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Abstract

Understanding novel situations in the traffic domain requires
an intricate combination of domain-specific and causal com-
monsense knowledge. Prior work has provided sufficient
perception-based modalities for traffic monitoring, in this pa-
per, we focus on a complementary research aspect of In-
telligent Transportation: traffic understanding. We scope our
study to text-based methods and datasets given the abundant
commonsense knowledge that can be extracted using lan-
guage models from large corpus and knowledge graphs. We
adopt three knowledge-driven approaches for zero-shot QA
over traffic situations, based on prior natural language infer-
ence methods, commonsense models with knowledge graph
self-supervision, and dense retriever-based models. We con-
structed two text-based multiple-choice question answering
sets: BDD-QA for evaluating causal reasoning in the traffic
domain and HDT-QA for measuring the possession of do-
main knowledge akin to human driving license tests. Among
the methods, Unified-QA reaches the best performance on the
BDD-QA dataset with the adaptation of multiple formats of
question answers. Language models trained with inference
information and commonsense knowledge are also good at
predicting the cause and effect in the traffic domain but per-
form badly at answering human-driving QA sets. For such
sets, DPR+Unified-QA performs the best due to its efficient
knowledge extraction.

Introduction
As humans, we are able to make sense of novel situations in
any domain even with limited domain-specific knowledge.
The domain of intelligent traffic monitoring is a particularly
attractive one, given the large market and the long list of
car manufacturers that innovate in this domain (Int 2022).
Being able to understand novel situations in traffic requires
a complex association of domain-specific and causal com-
monsense knowledge. Prior work on evaluation tasks (Xu
et al. 2017; Kim et al. 2018; Xu, Huang, and Liu 2021) and
corresponding methods (Halilaj et al. 2021; Muppalla et al.
2017; Chowdhury et al. 2021; Wickramarachchi, Henson,
and Sheth 2020) has focused on the perception-based modal-
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ity, with many of the input exemplars coming from sensors
like street video cameras.

Perception (e.g., tracking of participants over time, count-
ing cars, etc.) is certainly a key aspect of traffic monitor-
ing. However, a holistic understanding of situations in traf-
fic requires other, complementary skills such as causal and
commonsense reasoning (e.g., red light causes cars to stop,
direct sunlight does not), and possession of rich domain
knowledge (e.g., the driving speed in school zones is lim-
ited to 30mph). A large body of work has focused on gen-
eral commonsense reasoning (Ma et al. 2021b; Zhang et al.
2022), but the role of commonsense and causal reasoning
has not been explored thoroughly. Complementarily, ontolo-
gies for describing traffic participants (Ope 2020) exist, but
it is unclear whether connecting them to neural models can
bring the desired generalizability. Given that natural lan-
guage is a common medium for human communication, and
considering the success of large language models (LMs),
it is intuitive to turn to using the textual modality to de-
velop and test robust traffic understanding models. To the
best of our knowledge, understanding traffic situations pre-
sented in natural language has not been explored in depth
so far. This brings up a natural question of whether large
pretrained models can effectively solve realistic traffic un-
derstanding tasks dominantly presented in language, such as
human driving license tests. We also observe that prior work
has not systematically investigated the role of different types
of background knowledge, like causal commonsense knowl-
edge and traffic domain knowledge, in reasoning over traffic
situations.

In this paper, we focus on an evaluation for robust reason-
ing over traffic situations described in natural language. This
allows us to reduce complexity, understand the behavior of
various neural and neuro-symbolic models, and measure the
impact of various sources of background knowledge. We
construct two realistic text-based multiple-choice question
answering (MCQA) sets: BDD-QA for evaluating causal
reasoning in the traffic domain and HDT-QA for measuring
the possession of domain knowledge akin to human driving
license tests. We adopt three knowledge-driven approaches
for zero-shot QA over traffic situations, based on prior meth-
ods for natural language inference, commonsense models
with knowledge graph self-supervision, and dense retriever-
based models. By doing so, we investigate the impact of ex-
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Figure 1: Overview of our study framework, which evaluates three knowledge-enhanced language methods adapted with dif-
ferent knowledge sources on two evaluation datasets in a zero-shot manner.

tracting commonsense and domain knowledge from struc-
tured and unstructured data sources. An overview of our
study framework is shown in Figure 1.

We summarize our contributions as follows:

1. We formulate two novel text-based tasks and benchmarks
for situational reasoning in the traffic domain: BDD-QA,
which evaluates whether systems can apply causal rea-
soning to make decisions in arbitrary traffic situations,
and HDT-QA, which tests the ability of systems to an-
swer questions that require domain knowledge from driv-
ing manuals. We divide the datasets into meaningful par-
titions to allow balanced and fine-grained analysis.

2. We adapt different knowledge-aware methods that have
been shown to generalize well across natural language
reasoning tasks in prior work: natural language inference
models, knowledge graph-based commonsense reason-
ers, and a novel retrieval-based QA method with an open-
book access to official driving manuals.

