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Abstract

A large body of research has investigated in drawing an inter-
esting and engaging conversation with a user, and one of the
effort is incorporating a knowledge in generation. Accord-
ingly, a growing need for knowledge-incorporated dialogue
dataset has gained attention. However, coupling a response
and a knowledge in a context-specific manner is laborious and
challenging, and hence the amount of data collected is often
insufficient. In this light, this study proposes a simple but ef-
fective data augmentation method by leveraging the linguistic
features of cause-effect conjunctive adverbs in a natural lan-
guage; we reformulate a plain document with a cause-effect
conjunctive adverb as a knowledge-grounded dialogue data
instance. With the proposed data augmentation technique, we
observe a marked gain in generalization of a model in both
knowledge selection and knowledge-grounded dialogue gen-
eration. In particular, the proposed method demonstrates its
effectiveness in a low-resource setting in which dialogue sys-
tems generally suffer from.

1 Introduction
Neural language models have recently demonstrated re-
markable performances across a variety of tasks, one of
which is dialogue response generation. Dialogue systems are
generally divided into two types; the first is task-oriented
that seeks to achieve a specific purpose through dialogue,
and the other is general-purpose chit-chat dialogue model.
One common challenge faced by chit-chat systems is that
models often generate a dull and uninformative responses,
and such responses fail to draw engaging and interesting in-
teractions with a user (Zhao et al. 2020b; Li et al. 2016b).
Therefore, a large body of research has been conducted to
mitigate the issue (Rashkin et al. 2019; Smith et al. 2020;
Zhao et al. 2020b), and one of the strategies is incorporating
knowledge as a conditioning variable to a language model
(Ghazvininejad et al. 2018; Dinan et al. 2019; Li et al. 2022;
Zhou et al. 2022).

A knowledge-grounded dialogue model conditions on an
external knowledge, such as documents, tables, and pictures,
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Figure 1: Description of our proposed data augmentation
method. Here, cause-effect conjunctive word, ‘thus’, cap-
tures a knowledge-grounded dialogue data-like structure in
a document. This instance is added to the augmentation
dataset.

when generating a response to a user. Therefore, a train-
ing dataset is required to be equipped with not just dialogue
turns, but with external knowledge to be grounded, such as
Dinan et al. (2019) and Feng et al. (2020). However, annotat-
ing such data is time-consuming and requires a sophisticated
tool to label; each response is required to be coupled with a
specific knowledge that caters to a given context (dialogue
history). Thus, the amount of knowledge-grounded dialogue
data tends to be limited (Dinan et al. 2019; Li et al. 2020;
Zhao et al. 2020a).

In this study, we propose a simple automatic data aug-
mentation method to alleviate the data shortage problem
of a knowledge-grounded dialogue system. The proposed
method automatically collects data from a large corpus us-
ing linguistic features. The intuition is rooted from an ob-
servation; each example of knowledge-grounded dialogue
data consists of the following three elements: 1) dialogue
context, 2) grounding knowledge, and 3) a response that re-
flects the knowledge and fits the context. We observe that
such combination is found in a plain text when a Cause-
Effect Conjunctive Adverb (CECA) is present. Cause-
effect conjunctive adverbs, such as therefore, thus,
and hence, signify that the connection between two sen-
tences has a cause-effect relationship. This structure resem-
bles to the knowledge-grounded dialogue data which has



been considered laborious. Therefore, the proposed data
augmentation method exploits this structural similarity and
constructs pseudo knowledge-grounded dialogue data from
a large unlabeled corpus, which the process is illustrated in
Figure 1.

The contribution of this study is summarized as follows:

• We propose a simple data augmentation method, called
CECADA, for knowledge-grounded dialog system that
removes the need of human annotation.

• Empirical results demonstrate that the proposed data aug-
mentation improves performance of a model in both
1) the knowledge selection task and 2) the knowledge-
grounded response generation task.

• The proposed augmentation technique enables a model
to be robust even when trained in a low-resource training
environment.

2 Approach
2.1 Task Description
Let D = {(ci, ki, ri)}ni be a dialogue corpus with size
n, where c, k and r denote a context, a knowledge, and a
response respectively. In neural knowledge-grounded dia-
logue system, we are interested in finding two functions: 1)
a knowledge selection function f with parameter θ that se-
lects a context-specific knowledge within a knowledge pool,
and 2) a knowledge-grounded response generation function
g with parameter ϕ that maps a context and a knowledge to
a response that is fluent, context-appropriate and reflects the
given knowledge, fθ : C × K → [0, 1], gϕ : C × K → R.
In this paper, the goal is to improve the generalization of the
two functions with a data augmentation technique.

2.2 Cause-Effect Conjunctive Adverb-based Data
Augmentation (CECADA)

Definition 1 (CECA) We define CECA as any conjunctive
adverb that connects two sentences with a cause-effect re-
lation with the condition that the conjunctive adverb comes
after the cause and before the effect.

When a CECA appears in a paragraph, the sentence fol-
lowing the CECA is grounded on the sentence immediately
preceding it. Except for these two cause-effect sentences,
the rest of the preceding sentences act as a context in which
the cause-effect sentences fit in. Inspired by the fact that it
is similar to the structure of knowledge-grounded response
generation data, we propose a data augmentation method as
follows:

• Step 1. Select a Domain of Interest: Selecting the right
domain is essential, as the out-of-domain augmented data
can impede the training of the targeting domain. We
select Wikipedia web pages as a collection target for
data augmentation. Specifically, we use WikiText (Mer-
ity et al. 2016), and English Wikipedia-dump of the
‘20200501.en’.

https://huggingface.co/datasets/wikipedia. The origi-
nal datatset can be found in Wikimedia Foundation:
https://dumps.wikimedia.org

Cause-Effect Conjunctive Adverb Number of Examples
therefore 91,407

thus 134,957
hence 21,785

consequently 25,429
accordingly 12,534
henceforth 1,255

Total 287,367

Table 1: The statistics on the collected data using our pro-
posed method, CECADA.

