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Abstract

In this extended abstract, I propose the Formal-Logical
Distributional Semantics (FoLDS) model, which generates
complex-valued word vectors drawn from a fuzzy-logical
model world imperatively constructed from logical-form rep-
resentations of sentences from Simple English Wikipedia
articles. A complex-valued similarity metric arises nat-
urally from complex-valued embeddings, which permits
FoLDS to leverage multiple axes of similarity simultane-
ously (antonymy/synonymy and relatedness). Moreover, I ar-
gue that using a rule-based parser to translate sentences into
logical forms has a syntactic de-noising effect on the result-
ing embeddings, which allows FoLDS to effectively lever-
age a smaller training corpus. I show that FoLDS is able to
achieve near-state-of-the-art results (within 10%) on a prop-
erty inference task despite using word embeddings obtained
from a corpus approximately two hundred times smaller than
the training corpora that competing approaches use.

Introduction
Consider the following passage: “Many well-read adults
know that Buddha sat long under a banyan tree [...] and Tahi-
tian natives lived idyllically on breadfruit and poi” (Levy and
Nelson 1994). Even if one has never heard the terms banyan
tree, breadfruit, and poi, observing them in this single lin-
guistic context suffices to infer some of their properties; a
banyan tree must be somewhat large (as Buddha was able
to sit under one), and breadfruit and poi must be foods. Note
that fluent speakers are able to make such inferences without
having any knowledge grounding these terms to real-world
concepts.

This phenomenon, in which language users are able to in-
fer properties of words purely from their linguistic distribu-
tions, is known as property inference (Li and Summers-Stay
2019). Property inference is a logic-oriented task (Patalano,
Wengrovitz, and Sharpes 2009); given that an aardwolf is
a type of animal, we assume that aardwolf has all of the
properties that animal has (alive, breathes, etc.)—here, we
are reasoning from hyponymy (Herbelot and Vecchi 2015).
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Given that alligator has the property is-dangerous, we as-
sume that rabbit does not have that property—here, I argue,
we are reasoning from antonymy.

Previous approaches to this task—such as that of Rosen-
feld and Erk (2022), which achieved the current state-of-
the-art (SoTA) property inference results—have focused
on inferring properties from distributional word embed-
dings. In this paper, I argue that traditional distribu-
tional encodings—real-valued vectors obtained from surface
text—are insufficient to fully model the kind of inductive
reasoning necessary for property inference. I propose that
appropriate distributional encodings for property inference
must permit a two-dimensional similarity metric capable
of expressing two axes of comparison: synonymy/antonymy
and relatedness (similar to hyponymy). Furthermore, even
advanced language models such as BERT (Devlin et al.
2018) have been shown to be easily confused by syntac-
tic paraphrases such as passivization (Chaves and Richter
2021). To mitigate this issue, I draw word embeddings from
logical forms; translating sentences in a corpus into logical
representations has the effect of equivalence-classing syn-
tactic paraphrases.

In this work, I propose the Formal-Logical Distributional
Semantics (FoLDS) model, which involves obtaining
complex-valued word vectors drawn from a fuzzy-logical
model world imperatively constructed from logical-form
representations of sentences, which I generate by apply-
ing the English Resource Grammar (ERG; Copestake and
Flickinger 2000) parser to Simple English Wikipedia2

(SEW). Such representations are inherently sensitive to
negation (and therefore antonymy) and other logical oper-
ators, and insensitive to syntactic periphrases (as they are
drawn from logical forms). Complex-valued vectors natu-
rally give rise to a complex-valued similarity metric, which
is able to leverage these representations’ sensitivity to nega-
tion to express a measure of synonymy/antonymy as well as
relatedness within a single complex number. I show that
FoLDS is able to achieve near-SoTA results (within 10%)
despite using distributional count vectors obtained from a
corpus approximately two hundred times smaller than the
training data that Rosenfeld and Erk use in their analysis.

2https://simple.wikipedia.org



Feature Value
a-utensil 0.634 (19/30)
found-in-kitchens 0.600 (18/30)
used-with-forks 0.534 (16/30)
a-cutlery 0.500 (15/30)
is-dangerous 0.467 (14/30)
a-weapon 0.367 (11/30)

Table 1: McRae et al. (2005) feature norms for the concept
knife. For all other features Q, F (knife)Q = 0.