3. We perform extensive experiments of the three methods
with different language models as backbones against the
two datasets in a zero-shot evaluation setup. We perform
an in-depth analysis of model performance on data par-
titions and look closer into the model predictions to pro-
vide useful insights into the role of background knowl-
edge for building robust traffic understanding methods.

Related work
Traffic Understanding
CADP (Shah et al. 2018) is a spatio-temporally annotated
dataset for accident forecasting using traffic camera views.
The Berkeley Deep-Drive dataset (BDD) is a video dataset
consisting of real driving videos containing abundant driv-
ing scenarios (Xu et al. 2017). The follow-up work, BDD-
X (Kim et al. 2018), provides the action description of the
BDD video and their explanations. TrafficQA (Xu, Huang,
and Liu 2021) consists of over 60K QA sets based on over
10k traffic scenes. The QA set of TrafficQA includes 6 dif-
ferent aspects of reasoning problems: basic understanding,
attribution, introspection, counterfactual inference, event
forecasting, and reverse reasoning. All QA pairs are based
on visual inputs.

The traffic benchmarks have inspired corresponding
methods. By using knowledge to enhance traffic under-
standing, Wickramarachchi, Henson, and Sheth (2020) pro-
vides a demonstration of the process of creating and evalu-
ating knowledge graph embedding for autonomous driving
data. Chowdhury et al. (2021) enhance the knowledge graph
for autonomous driving and the task of scene entity predic-
tion. ITSKG (Muppalla et al. 2017) is a knowledge graph
framework for extracting actionable information from raw
sensor data in traffic. CoSI (Halilaj et al. 2021) proposes a
knowledge graph-based approach for representing informa-
tion sources relevant to traffic situations.

Different from traffic monitoring, which mainly requires
the perception modality, in this work, we explore a shift in
the paradigm from monitoring to understanding, which re-
quires abundant domain knowledge and commonsense rea-
soning methods. However, perceptual annotations provide
valuable information that can be reused for creating compre-
hension tasks. We utilize the textual descriptions of actions
and their explanations associated with the BDD-X dataset to
construct our BDD-QA dataset for causal reasoning.

Situational Reasoning in Natural Language
MultiNLI (Williams, Nangia, and Bowman 2017) is a large
(433k) NLI corpus with ten distinct genres of written and
spoken English. MNLI has become a popular benchmark
for most of the language models, such as BERT (Devlin
et al. 2018), RoBERTa (Liu et al. 2019), BART (Lewis et al.
2019), and DeBERTa (He et al. 2020). These methods have
been widely used, but have not been applied to the traffic
domain, to the best of our knowledge. In our work, we use
such models that are pretrained with the MNLI dataset, to
evaluate their zero-shot performance on inference tasks in
the traffic domain based on the assumption that the models
are capable of causal reasoning generally.

ATOMIC (Sap et al. 2019) provides a large atlas of every-
day commonsense reasoning with a focus on inferential if-
then knowledge. CauseNet (Heindorf et al. 2020) provides
a large-scale knowledge base of claimed causal relations
between concepts which can be used for casual reasoning
and question-answering tasks. Ma et al. (2021a) developed
a method that utilizes commonsense knowledge that is ex-
tracted from the knowledge graph to train language models



Table 1: Examples of BDD-QA and HDT-QA. (*) denotes
the correct answer. BDD-QA-EP questions ask for the cor-
rect effect given the cause and BDD-QA-CP for the correct
cause given the effect. For HDT-QA, we show one example
for each category (having 2,3,4,5 candidate answers)

BDD-QA-EP
C: The light has turned green and traffic is flowing smoothly.
E1: The driver jerks abruptly to the right;
E2: The car is driving straight into the parking lot;
E3: The car accelerates slowly to a maintained speed(*)
BDD-QA-CP
E: The car is driving forward slowly.
C1: The light ahead was red at the intersection;
C2: The passenger is seated in the car and the lane is clear;
C3: There is slow traffic in front of the car(*)
HDT-QA (2 candidates)
Q: Yield also means stop if you cannot merge safely
into the flow of traffic
A1: True(*); A2: False
HDT-QA (3 candidates)
Q: You just sold your vehicle.
You must notify the DMV within days.
A1: 15; A2: 5(*); A3: 10;
HDT-QA (4 candidates)
Q: You have the right of way when you are:
A1: Entering a traffic circle;
A2: Backing out of a driveway;
A3: Leaving a parking space;
A4: Already in a traffic circle(*)
HDT-QA (5 candidates)
Q: Why should you cover your cargo during its transportation?
A1: To protect the cargo from weather only;
A2: There is no reason;
A3: To protect people from the cargo’s contents if it spills;
A4: To protect people from the cargo’s contents if it spills
and to protect the cargo from the weather(*);
A5: To help your vehicle accelerate smoothly

via self-supervision and such models are proven to have high
accuracy across several zero-shot tasks (Zhang et al. 2022).
Given that the knowledge-driven models perform well on
many general-domain zero-shot commonsense tasks, in this
work, we evaluate their performance on reasoning tasks in
the traffic domain to investigate the effect of commonsense
knowledge on answering traffic-domain questions.

