.

Our proposed framework LM-GNN employs the graph-
aware transformer as a semantic encoder that first embeds
the text and then is fed to the GNN encoder. However, since
the GNN model is typically initialized at random this may
challenge the end-to-end fine-tuning method and get trapped
in not desirable local minima. Hence, we warm-start the GNN
weights by keeping fixed the transformer weights for a few
iterations and optimize only the GNN encoder. Finally, we
fine-tune end-to-end the semantic encoders and GNN models
for the downstream task. Such a scheme will provide a good
initial point for the GNN model. The resulting embeddings
abide by the text semantics, graph relations and the multi-hop
graph structure; see Fig. 1d. Our overall stage-wise fine-
tuning pipeline is depicted in the bottom part of Fig. 2.

Addressing efficiency
The high computation overhead and memory consumption
required by the LM-GNN framework limits the wide appli-
cability of the approach. Addressing these issues, we adopt
several optimizations to efficiently train LM-GNN.

Back-propagate on samples. Instead of back-propagating
gradients to the transformer models on all nodes, we sub-
sample a fixed-size number of nodes (train nodes) in a mini-
batch where we back-propagate gradients to the BERT model.
For the rest of the nodes (inference nodes), we just run BERT
forward computation to generate BERT embeddings. To fur-
ther reduce memory consumption and allow training in lim-
ited GPU machines, we split the inference nodes into multiple
sub-batches of fixed size.

Cache BERT embeddings. To further reduce transformer
computations, we cache text embeddings of some nodes in a
mini-batch. During the training, whenever we compute new
text embeddings, we save them in the cache. Whenever we
need node BERT embeddings, we fetch them from the cache.
Some cached text embeddings may be out-of-date in a large
graph, which may lower the overall model accuracy.

Joint negative sampling. Link prediction task requires
positive and negative samples; see Sec. . By default, we
sample k negative edges for each positive edge independently,
which requires us to sample k × n new nodes with n is
the number of positive links. To maximize efficiency we
sample n nodes and use them to construct k negative edges
jointly. Specifically, we reuse these nodes and randomly pair
them with nodes in our positive set to generate negative pairs.
Hence, we reduce the number of nodes in a mini-batch and
accelerate training. The default method generates 2×n+k×n
end-point nodes and their neighbor nodes, while our negative
sampling generates 3× n end-point nodes.

Distributed GNN training. We exploit and extend the
distributed GNN training framework (Zheng et al. 2021) to
scale to billion node graphs and accomodate our end-to-end
fine-tuning setting. To increase the training efficiency, we
apply hierarchical graph partitioning in DGL’s distributed
training. When using this method, the target nodes/edges are
sampled from the same partition. Therefore, when we sample
their neighbors, it’s more likely that different target nodes
may sample the same neighbor nodes and thus, reduce the
number of nodes in a mini-batch.

Experimental setting
Datasets.
Our unique setting requires graph datasets where the nodes
are associated with text. We employ the arxiv, and prod-
ucts datesets from the OGB benchmark (Hu et al. 2020)
with N=169,343 and E =1,166,243 and N=2,449,029
E=61,859,140 respectively with the standard split ratios
from (Hu et al. 2020). We further augment the data with
the original text features for each node; the data are col-
lected in (Chien et al. 2021). In the arxiv dataset the original
title and abstract is used as text feature for the node. On
the other hand the product dataset represents Amazon prod-
ucts and the product title was crawled from the web and
used as the text feature. The task here is to predict the la-
bels on the nodes in a standard semi-supervised setting. For
these datasets we also formulate a link prediction problem
with splits 80% training, 10% validation and 10% testing
and the tasks are predicting paper citation and product co-
purchase links. Further we also construct the Yelp dataset



augmented with the text using sources provided from (Yel).
The following node types are included with corresponding
number of nodes business N1=160,585, category N2=1330,
city N3=836, review N4=8,635,403, user N5=2,189,457.
The following edges are considered (user, friendship, user)
E1=17,971,548, (business, in, city) E2=160585, (business,
in category, category) E3=708968, (review, on, business)
E4=8,635,403, (user, write, review) E5=8,635,403. The task
here is to predict the stars for a business and is formulated as
a node prediction task

Additionally, we consider the dataset provided by the re-
cent Amazon KDD22 challenge (Ama). The graph structure
is indeed similar to the one depicted in Fig. 1a. There are
N1 = 646, 640 product and N2 = 33, 804 query nodes in
the graph and E = 781, 744 edges that represent a match
among the query and the product. Each edge in this dataset
is associated with a label which corresponds to whether a
match between the query and the product is an exact, sub-
stitute, complement or irrelevant. This problem is known as
ESCI and is solved as an edge classification task. We create a
custom split for this task by splitting the set of edges to 60%
for training 10% for validation and 30% for testing.