Previous Work
Rosenfeld and Erk (2022) provide a comprehensive discus-
sion of other work on property inference tasks, and I refer
readers to their paper for a more in-depth discussion. For
the sake of brevity, I discuss only the most relevant property
inference methods that they analyze. I compare the results
that FoLDS obtains to those of Rosenfeld and Erk on the
McRae et al. (2005) feature norm database; I provide a more
in-depth discussion of that aspect of the authors’ work.

Task Design
A feature norm database consists of a set of concepts
(words) and a set of features, in which each concept w is as-
signed a feature vector F (w) ∈ Rn, where n is the number
of features in the database. The value of F (w)Q is the value
of the feature Q for the word w. For example, the McRae
et al. (2005) database, which I use to evaluate FoLDS, con-
sists of 541 concepts and 2526 features; feature values are
obtained from experiment participants’ judgements.

Rosenfeld and Erk (2022) create ten random folds con-
sisting of 50 concepts each from the dataset. On each fold,
the concepts within the fold represent the set U of unknown
words—words which have been observed in text but are not
grounded to real-world concepts—and the concepts outside
of the fold represent the set K of known words. For each un-
known word u ∈ U , the feature vector F (u) is zeroed out;
the task is to reconstruct F (u) given the known features in
K and the similarity between u and each word in K.

Previous Property Inference Methods
Rosenfeld and Erk (2022) examine a wide variety of prop-
erty inference methods in their analysis. Note that all of the
property inference methods evaluated by those authors share
the same distributional word embeddings; LSA vectors
drawn (context window of two) from four different corpora
(∼4.2 billion words total): ukWaC (Ferraresi et al. 2008),
Google Gigaword (Graff and Cieri 2003), Wikipedia3, and
BNC (BNC 2007). What varies across methods is how they
use these embeddings to estimate properties.

A variant of the Modified Adsorption (ModAds) algo-
rithm (Talukdar and Crammer 2009) achieves SoTA results
in Rosenfeld and Erk’s analysis. I refer the interested reader
to Talukdar and Crammer’s and Rosenfeld and Erk’s papers
for an in-depth explanation of ModAds and its application
to property inference tasks.

3https://en.wikipedia.org

Many of the property inference methods that Rosenfeld
and Erk examine include a shifted variant. This does not in-
dicate a difference in the models’ architectures, but rather
the feature vectors F (w). In the shifted trials, Rosenfeld
and Erk decrease the values of those properties Q such that
F (w)Q = 0 to negative values; this is to increase the separa-
tion between irrelevant and relevant properties.

FoLDS
To motivate FoLDS, I first discuss the relevant drawbacks of
traditional distributional embeddings with respect to prop-
erty inference tasks. The remainder of this section is a
mostly conceptual overview of the FoLDS architecture—for
the sake of brevity I refer readers to the appendix for a math-
ematical description of the algorithms involved.4

Motivation
First, to fully capture meaning, at least sufficient aspects of
meaning for the purposes of property inference, I argue that
co-occurrence statistics should be equivariant with respect
to syntactic paraphrases (non-canonical constructions such
as passivization, topicalization, etc.; Colin and Gardent
2018). For example, the active sentence in example (1a)
should belong to the same equivalence class as its passive
counterpart in (1b).

(1a) Tahitian natives feasted on
(1b) was feasted on by Tahitian natives

Examples (1a-b) are not the same context when a distribu-
tional model only has access to surface forms (i.e. raw text).
Converting both (1a-b) to a first-order logic (FOL)-typed λ-
calculus representation, on the other hand, yields the exact
same formula: λx.feast-on(tahitian-natives, x).

Intuitively, treating logical formulae as distributional con-
texts should decrease the amount of training data required to
obtain accurate embeddings, as the larger amounts of data
required to learn to equate passive constructions and their
active counterparts are no longer necessary. Additionally,
Herbelot and Copestake (2021) demonstrate that distribu-
tional embeddings obtained from logical-form descriptions
of model-theoretic representations of events and situations
are highly effective at modeling elementary semantic rela-
tions such as hyponymy, synonymy, and antonymy.