DPR (Dense Passage Retrieval) (Karpukhin et al. 2020)
is a passage retrieval method using dense representations
of sentences and passages for QA. Trained on a Wikipedia
dump and several QA datasets, the DPR model overperforms
several traditional context retrieval methods like TF-IDF and
BM25. Unified-QA (Khashabi et al. 2020) is a generalized
QA system across 4 formats of QA and is proven to perform
well on all of the benchmarks. In our work, we retrieve rel-
evant domain knowledge with DPR to help answer domain-
specific questions with the Unified-QA model.

Tasks & Datasets
We refer to situational reasoning as the task of providing the
best possible justification or decision for a given situation.

For instance, in the traffic domain, the justification for “Why
did the car accelerate?” could be the light turning green or
the absence of traffic. We focus on situational reasoning in
the traffic domain. Formally, we pose traffic situational rea-
soning as a multiple-choice question-answering task. Each
task entry consists of a natural language question Q, and n
candidate answers {A1, ..., An}, consisting of 1 correct an-
swer and n − 1 distractors. The task of an AI model is to
select the most probable answer among the candidates.

To evaluate whether AI models comprehensively under-
stand the traffic domain knowledge, we introduce two di-
verse tasks: BDD-QA and HDT-QA. BDD-QA tests model
understanding of the causality of traffic participant behav-
iors and their reasons, while HDT-QA focuses on driving
policies, and legible or recommended drivers’ decisions. Ex-
amples of the two datasets are shown in Table 1. Next, we
describe the details of these two QA datasets.

BDD-QA dataset
Data Source We create a multiple choice question set from
the Berkeley Deep-Drive Explanation Dataset (Kim et al.
2018) (BDD-X), which includes over 26k QA sets and cov-
ers an extensive range of weather and road types. Given that
the dataset consists of an action and its justification (rea-
son), we treat the action as an effect and the justification as
a cause.

Sampling Strategy We use sentence transform-
ers (Reimers and Gurevych 2019) to represent the sentences
as sentence embeddings. The model we use, all-mpnet-
base-v2, is based on MPNet (Song et al. 2020) and is
pretrained on over 1B sentence pairs and reportedly reached
a state-of-art performance. All of the sentence embeddings
are normalized and we compute their distance using cosine
similarity. To make the sentence embedding more accu-
rate, we transform each sentence into a declarative and
grammatically complete one. For example, if a justification
sentence is to turn left, it will be transformed to The car
wants to turn left by filling in the subject. If the justification
sentence is because the light turns red, we will remove the
because, resulting in the sentence The light turns red. To
avoid having causes that are too similar, we remove the QA
pairs that have a cause that has a similarity to others higher
than a threshold, in our work, we set this threshold to 0.9.

To generate multiple-choice questions, for each cause-
and-effect pair, we employ two different approaches:
(1) Sampling QA-pairs by dissimilar effects for effects-
prediction, (BDD-QA-EP), and (2) Sampling QA-pairs by
dissimilar causes for causes-prediction, (BDD-QA-CP). We
randomly sample cause/effect from other pairs, then we set
an upper bound of sentence similarity to avoid sampling too
similar answers that are also correct for a question. The up-
per bound threshold t is set to 0.4 in our work, all the ran-
domly sampled cause/effect whose similarity with the true
answer is higher than the threshold would be removed and
we will re-sample until it satisfies the threshold restriction.
For example, given the cause The road doesn’t have much
traffic and effect The car accelerates down the road, a good
effect distractor would be The vehicle is stopped rather than
The car is accelerating faster. To improve the diversity of



Table 2: Examples of 5 classes of effects (car actions) dis-
covered in the BDD-QA dataset.

Classes Sentences

Accelerate
The car accelerates

The car inches forward
The car is traveling down the road.

Slow
The car slows slightly

The car moves forward slowly
The car maintains a slow speed

Stop
The car stops

The car is parked at the right curb
The car is stationary

Merge
The car merges into the lane to its left

The car is moving to the left lane
The car is switching lanes to the left

Turn
The car slows down and pulls to the right

The car turns left and drives forward
The car swerves to the left and slows

the sampled distractors, we also make sure that the dissim-
ilarity between the distractors is also lower than the same
threshold t.

Action Classification The project (Ope 2020) presents
an ontology that describes the concepts in the traffic domain,
including car maneuvers. In the real world, the possible ac-
tions performed by cars are few and lead to a limited set
of effects. Inspired by this, we classify the effects of BDD-
QA into several classes, each of which presents a type of car
action. After we compute the sentence embeddings for each
action, we use k-means (MacQueen 1967) for the action sen-
tence clustering. After trying different numbers of classes,
we noticed that the clusters are intuitive. We decide to use
5 classes that can represent the car’s actions best from a hu-
man perspective, namely: accelerate, slow, stop, merge and
turn. Table 2 shows examples for each of the five classes.