Baseline setting
Next we explain the different parameters that define the vari-
ous approaches considered in this work.
Encoders. We consider the following possible semantic en-
coders in this work. BERT is the pre-trained BERT model
from (Wolf et al. 2019). GRAPH-BERT is the pre-trained
BERT model (Wolf et al. 2019) that we further fine-tune it
for graph structure prediction as in equation (1). BERT-PR is
a BERT model that is pre-trained using the MLM objective
in the proprietary data of the company.
Task encoders. MLP is a single-layer MLP that projects the
text embeding to an appropriate dimension for classification
and allows us to directly compare with the language model.
GNN is the GraphSAGE model presented in (Hamilton, Ying,
and Leskovec 2017a). We use the RGCN (Schlichtkrull et al.
2018) for the ESCI.
Fine-tune(FT). This parameter defines whether we will back-
propagate the loss to the semantic encoder during learning or
not. The training is orders of magnitude faster when the loss
is not back-propagated.
Warm-start(WS). This parameter defines whether we will
warm-start the GNN model by keeping the semantic encoder
parameters fixed for some iterations before end-to-end fine-
tuning.
Model configuration. We optimize the parameters such that
the validation set performance is optimized. We select the
number of GNN layers from 1, 2, 3, GNN hidden dimension
from 128, 256, 512 and learning rate from 10−3, 10−4, 10−5.

Node classification
Table 1 collects the results for the public datasets for dif-
ferent training configurations and encoder models in node
classification. Notice that the first two rows apply the node
prediction loss directly on the node representation of the text
embeddings after it is appropriately mapped by a single layer
MLP. The target node for the Yelp dataset does not have any

Table 1: Node classification results for the public datasets.
Results measured in accuracy.

Semantic enc Graph enc FT arxiv products Yelp

1 BERT MLP No 62.91 61.83 -
2 BERT MLP Yes 72.98 77.64 -
3 BERT GNN No 71.39 79.10 65.81
4 BERT GNN Yes 73.42 81.24 73.06
5 graph-BERT GNN No 73.79 80.53 66.88
6 graph-BERT GNN Yes 74.97 82.35 76.47

Table 2: Link prediction results for the public datasets. The
performance is measured in MRR scores.

Semantic enc. Graph enc. WS FT arxiv products

1 graph-BERT MLP No Yes 59.32 82.29
2 BERT GNN No No 12.43 74.50
3 BERT GNN No Yes 10.11 72.13
4 BERT GNN Yes Yes 15.23 77.42
5 graph-BERT GNN No No 58.13 84.34
6 graph-BERT GNN No Yes 55.32 78.31
7 graph-BERT GNN Yes Yes 63.21 87.23

text (rows 1,2). By comparing lines 2 and 3 we observe that
fine-tuning the BERT directly for the downstream tasks and
disregarding the graph structure achieves on-par performance
as the one of keeping the BERT model fixed and using these
representations as input to the GNN model. This suggests
that the initial BERT embeddings are indeed not the most ap-
propriate semantic embeddings. By comparing lines 3 and 4
we see a performance benefit of fine-tuning the BERT model
through the GNN, since the multi-hop information is cap-
tured by the GNN. By comparing lines 3 and 5 we observe
the clear advantage of the graph-BERT. The graph-aware
pre-fine-tuning fuses the transformer with graph information
and is the most suitable semantic encoder. Finally, line 6 co-
incides with the proposed LM-GNN framework. We observe
that this configuration achieves the best overall performance
and includes the proposed stage-wise fine-tuning approach.
Hence, fine-tuning the BERT model for link prediction pro-
vides good performance in the node classification tasks. This
result is very important since it allows to train a BERT model
on link prediction and transfer the knowledge on different
downstream tasks which may speed up the overall training.

Link prediction
Table 2 collects the link prediction performance of the vari-
ous baselines measured using the MRR score. The first row
applies the link prediction supervision in (1) directly on the
node representation of the text encoding after mapped by a
single layer MLP to an embedding and the whole architec-
ture is fine-tuned end-to-end. This model corresponds to the
graph-aware pre-fine-tuned model for link prediction and is
the same as the used as a semantic encoder in lines 5, 6, 7.

By comparing lines 1 versus 2, 3, and 4 we observe that the
original BERT model is indeed not appropriate as a semantic



Table 3: Edge classification results for the public ESCI dataset. The performance is measured in F1-score, all classes reported.
The converged model in row 2 is the graph-BERT used in rows 6,7,8.