Second, the two sentences in examples (2a-b) increase
the (traditional) distributional similarity between herbivore
and carnivore (many of the words in those two sentences
are the same), when in fact they are antonymous.

(2a) Alligators are not ever considered herbivores,
even when food is scarce
(2b) Alligators are always considered carnivores, even
when food is scarce

However, while (2a-b) suggest that herbivore and carni-
vore are antonymous, it does not indicate that they are un-
related. Inferences can still be drawn from antonymous but
4Code available on GitHub: https://github.com/mjs227/FoLDS



related categories; given that carnivore has a property such
as eats-meat, a property inference method should be able to
leverage the antonymy between carnivore and herbivore to
hypothesize that herbivore does not have that property. Tra-
ditional distributional models such as BERT are insensitive
to negation and word order (Ettinger 2020), and so inher-
ently less capable of detecting the evidence of antonymy be-
tween herbivore and carnivore that (2a-b) contribute.

Third, there is a distinction to be drawn between syn-
onymy/antonymy and relatedness. Unrelated categories
should not contribute to property inference; for example,
properties of duct tape should have no bearing on a property
inference method’s estimation of the properties of alligator.

The latter two points suggest that property inference re-
quires a two-dimensional similarity metric that measures
both synonymy/antonymy and relatedness.

Architecture
To convert SEW into logical representations, I first pass each
article through Spacy’s NeuralCoref coreference resolution
module5 and SentenceRecognizer sentence-segmentation
pipeline6. I then apply the ACE ERG parser7 to each sen-
tence to obtain its Minimal Recursion Semantics (MRS;
Copestake et al. 2005) representation. I use the coreference
data to equivalence-class co-referring entities and quantifiers
in the MRS representations. I then use a heuristic procedure
to resolve quantifier scope and convert the MRS structures
into a representation similar to FOL.

I construct a fuzzy-logical model world using the
FOL-like representations of each sentence in SEW. Non-
quantified formulae immediately assign properties to en-
tities, and existential quantifiers are removed by inserting
dummy entities—for example, ∃x[blue(x) ∧ car(x)] be-
comes blue(dn) ∧ car(dn). I remove universal quantifiers
by assigning the properties in the scope of a universally-
quantified formula to all entities that satisfy its restriction.
For example, ∀x[car(x) → blue(x)] becomes blue(x1) ∧
· · · ∧ blue(xn), where {x1, . . . , xn} is the set of all enti-
ties that satisfy the formula λx.car(x). The procedure ap-
plies recursively to complex formulae until all logical oper-
ators (except negation) are removed from the structure. This
process yields a set of 4-tuples (ϕ, x, p, n), where ϕ is a λ-
abstracted formula, x is an argument, p is the positive occur-
rence count of ϕ(x), and n is the negative count.

Figure 1: An example of converting logical formulae to dis-
tributional contexts.

5https://spacy.io/universe/project/neuralcoref
6https://spacy.io/api/sentencerecognizer
7http://sweaglesw.org/linguistics/ace/

For example, (λx.like(x,mary), john, 1, 0) encodes the
fact that there is one positive occurrence (and zero nega-
tive occurrences) of john liking mary. On the other hand
(λx.sleep(x), john, 0, 1) encodes the fact that there is one
negative occurrence (and zero positive occurrences) of john
sleeping—i.e. one count of him not sleeping.

These 4-tuples are then used to construct complex-valued
count vectors; contexts (λ-abstracted formulae) index the di-
mensions, whose values are complex numbers of the form
a+bi, where a is the positive count and b the negative count.
FoLDS calculates the similarity between any two such entity
vectors using the following equation:

sim(x, y) = τ(x, y) · Ω(x, y) (1)

The term τ(x, y) is a length-one normalized complex num-
ber—this is a measure of the synonymy between x and y, and
will fall in the positive quadrant of the complex plane. Given
two entities x, y that are completely synonymous, the value
of τ(x, y) will be 1 + 0i. Here synonymous means that for
any context ϕ, the truth value of xϕ equals the truth value of
yϕ (truth value does not refer to the actual complex number
occupying that coordinate, but rather its distance [roughly]
from the real axis). On the other hand, x and y are consid-
ered antonymous (τ(x, y) = 0+1i) if they disagree on every
context that they have in common. For a given context ϕ, let
r(xϕ) denote the truth value of xϕ. Then x and y are consid-
ered antonymous if, for each context ϕ, r(xϕ) = 1− r(yϕ).
Values lying between these two extrema reflect graded de-
grees of synonymy/antonymy.