HDT-QA dataset
We also develop a complementary QA set by using driving
tests intended to test the driving knowledge of humans. We
call this dataset HDT-QA (Human Driving Test QA).

Data Source We scrap the questions of HDT-QA from a
website that contains the driving test data and driving manu-
als from all 51 states of the USA (Dri 2022). For each state,
there are three subjects of driving tests and manuals Motor-
cycle, Car and Commercial Driver, resulting in 153 state-
subject combinations. The test data are all multiple-choice
questions, where the number of answer candidates ranges
between 2 and 5. The statistics of our HDT-QA set for each
number of candidate answers are shown in Table 3.

Filtering To make our test data fair for text-based meth-
ods, we only keep questions that can fully be answered based
on the textual content. We exclude all questions with images
(e.g., traffic signs). We have also filtered out the questions
where one of the candidate answers is all of the above, as
answering such questions is not the focus of our work.

Table 3: Statistics of the partitions of our two datasets.

Dataset Partition Size

BDD-QA Event Prediction 3,139
Cause Prediction 3,139

HDT-QA

2 answers 131
3 answers 2,398
4 answers 7,558
5 answers 40

Method
A key strength of neural language models is their ability
to provide answers for open-world reasoning tasks (Devlin
et al. 2018; Radford et al. 2019). While the models can be
tuned on a dataset to enhance their accuracy, prior work has
shown that this leads to over-fitting (Ma et al. 2021b). An-
ticipating similar over-fitting to QA sets in the traffic do-
main, we focus on developing models that include common-
sense and domain knowledge to enable them to better under-
stand situations in traffic and generalize across unseen traf-
fic QA tasks. We propose three methods to enrich language
models with background knowledge for the traffic domain:
NLI-based models, Knowledge-based models, and Retrieval-
based models. We use readily available models and run them
directly on our two benchmarks in a zero-shot setting.

Inference-based reasoning models
We propose an NLI method based on semantic-level reason-
ing for the zero-shot evaluation of our tasks. Given a premise
and its hypothesis that can be from any domain, the NLI
model we use is expected to capture coherence information
between them. It takes two sentences as the input and out-
puts a 3-digit vector which represents confidence letting the
sentence pair’s relation be entailment, neutral, and contra-
diction.

To avoid the effect of the data format, we keep our QA
data as declarative sentence pairs. As is described in the last
paragraph, given a sentence pair S1, S2, the model is asked
to give the score of entailment, neutral, and contradiction
of these two sentences as Pe, Pn, Pc, respectively. Then the
model chooses the candidate with the highest margin score
of Pe − Pc as the true answer. Formally, the final prediction
of the model will be:

pred = argmax
i

(P (e|pi,MNLI)− P (c|pi,MNLI))

Where pi is the ith candidate sentence pair for the model
to choose. e stands for entailment and c stands for contra-
diction. MNLI refers to the inference knowledge that is
extracted from the MNLI dataset by the language model.

KG-based reasoning models
Self-supervision with structured knowledge has proven to
improve the language model’s ability to solve reasoning
problems in a zero-shot setting (Ma et al. 2021a; Zhang
et al. 2022; Dou and Peng 2022). Thus, we evaluate the per-
formance of language models enhanced by commonsense
knowledge of traffic domain question-answering problems.



Our knowledge-based QA framework follows the setup
of Ma et al. (2021b); Zhang et al. (2022). Given a ques-
tion and several candidates, the model chooses the question-
candidate pair that best entails the knowledge extracted from
the knowledge graph:

pred = argmax
i

(R(si|CSKG))

where R(s|CSKG) is the reasonable score of a sentence
based on the knowledge that the language model extracted
from the Commonsense Knowledge graph.

We chose models that are pretrained on a synthetic
dataset that is generated from the Commonsense Knowledge
Graph (Ilievski, Szekely, and Zhang 2021). In total, Com-
monsense Knowledge Graph contains 7 million common-
sense statements, which is a significant portion of implicit
facts that the commonsense models have absorbed via self-
supervision.

Retrieval-based QA models
Retrieval-based QA models aim to find evidence for the
correct answer for a given contextualized question in back-
ground knowledge documents. This task aims to capture do-
main knowledge such as rules and regulations we abide by
while driving in traffic. We pose the input to the retrieval-
based models as a multiple-choice question answering based
on context. The main idea is to extract the most relevant con-
tent as evidence that can help answer the question based on
domain documents and use it as a context to find the best
possible choice.