Semantic encoder Graph encoder Warm-start Fine-tune EvSvCvI E S C I

1 BERT-PR MLP No No 32.62 57.42 38.12 14.21 20.56
2 graph-BERT MLP No Yes 37.36 59.25 36.13 21.23 32.34
3 BERT-PR GNN No No 35.12 53.34 38.21 25.23 25.42
4 BERT-PR GNN No Yes 40.56 61.90 42.21 26.30 30.21
5 BERT-PR GNN Yes Yes 40.23 60.21 45.21 30.02 30.11
6 graph-BERT GNN No No 37.43 55.62 43.22 32.60 35.24
7 graph-BERT GNN No Yes 39.51 60.81 42.45 21.56 28.80
8 graph-BERT GNN Yes Yes 40.13 60.90 43.82 18.20 31.52

encoder used with the GNN. On the other hand, fine-tuning
the BERT model for link prediction in row 1 achieves a very
good MRR performance. Lines 5, 6, 7 relative to 2, 3, 4 show-
case the advantage of using the graph-aware pre-fine-tuning
as an essential step in our LM-GNN framework, where the
former leads to a large performance boost. Furthermore, by
comparing 5 with 6 and 7 we observe the necessity of warm-
starting in certain cases of the GNN encoder to avoid non-
desirable local minima. Since the GNN model is initialized at
random and the graph-BERT is well-trained optimizing this
model without warm-start is challenging. By comparing lines
3 and 4 we see a performance benefit of fine-tuning the BERT
model through the GNN, since the multi-hop information is
captured by the GNN.

Convergence improvement. The warm-starting option
behinds performance gains in Table 2 it provides significant
training speed up. Specifically, for the ogbn-products dataset
it takes 168 hours for the option without warm-start (row 6)
to reach the maximum performance reported, whereas for the
option with warm-start (row 7) it takes only 13 hours to reach
the same MRR. Thus warm-start provides a 13x speed up in
training speed.

Public ESCI: edge classification

The Table 3 contains the edge classification results for the
various baselines in ESCI. Note that here we also report the
performance for each individual class since we are interested
in predicting well also for the rare classes in our application.

By comparing rows 2 and 4 that both fine-tune the BERT-
PR model we observe a strong boost of 320 bps in perfor-
mance when the GNN is used. This indicates that the GNN
can indeed help boosting the performance probably for the
rare classes (S-C-I) by a large extend. By comparing rows
3 and 4 we observe that it is very important to fine-tune the
BERT-PR model during GNN training. By comparing rows 3
and 6 we observe that the graph-aware pre-fine-tuning is giv-
ing a significant boost when the BERT embeddings are fixed.
This benefit diminishes when the BERT model is fine-tuned.
Finally, the performance in lines 5-8 is quite similar, but in-
teresting the performance in the rare classes is maximized in
rows 5 and 6. We plan to dive deeper into these results and
analyze the performance for different sample sizes besides
the current split.

Conclusion
In this paper we develop a framework termed LM-GNN that
achieves high-quality representations for graph data with rich
textual features. Our framework employs stage-wise fine-
tuning steps that allow for the BERT model to gradually
adapt to the graph domain data. We verify with experiments
in four public datasets the power of the LM-GNN framework.

References
???? Amazon KDD 2022 challenge. [Online]. Avail-
able: https://www.aicrowd.com/challenges/esci-challenge-
for-improving-product-search.
???? Yelp dataset. [Online]. Available: https://www.yelp.
com/dataset.
Chien, E.; Chang, W.-C.; Hsieh, C.-J.; Yu, H.-F.; Zhang, J.;
Milenkovic, O.; and Dhillon, I. S. 2021. Node Feature Extrac-
tion by Self-Supervised Multi-scale Neighborhood Prediction.
arXiv preprint arXiv:2111.00064.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.
Fu, X.; Zhang, J.; Meng, Z.; and King, I. 2020. MAGNN:
Metapath Aggregated Graph Neural Network for Hetero-
geneous Graph Embedding. In Proceedings of The Web
Conference 2020, 2331–2341.
Hamilton, W. L.; Ying, R.; and Leskovec, J. 2017a. Inductive
Representation Learning on Large Graphs. In Proceedings
of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, 1025–1035.
Hamilton, W. L.; Ying, R.; and Leskovec, J. 2017b. Represen-
tation learning on graphs: Methods and applications. arXiv
preprint arXiv:1709.05584.
Hu, W.; Fey, M.; Zitnik, M.; Dong, Y.; Ren, H.; Liu, B.;
Catasta, M.; and Leskovec, J. 2020. Open Graph Benchmark:
Datasets for Machine Learning on Graphs. In Larochelle,
H.; Ranzato, M.; Hadsell, R.; Balcan, M. F.; and Lin, H.,
eds., Advances in Neural Information Processing Systems,
volume 33, 22118–22133. Curran Associates, Inc.
Ioannidis, V. N.; Zheng, D.; and Karypis, G. 2020. Few-shot
link prediction via graph neural networks for covid-19 drug-
repurposing. In ICML 2020; Graph Representation Learning
and Beyond workshop.