Finally, the length-one complex number τ(x, y) is scalar
multiplied by the real number Ω(x, y) ∈ [0, 1] to obtain
sim(x, y). Ω(x, y) is an asymmetric measure of the overlap
between the contexts in which x and y appear. For example,
Ω(apple, fruit) should be close to 1, but Ω(fruit, apple)
should be closer to 0—every property that fruit has is also a
property of apple, but not vice versa.

However, the procedure described above only yields vec-
tors for each entity, not each word. For each of the concept
words w in the McRae et al. (2005) database, I obtain an
embedding by summing together the entity vectors for each
entity in {e | ∃z ∈ R+[ew = z+0i]}—the set of all entities
that have a nonzero positive count, and a zero negative count
for the context λx.w(x).

Experiment and Results
The real-valued feature vectors F (w) must be converted
to complex-valued vectors C(F (w)) in order to interface
with the similarity metric (Equation 1) in a meaningful way.
Given a (real-valued) feature vector F (w) for some word
w: for each property Q, if F (w)Q = 0, then C(F (w))Q =
0 + 1i. Otherwise, C(F (w))Q lies on the positive quadrant
of the unit circle, its angle placed between 0◦ and 45◦, in-
versely proportional to the value of F (w)Q. This is intended
to mimic the shifting procedure discussed above.

To estimate properties, I mimic the Johns and Jones (JJ;
2012) method (see appendix for details), but with complex
rather than real numbers. I found that only considering the
set Kn(u) of top n most related (determined by the magni-
tude Ω(u,w)) known words w to a given unknown word u



yields the best results. Via grid search, I found n = 25 to be
the optimal value for this experiment.

For a given unknown word u and property Q, the esti-
mated (complex) value of Q for u, P (u)Q, is calculated as
follows:

P (u)Q =
∑

w∈Kn(u)

abs(C(F (w))Q · sim(u,w)) (2)

Where abs(a + bi) = |a| + |b|i. This function forces the
resulting value of C(F (w))Q · sim(u,w) to the positive
quadrant of the complex plane while preserving its distance
from the real axis.

Recall that sim(u,w) is the product of the length-one
complex number τ(u,w) and the real scalar Ω(u,w), which
reflect synonymy/antonymy and relatedness, respectively. If
u and w are synonymous, then τ(u,w) = 1+0i. Given some
property of w (represented by a positive-quadrant complex
number a + bi) whose value is unknown for u, (a + bi) ·
τ(u,w) = a + bi: synonymous words are predicted to have
the same values for each property. On the other hand, sup-
pose that u and w are antonymous, so that τ(u,w) = 0+1i,
which corresponds to a 90◦ rotation: antonymous words are
predicted to have opposite property values. The real number
Ω(u,w) scales τ(u,w): those known words w with higher
values of Ω(u,w) (i.e. which are more related to u) will con-
tribute more to the overall inference than those with lower
values (see Figure 2).

Figure 2: Equation 2 can be viewed as the average of the pre-
dicted values of Q for u for each known word w, weighted
by their overlap (Ω(u,w)).

In order to compare the predicted values P (u) to the
ground-truth values F (u), each P (u)Q must be converted
to a real number r(P (u))Q. I leave the details of this pro-
cess to the appendix; for the purposes of this discussion
it suffices to state that as P (u)Q approaches the real axis,
r(P (u))Q → 1, and as P (u)Q approaches the imaginary
axis, r(P (u))Q → 0.