We propose a novel pipeline for domain-based ques-
tion answering. We use Dense Passage Retriever (DPR)
(Karpukhin et al. 2020) as the relevant domain extractor
module to encode each paragraph and question sentence into
vectors. Given a corpus C include several passages PA, we
use a cosine similarity score to extract the most relevant
paragraph:

PAselect = argmax
PAi

cos sim(PAi, Q), PAi ∈ C

The passage extracted then along with the question and
choices are passed to a QA model, then the QA model gen-
erates the predicted answer, the probability of generating an
answer is:

P (GA|Q,A,C) =
n∏
i=i

P (gai|Q,A, PAselect, ga1, ga2, ..., gai−1)

Where C is the whole corpus, for our task, we use a com-
prehensive collection of driving manuals as the domain cor-
pus (Dri 2022). After processing the manual PDFs, we di-
vide them into sentences by simply using the punctuation
” . ? ! ” as sentence boundaries. Then we use a T5-based
grammar correction (Gra 2021) as a data cleaning tool to
make our corpus have correct spelling and grammar. Finally,
we combine every 10 neighborhood sentences as paragraphs
that are fed to the QA model.2 In total, there are 42.979 para-
2Paragragh segmentation based on the similarity between neigh-
boring sentences yielded consistently worse results.

graphs and each paragraph has an average word count of
147.5.

After the model generates the predicted answer, we
choose the answer which is most similar to the GA as our
final prediction.

Experiments
Model setup
For Inference-base reasoning models, we select several NLI
models that are trained on the MNLI (Williams, Nangia, and
Bowman 2017) dataset. These models are: Roberta-large,
Bart-large, Deberta-large, Deberta-v2-xlarge and Deberta-
v2-xxlarge.

For KG-based reasoning models, we choose the five mod-
els from Zhang et al. (2022) for evaluation: Roberta-base,
Roberta-large and T5-small, T5-large, and T5-3b models.

For Retrieval-based models, we use the sentence trans-
former model pretrained in (Karpukhin et al. 2020) to en-
code the paragraphs and sentences. As a QA model, we use
the Unified-QA T5-based transformer model (Khashabi, Ko-
rdi, and Hajishirzi 2022), to output the most probable candi-
date answer.

Other Baselines
To indicate the upper bound of models’ performance on our
dataset, we have also tested a supervised method based on
tuning Roberta-large. We have divided all of the datasets into
training and testing parts with a ratio of 90% and 10%. For
the HDT-QA dataset with 2 and 5 questions, we do not per-
form the supervised method due to the limited size of the
dataset.

To investigate the correlation between our two datasets,
we also include a transfer learning experiment that takes the
supervised model trained on one dataset to evaluate the other
dataset. We also report the results of an unsupervised vanilla
Roberta-large model and vanilla Unified-QA model as well
as of a random baseline.

Results
We have tested three methods on our two datasets. We
use accuracy as our evaluation metric. For the BDD-QA
dataset, the Unified-QA model reaches the best performance
by adapting multiple formats of question answers. For
the HDT-QA dataset, our proposed retrieval-based model,
DPR+Unified-QA outperforms other methods by nearly 20
points, which shows the effectiveness of retrieving domain
knowledge for question answering.

BDD-QA Task
Table 4 shows the results for three different types of mod-
els (NLI-based, KG-based, and Retrieval-based QA) on the
BDD-QA dataset. The result shows that the best accuracy is
obtained by Unified-QA-v2, which benefits from its adap-
tion of multiple formats of question answers. Such perfor-
mance is 29.6 points higher than the unsupervised Roberta-
large result, but still, has a large gap with the supervised
model (16.5 points). In general, NLI-based models have a



Table 4: Evaluation results on the BDD-QA-EP and BDD-QA-CP dataset of our three methods. The Vanilla Roberta-large
model was only pretrained by unlabelled corpus. The Vanilla Unified-QA method doesn’t feed the most relevant corpus to the
model. Different from other results, supervised models only use 10% of the whole data for evaluation. The result of the human
evaluation is included in the last row.

Method Model BDD-QA-EP BDD-QA-CP Avg
Random - 33.3 33.3 33.3

Vanilla models Roberta-large 36.1 43.6 40.0
UnifiedQA-v2 75.9 63.3 69.6

NLI-based

Roberta-large-mnli 63.2 58.6 60.9
Bart-large-mnli 66.3 56.8 61.5
Deberta-large-mnli 67.0 54.5 60.8
Deberta-v2-xlarge-mnli 71.3 59.7 65.5
Deberta-v2-xxlarge-mnli 72.4 64.9 68.7

Knowledge-based

Roberta-base 63.3 54.4 58.9
Roberta-large 71.7 56.8 64.3
T5-small 54.3 46.0 50.1
T5-large 66.4 55.5 61.0
T5-3b 71.0 58.6 64.8

Retrieval-based UnifiedQA-v2 + DPR 71.4 55.7 63.6
Supervised Roberta-large 93.0 81.2 86.1
Human - 74.0 68.0 71.0

Table 5: Evaluation results on the BDD-QA-EP dataset of our models on 5 action classes.