Kipf, T. N.; and Welling, M. 2017. Semi-supervised classifi-
cation with graph convolutional networks. In Proc. Int. Conf.
on Learn. Represantions. Toulon, France.
Li, C.; Pang, B.; Liu, Y.; Sun, H.; Liu, Z.; Xie, X.; Yang, T.;
Cui, Y.; Zhang, L.; and Zhang, Q. 2021. Adsgnn: Behavior-
graph augmented relevance modeling in sponsored search.
In Proceedings of the 44th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval,
223–232.
Schlichtkrull, M.; Kipf, T. N.; Bloem, P.; Van Den Berg, R.;
Titov, I.; and Welling, M. 2018. Modeling relational data
with graph convolutional networks. In European Semantic
Web Conference, 593–607. Springer.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2018. Graph attention networks. In Proc.
Int. Conf. on Learn. Represantions.
Wang, Q.; Mao, Z.; Wang, B.; and Guo, L. 2017. Knowledge
graph embedding: A survey of approaches and applications.
IEEE Transactions on Knowledge and Data Engineering,
29(12): 2724–2743.
Wang, X.; Ji, H.; Shi, C.; Wang, B.; Ye, Y.; Cui, P.; and Yu,
P. S. 2019. Heterogeneous graph attention network. In The
World Wide Web Conference, 2022–2032.
Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al.
2019. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771.
Wu, L.; Chen, Y.; Shen, K.; Guo, X.; Gao, H.; Li, S.;
Pei, J.; and Long, B. 2021. Graph neural networks for
natural language processing: A survey. arXiv preprint
arXiv:2106.06090.
Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Philip,
S. Y. 2020. A comprehensive survey on graph neural net-
works. IEEE Transactions on Neural Networks and Learning
Systems.
Yang, B.; Yih, W.-t.; He, X.; Gao, J.; and Deng, L. 2014.
Embedding entities and relations for learning and inference
in knowledge bases. arXiv preprint arXiv:1412.6575.
Zheng, D.; Song, X.; Ma, C.; Tan, Z.; Ye, Z.; Dong, J.; Xiong,
H.; Zhang, Z.; and Karypis, G. 2020. DGL-KE: Training
Knowledge Graph Embeddings at Scale. arXiv preprint
arXiv:2004.08532.
Zheng, D.; Song, X.; Yang, C.; LaSalle, D.; Su, Q.; Wang, M.;
Ma, C.; and Karypis, G. 2021. Distributed Hybrid CPU and
GPU training for Graph Neural Networks on Billion-Scale
Graphs. arXiv preprint arXiv:2112.15345.
Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; and
Cheng, F. 2020. Network-based drug repurposing for novel
coronavirus 2019-nCoV/SARS-CoV-2. Cell discovery, 6(1):
1–18.
Zhu, J.; Cui, Y.; Liu, Y.; Sun, H.; Li, X.; Pelger, M.; Yang,
T.; Zhang, L.; Zhang, R.; and Zhao, H. 2021. Textgnn: Im-
proving text encoder via graph neural network in sponsored
search. In Proceedings of the Web Conference 2021, 2848–
2857.

Model depiction



Running shoes

Nike ZoomX Vaporfly
Graph-aware
transformer

Structure prediction
decoder

Running shoes

Nike ZoomX Vaporfly
?

Running shoes

Nike ZoomX Vaporfly

Graph-aware
transformer

Structure prediction
decoder

Running shoes

Nike ZoomX Vaporfly
?GNN encoder

LM-GNN

Figure 2: (Top) The graph-aware transformer framework relies on the input text to predict whether two entities are connected in
the heterogenous graph. (Bottom) The LM-GNN framework employs the graph-aware transformer as a semantic encoder that
is further fine-tuned using the GNN encoder, for predicting links in the heterogeneous graph. Different than the graph-aware
transformer framework the LM-GNN can access nodes in multi-hop neighborhood.