Rosenfeld and Erk (2022) use two separate evaluation
metrics in their analysis. The first, Mean Average Preci-
sion (MAP; Zhu 2004) measures a given property inference
method’s ability to rank relevant features above irrelevant
features. The order (ranking) in which these predicted fea-
tures are returned does not impact the MAP score. Addition-
ally, the predicted property values for ground-truth irrelevant
features (i.e. those which have a value of zero in the feature
norm database) do not impact the MAP score, as long as
the ground-truth relevant features are ranked higher than the

Method ρ Method ρ
Property frequency 0.049 Property sum 0.042
JJ (1 step) 0.114 JJ (2 step) 0.107
Linear SVM 0.077 Linear SVM shifted 0.089
Cosine SVM 0.082 Cosine SVM shifted 0.082
Linear PLS 0.077 Linear PLS shifted 0.075
Cosine PLS 0.082 Cosine PLS shifted 0.083
ModAds equal 0.161 ModAds equal shifted 0.244
ModAds decay 0.161 ModAds decay shifted 0.243
ModAds NN 0.244 ModAds NN shifted 0.281
FoLDS 0.253

Table 2: Comparison of methods in Rosenfeld and Erk
(2022) against FoLDS on the McRae et al. database.

irrelevant ones. I do not consider MAP to be an effective
evaluation metric for property inference tasks; it essentially
evaluates a different task in which property ranking has been
reduced to a 0/1 distinction. I do not discuss MAP further.

The second evaluation metric that Rosenfeld and Erk use
in their analysis, Spearman’s ρ, measures the correlation be-
tween the rankings of ground-truth and predicted proper-
ties (Dodge 2008). Many deficiencies of the MAP score do
not pertain to this metric; any discrepancy between the rela-
tive ranking of predicted properties and that of the ground-
truth properties will negatively impact the ρ score. Follow-
ing Rosenfeld and Erk, I average over all Spearman ρ scores
for each unknown word in each fold for evaluation. FoLDS
achieves a Spearman ρ of 0.253, which is the second-best
out of the 18 methods in Rosenfeld and Erk’s analysis (see
Table 2). Crucially, all of these methods use LSA vectors
generated from a PPMI-transformed co-occurence matrix
(Roller, Erk, and Boleda 2014) obtained from a lemma-
tized and POS-tagged 4.2 billion word corpus, while FoLDS
uses count vectors obtained from a 24.5 million word corpus
(∼200 times smaller).

Conclusion
In this paper, I proposed the use of FoLDS embeddings for
property inference tasks, and demonstrated that this method
achieves near-SoTA Spearman ρ results using significantly
less training data than competing approaches. I argued that
translating sentences into logical forms has a syntactic de-
noising effect on the resulting embeddings, allowing FoLDS
to effectively leverage its smaller training corpus. Moreover,
a complex-valued similarity metric arises naturally from
complex-valued embeddings, permitting FoLDS to leverage
two axes of similarity. In future work, I will utilize a larger
training dataset with the goal of further improving perfor-
mance on the McRae et al. (2005) database and other prop-
erty inference tasks. Additionally, I am in the process of
replicating the methods that Rosenfeld and Erk (2022) use in
their analysis with GloVe (Pennington, Socher, and Manning
2014) and LexVec (Salle, Villavicencio, and Idiart 2016)
embeddings in order to establish a more recent-embedding
based baseline. I will also evaluate FoLDS on other NLP
tasks, including question-answering (e.g. Rajpurkar et al.
2016) and semantic textual similarity (e.g. Cer et al. 2017).
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Appendix
I organize the appendix into four subsections: the first covers
the Johns and Jones (2012) method, the second the similar-
ity metric (Equation 1), the third the complex-valued feature
vectors C(F (w)), and the fourth the procedure for convert-
ing complex-valued feature estimates P (u)Q to real num-
bers r(P (u))Q.

The Johns and Jones (2012) Method
This method estimates property values for unknown words
simply as the sum of all of the property values of the known
words, weighted by their cosine similarity with the unknown
word in question. Let K denote the set of known words, u
denote a given unknown word, and Q denote a given prop-
erty. Then the estimated value of Q for u, P (u)Q, is calcu-
lated as follows:

P (u)Q =
∑
w∈K

F (w)Q · cos(u,w)λ (3)

Where λ is a hyperparameter—higher values of λ reduce the
influence of less similar words.