Methods Action Class
Accelerate Slow Stop Merge Turn

NLI-based

Roberta-large 70.5 59.7 68.5 59.6 51.8
Bart-large 77.1 59.5 67.5 68.6 57.1

Deberta-large 74.7 58.4 71.6 70.1 58.7
Deberta-v2-xlarge 74.5 62.5 76.2 74.5 66.2

Deberta-v2-xxlarge 79.0 65.3 75.8 72.2 65.7

Knowledge-based

Roberta-base 56.5 57.4 51.5 66.5 82.4
Roberta-large 68.7 70.4 68.5 77.0 81.3

T5-small 57.1 58.8 59.0 42.6 58.0
T5-large 59.7 60.8 65.8 65.5 80.1
T5-3B 65.1 68.7 63.7 75.1 81.8

balanced performance in the two datasets while KG-based
models perform well on the BDD-QA-EP dataset but poorly
on BDD-QA-CP.

Zero-shot performance depends on model size and back-
ground training data. We see that the performance of NLI-
based models is getting continuously better when the model
size grows, which is expected. Specifically, NLI-based mod-
els’ performance on BDD-QA-EP is growing faster when
the model size is smaller, while for BDD-QA-CP the growth
is more obvious between bigger models. Given the sentence
embeddings of all the causes and effects, we have computed
the average sentence similarity between causes as 0.403,
while for effects it is 0.553, which means causes are more
different from each other than the effects. The difference of
similarities is intuitive because the effects (cars’ actions) are
limited while the causes represent factors in the environment
and are therefore more open-ended. By focusing on three
Deberta-large models from Table 4, we observe that the per-
formance on BDD-QA-CP grows faster than BDD-QA-EP
when the model size is bigger, (64.9 − 59.7 > 72.4 − 71.3
while 59.7−54.5 ≈ 71.3−67.0). Such a result implies that
predicting the correct cause given an effect needs a language

model having a larger capacity, which is coherent with the
observation between cause and effect prediction.

Among all of the knowledge-based models, T5-3b, the
best-performing model across five zero-shot benchmarks
in Zhang et al. (2022), which is an encoder-decoder model
trained with sequence-to-sequence language model loss,
achieves the best performance. Roberta-large, the encoder-
only model trained on masked language model loss, also
reaches a high performance that is close to T5-3b’s. Over-
all, knowledge-based models are not good at predicting the
cause, none of them reaches 60% accuracy in the BDD-
QA-CP dataset. To explain this low performance, we look
deeper into the properties of the synthetic training data that
was constructed in (Ma et al. 2021a) from CSKG (Ilievski,
Szekely, and Zhang 2021). The source graph has abundant
information about X causes Y, which we translate into train-
ing questions of the form: What does X cause? then the dif-
ferent effects are sampled. However, there are no questions
about the inverse formulation What is the cause of X? like
what we do to the BDD-QA-CP dataset. Such a result is
consistent with the finding in Zhang et al. (2022) that the lan-
guage models learn to answer well about what is in the data



and do not generalize well to other aspects. Finally, there is
still a large gap between both models’ accuracy and that of
the supervised Roberta model, which leaves plenty of space
for future improvement of the models.

Regarding the retriever-based models, Unified QA itself
benefits from its adaption of multiple formats of question-
answer pairs so its performance is close to the best one
among the NLI-based and KG-based models. However, af-
ter we provide the most relevant passage with it, the perfor-
mance decreases. This implies that knowledge in the driving
handbook provides little help for the model to answer the
BDD-QA questions.

Overlap analysis. We expect that the language model
performance highly depends on their training data and train-
ing methods. To investigate the predictions of two differ-
ent kinds of models, we look closer at the predictions of
the best-performing NLI-based model and KG-based model
Deberta-v2-xxlarge and Roberta-large, respectively. Among
3,139 QA pairs in BDD-QA-EP, Deberta-v2-xxlarge can
correctly answer 2,256 questions and Roberta can predict
2,302 QA pairs correctly. However, there are only 1,826 an-
swers that are correctly answered jointly, which means that
for an ensemble model that can combine the two models’
correct answers, the accuracy would be 87.0% on BDD-
QA-EP. For BDD-QA-CP, the combined accuracy would be
79.1%. Such results are much higher than the performance
of the two models alone and are close to the result of super-
vised learning. Such results encourage us to investigate the
granular performance of two kinds of models by splitting the
dataset into several classes. We discuss this next.

Result on classes of effects. We investigate the granu-
lar performance of different models on the action (cause)
classes of the BDD-QA-EP dataset. Table 5 shows that the
Knowledge-based models perform best on the Turn, Merge
and Slow classes, while NLI-based models do better on the
other two classes (Move and Stop). In the real world, turn-
ing, merging, and slowing are more complicated actions than
moving and stopping because their causes vary a lot. For ex-
ample, if a car merges to the left, the cause might be The
snow is taking up too much of the right lane, or There are
pedestrians in the right or The car is preparing to execute a
u-turn maneuver, or a long list of other causes. But for Ac-
celerate, the list of causes is more narrow: it would either
be The light turned green or The road is clear. We conclude
that knowledge-based models can handle complex reason-
ing tasks in the traffic domain, while NLI-based models are
better at surface-level inference. Here, again we see that the
performance for most action classes grows with the increase
in model size.

Human evaluation. Since BDD-QA is constructed by
an automatic procedure, we perform a human evaluation for
this dataset. For each partition of the dataset, we randomly
select 50 QA pairs. Besides providing an answer for each
question, we also ask the annotators to give confidence in
their results on a 5-point Likert scale (1 being low and 5
being high) to check whether the questions are common-
sensical. Each question is answered by 3 humans and we
choose the majority-voted candidate as the correct answer.
The result is shown in the last row of Table 4. We note that

the human score is 1.4% points higher than the best zero-
shot result, and the average annotator confidence is 3.67. We
are surprised by the relatively low human score on this task.
Upon further analysis, we notice that most of the questions
that are wrongly answered by humans have multiple rea-
sonable answers, e.g., given the cause The cross traffic has
cleared and the pedestrian is gone The correct effect is The
car makes the left turn and heads down the street, but an-
other effect The car very slow accelerates is also reasonable
given the cause. For this question, all three humans chose
the latter answer. In the future, we will revise the dataset to
further clean up the noise.

HDT-QA Task
As shown in Table 6, all of the NLI-based and KG-based
models perform consistently poorly on the HDT-QA dataset.
The growth of the performance together with the model
size that was observed on the BDD-QA dataset is not as
clearly visible on the HDT-QA dataset. Such a result implies
that obtaining basic commonsense knowledge and semantic
inference information is not enough for answering human
driving test questions. The examples of HDT-QA, shown in
Table 2, are about the details of the policies of driving. It
is hard even for humans to pass the driving exams without
learning specific rules and driving policies captured in do-
main manuals. As a result, it is intuitive to retrieve domain
knowledge to help language models better answer the hu-
man driving test.

As shown in Table 6, UnifiedQA itself performs slightly
better than the NLI-based and KG-based models. After we
provide the most relevant paragraph to the QA model auto-
matically with the DPR retriever, the average performance
of the subsets improves by 14.2% points. This means the
QA system is able to capture relevant domain knowledge
efficiently for answering human driving test questions, es-
pecially when combined with a dense retrieval model that
can provide the most relevant set of sentences that serve as
evidence.

The performance of unsupervised learning and transfer
is close to that of NLI-based and KG-based models, which
means the NLI, KG, and BDD-enhanced models contribute
little for models to answer the HDT-QA questions. Lastly,
supervised learning reaches a high accuracy, which is intu-
itive because some of the questions in the training and the
test set share the same knowledge.

Discussion
Our experiments show that language models trained with
semantic level coherence information and commonsense
knowledge extracted from knowledge graphs are both per-
forming well at answering traffic domain reasoning tasks.
Careful domain information extraction and model adaption
leads to significant improvement of language models’ per-
formance on domain-specific QA sets. Next, we discuss and
list future extensions inspired by our results.

More efficient retrieving of domain knowledge In this
paper, we use Dense Passage Retrieval to capture the most
relevant paragraph in the driving manuals and directly fed



Table 6: Evaluation results on the HDT-QA dataset of 10 models. We only train the HDT-QA-3Q and HDT-QA-4Q for super-
vised learning because the size of HDT-QA-2Q and HDT-QA-5Q are both limited.

Methods HDT-QA-2Q HDT-QA-3Q HDT-QA-4Q HDT-QA-5Q Avg
Random - 50.0 33.3 25.0 20.0 25.7

Vanilla models Roberta-large 55.4 43.7 36.7 9.10 36.2
UnifiedQA-v2 67.9 51.6 44.0 25.0 47.1

NLI-based

Roberta-large-mnli 63.4 41.0 33.0 15.0 38.1
Bart-large-mnli 65.6 46.1 34.3 22.5 42.2

Deberta-large-mnli 62.6 42.8 34.5 15.0 38.7
Deberta-v2-xlarge-mnli 62.6 45.7 36.3 17.5 40.5
Deberta-v2-xxlarge-mnli 63.4 47.5 36.1 22.5 42.4

Knowledge-based

Roberta-base 60.3 36.0 29.0 25.0 37.6
Roberta-large 63.4 38.9 30.8 27.5 40.1

T5-small 57.3 35.4 23.8 22.5 34.7
T5-large 64.1 40.3 24.6 22.5 37.9
T5-3b 66.4 45.0 25.1 22.5 39.7

Retrieval-based UnifiedQA-v2 + DPR 80.2 57.3 47.7 60.0 61.3
Supervised Roberta-large - 71.7 75.8 - 73.8

Transfer learning Roberta-large 45.8 43.2 37.9 21.8 37.2

the paragraph to the QA system. However, the language
models are not learning the policies, they are answering the
questions only by consulting the driving manual simulta-
neously in an open-book setting, which can be misled by
vague information or context mismatch. Developing meth-
ods for effectively extracting domain knowledge and letting
language models learn this knowledge is an important future
work for solving HDT-QA and similar traffic-specific QA
tasks. Selecting informative sentences or building knowl-
edge graphs based on raw data are possible methods for a
more precise injection of domain knowledge.