Calculating the Similarity Metric

sim(x, y) = τ(x, y) · Ω(x, y) (4)

τ(x, y) =
τ ′(x, y)

|τ ′(x, y)|
(5)

τ ′(x, y) =
∑
ϕ

(σ(ϕ, x, y) · ι(ϕ)) + (1− σ(ϕ, x, y))i (6)

σ(ϕ, x, y) = max(r(xϕ), 1− |r(xϕ)− r(yϕ)|) (7)

r(a+ bi) =
a

a+ b
(8)

Ω(x, y) =

∑
ϕ min(|xϕ|, |yϕ|) · ι(ϕ)∑

ϕ |xϕ| · ι(ϕ)
(9)

ι(ϕ) = log2
µmax

µ(ϕ)
(10)

µ(ϕ) =
∑
x

|xϕ| (11)

µmax = maxϕ(µ(ϕ)) + 1 (12)

As stated above, sim(x, y) (Equations 1, 4) is the prod-
uct of the length-one normalized complex number τ(x, y)
(Equation 5) scalar multiplied by the (positive) real number
Ω(x, y) (Equation 9).

As shown in Equation 5, τ(x, y) is simply the length-one
normalization of τ ′(x, y) (Equation 6). To obtain τ ′(x, y),
FoLDS first sums over all contexts ϕ to calculate σ(ϕ, x, y)
(Equation 7).

Turning to Equation 7, σ(ϕ, x, y) is designed to model
fuzzy-logical implication. Note that σ(ϕ, x, y) = 1 if
r(xϕ) = r(yϕ) or r(xϕ) = 1, where r(xϕ) and r(yϕ)
(Equation 8) denote the truth values of xϕ and yϕ, respec-
tively. On the other hand, σ(ϕ, x, y) = 0 if r(xϕ) = 0 and
r(xϕ) = 1− r(yϕ) (i.e. if r(yϕ) = 1). So σ(ϕ, x, y) is a real
number which represents the (fuzzy) degree to which r(yϕ)
implies r(xϕ).

Returning to Equation 6, τ ′(x, y) yields a complex num-
ber whose real value corresponds (roughly) to the degree to
which r(yϕ) implies r(xϕ), and whose imaginary value cor-
responds (again, roughly) to the degree to which r(yϕ) does
not imply r(xϕ), for all contexts ϕ.

Note that in each summand in Equation 6, the real part is
calculated as the product of σ(ϕ, x, y) and ι(ϕ) (Equation
10). The value of ι(ϕ) is intended to mimic inverse docu-
ment frequency (Robertson 2004) weighting, where the no-
tion of document frequency has been replaced with sum of
the magnitudes of each coordinate of the context vector ϕ.
Essentially, the more frequently that the context ϕ appears,
the lower the value of ι(ϕ) will be.

The scalar (i.e. real) value Ω(x, y) (Equation 9) is ob-
tained by summing together min(|xϕ|, |yϕ|) · ι(ϕ) for each

context ϕ, then dividing the resulting value by
∑

ϕ |xϕ|·ι(ϕ)
(where |xϕ| denotes the magnitude of the complex num-
ber xϕ). To view this conceptually, let E(x) = {ϕ | xϕ ̸=
0 + 0i}—the set of all contexts ϕ whose value for x is non-
zero (i.e. known). Then as |E(x)∩E(y)| → 0, Ω(x, y) → 0,
and as |E(x)∩E(y)| → |E(x)|, Ω(x, y) → 1. The idea here
is that the closer that E(x) is to a subset of E(y), the more
confident we can be that properties of y apply to x, and the
further E(x) is from a subset of E(y), the less confident we
are that properties of y apply to x. The weights ι(ϕ) ensure
that less frequent contexts are more important to the value
of Ω(x, y); if x and y both have known values for a very fre-
quent context, that does not give very much evidence about
the transferability of properties from y to x.

Generating Complex-Valued Feature Vectors

C(F (w))Q =

{
0 + 1i if F (w)Q = 0

β(F (w)Q) otherwise
(13)

β(z) =
(1 + z) + (1− z)i

|(1 + z) + (1− z)i|
(14)

Converting Complex Estimates to Real Values
Recall that the values C(F (u))Q are shifted, which I account
for by placing a floor on the values of r(P (u))Q. In this
experiment, I found via grid search that floor = 0.15 yields
the best results. The floor is implemented as follows:

r(P (u))Q =

{
r(P (u)Q) if floor ≤ r(P (u)Q)

0 otherwise
(15)