Joint reasoning over domain knowledge and causal
commonsense knowledge Our methods have isolated the
different knowledge types and have focused on learning ei-
ther causal or domain knowledge, but not both. We antici-
pate that a robust AI model should be able to reason over
both knowledge types simultaneously and know which ques-
tions require which specific knowledge statements. A key
future item is integrating the two knowledge types together
in a joint reasoning system and developing benchmarks that
can evaluate both aspects in a more coherent manner.

From natural language QA to multi-modal traffic QA
Our study focused on understanding traffic situations based
on using only text as background information. However, vi-
sual information in images and videos is a key component of
traffic scenes. Automatic driving systems take images as in-
put and make decisions according to them. Popular datasets
like Traffic-QA (Xu, Huang, and Liu 2021) are also based
on background information that is given by an image. Con-
sidering visual information is necessary for building a holis-
tic robust system that understands traffic situations. Thus,
we believe that multi-modal benchmarks and methods that
combine perception and background knowledge for situa-
tional traffic understanding are the next milestones toward
developing real-world neuro-symbolic traffic models.

Conclusion

Besides robust perception models, a holistic situational
understanding of traffic requires generalizable models
equipped with commonsense and domain knowledge, which
has received little attention in prior work. To bridge this
gap, this paper studied the strengths and weaknesses of cur-
rent zero-shot adaptation methods and their granular effects
on different partitions of tasks. We constructed two bench-
marks for evaluating the ability of zero-shot causal reason-
ing (BDD-QA) and accessing domain knowledge (HDT-
QA) to answer questions about traffic situations. We pro-
posed two representative methods that focus on zero-shot
causal reasoning and one novel pipeline for retrieving do-
main information. On the BDD-QA dataset, we have ob-
served the limited prediction overlap between the two mod-
els. To deeper investigate that, we split the actions of the cars
into several categories, observing significant differences in
performance between the methods, which provides a con-
vincing explanation of the result of the limited overlap. On
the HDT-QA dataset, we observed a giant performance im-
provement after we fed the relevant information extracted
from driving manuals in an open-book setting.

The methods in our work can be easily extended to other
traffic and related tasks in other domains. Our code and data
can be downloaded at https://github.com/saccharomycetes/
text-based-traffic. Key future directions include more effi-
cient knowledge retrieval, better integration of causal and
domain knowledge, and the development of multi-modal
traffic benchmarks and methods.
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Appendix
Details of chosen models
For the Inference-base reasoning model, we select models
trained on the same dataset for a fair comparison, and we
specifically chose MNLI because it contains 10 different
genres and a very large corpus (433k). We directly download
the model from hugging-face, all of them share the same in-
put and output format (take in a premise and hypothesis, give
the confidence of the sentence pair being ”entail”, ”neutral”,
”contract”). In general, we test the model’s ability to make
the right inference on the traffic domain without any fine-
tuning.

For KG-based reasoning models, the chosen models have
two different model architectures and all have different
model sizes. The encoder-only model, Roberta, uses the
Masked Language Model loss to give a score for each
question-candidate pair. After getting the score for each can-
didate, the Roberta models are trained with the margin loss
function: Lmargin = 1

n

∑n
i = 1
i ̸= y

max(0, η − Sy + Si),

where Sy and Si are the negative averaged loss for the cor-
rect answer and the distractor respectively. During the eval-
uation, the model chooses the pair with the highest score as
the correct answer. The encoder-decoder model T5 learns to
give an output ‘1’ or ‘2’ which represents the confidence of
the model in predicting whether the given sentence pair is
reasonable or not. For each candidate, its score is defined as
S = Ltrue−Lfalse, then the training and evaluating process
is the same as the encoder-only models. We splice the cause
and effect together as the input of the models when we test
the BDD-QA-CP and BDD-QA-EP and HDT-QA datasets.
For the HDT-QA dataset, if there is an underscore appear-
ing in the question, we fill the underscore with candidates to
make complete sentences.

For Retrieval-based models, we choose the sentence
transformer version facebook − dpr − ctxencoder −
single−nq−base, facebook−dpr−question−encoder−
single−nq− base to encode the paragraphs and questions,
respectively. For the unified-QA model, we use the version
of Unified-QA-v2, T5-3B, which is pretrained on 20 QA
datasets.

Implementation Details
Regarding libraries, we used python 3.7.10, PyTorch 1.9.0,
and transformers 4.11.3.

Among all the supervised learning sets, we are using
a learning rate of 1e−5, batch size of 32, weight decay
0.01, training epochs of 10, adam-epsilon of 1e−6, β1 =
0.9, β2 = 0.98, the warm-up proportion of 0.05, the margin
of 1.0
For CPUs, we used Intel(R) Xeon(R) Gold 5217 CPU @
3.00GHz (32 CPUs, 8 cores per socket, 263GB ram).
For GPUs, we used Nvidia Quadro RTX 8000.