• Step 2. Define List of Cause-Effect Conjunctive Ad-
verb (CECA): A CECA could be any word that repre-
sents a cause and effect, yet we confine such vocab to the
ones listed in Table 1.

• Step 3. Collection Process: We augment the data so
that the augmented data correspond to the structure of
an example of knowledge-grounded dialogue data. When
one of the words in the CECA list exactly matches in a
corpus, we augment an example; the sentence after the
CECA is regarded as a response (pseudo response), the
sentence immediately before the CECA is considered as
knowledge (pseudo knowledge), and the five sentences
before the pseudo knowledge are considered as dialogue
context (pseudo context). The pseudo context, pseudo
knowledge and pseudo response make up an augmented
training instance. Lastly, the CECA and commas around
the CECA are removed, so that a model does not overfit
to a pattern.

Following the above steps, we have collected 287,367
examples to be augmented. Table 1 shows the count of
occurrences of each CECA in the corpus, thus forming a
CECADA example. We denote the augmented collection of
data D̃ = {(c̃i, k̃i, r̃i)}Mi where c̃i, k̃i, r̃i refers to a pseudo
context, a pseudo knowledge, and a pseudo response, and M
is the total number of the augmented data.

2.3 Training a Model with CECADA
As we construct pseudo training examples, our strategy for
both the knowledge selection and the knowledge-grounded
generation task is to adopt curriculum learning-like fine-
tuning. Before fine-tuning on a downstream task data, we
train the model with the CECADA dataset. Once the training
is done on CECADA dataset, we further fine-tune the model
on a downstream task dataset. In this section, we describe in
detail with training objectives for each model in knowledge
selection task and the knowledge-grounded response gener-
ation task.

Utilizing CECADA in Knowledge Selection One com-
mon strategy in training knowledge selection model is to
fine-tune a large pretrained model, such as RoBERTa-large
(Zhuang et al. 2021) for binary classification model. Given
the dialogue context and one of the knowledge in a set of
candidates, the model is trained to predict the relatedness
between them. At inference time we sort knowledge candi-
dates by ranking the model’s output relatedness scores. The
model is depicted in Figure 2a.



(a) Knowledge Selection Model (b) Knowledge-Grounded Generation Model

Figure 2: our knowledge selection model in (a) takes the pseudo context and one of the pseudo knowledge from the augmented
set of knowledge candidates as input, then classifies if the knowledge is related – or not related – to the given context by
the binary scores. The generation model in (b) takes the form of sequence-to-sequence. The pseudo context and knowledge
candidates are encoded in a pre-trained encoder, then the model is trained to generate a pseudo response given encoded vector.

Here, in training the model with the CECADA dataset, a
set of negative examples are required for the training and is
constructed via retrieval and random sampling.

Retrieving The concatenated sentences of c̃i and k̃i are
encoded with a sentence-transformers encoder (Reimers and
Gurevych 2019), which the mapping process is denoted as h.
The output vector, h([c̃i; k̃i]), is then compared to every pre-
encoded Wikipedia corpus, and the objective is to find the
most similar negative examples for training.

S−
i = argmax

|S−
i |=o
sj∈S

cos(h([c̃i; k̃i]), h(sj)) (1)

where cos, S and S−
i refer to the cosine similarity, the set of

all Wikipedia paragraphs, and the shortlisted negative para-
graphs respectively. We confine the number of negative sam-
ples for each instance to o.

Random Sampling Each element in the retrieved output
is a paragraph. To align the format of the negative samples
to that of knowledge, we randomly sample p sentences as
negative knowledge, denoted as k̃−i , from each retreived
paragraph si ∈ S−

i ; the set of the sampled negative
knowledge has the size of o × p and is termed K̃−

i . We add
the negative knowledge for each pseudo instance, hence
CECADA dataset being D̃ = {(c̃i, k̃i, r̃i, K̃−

i )}Mi .

To be specific on the training stage on the CECADA
dataset for the knowledge selection model, we align the
pseudo data format to Wizard-of-Wikipedia (Dinan et al.
2019) sample. A training instance takes one of the pseudo
knowledge candidates given the pseudo context (c̃i), and
forms an input for the model by concatenating them with
the separator token in between. The encoded hidden state

of the first token at the last layer is projected through the
binary classification layer. The training objective in finding
the f is minimizing the Cross-Entropy loss as shown in the
Equation 2. The trained knowledge selection model with the
CECADA dataset is consecutively fine-tuned with the down-
stream task dataset.

Lks = E{(c̃i,k̃i,K̃
−
i )}B

i ∼D̃[− log gϕ(k̃i, c̃i)

+ log 1− gϕ(k̃
−
i , c̃i)], where k̃−i ∈ K̃−

i

(2)

Utilizing CECADA in Knowledge-Grounded Response
Generation The knowledge-grounded response genera-
tion shares the same training scheme as the knowledge se-
lection task. We chose BART-large (Lewis et al. 2020) for
the large pre-trained model.

In training the generation model with the CECADA
dataset, we now include the pseudo response when align-
ing the pseudo data format to the downstream task sample.
Figure 2b depicts the training process. We concatenate c̃i
and all the knowledge candidate, the pseudo knowledge k̃i
and the set of negative knowledge sampled K̃−

i . The order
of knowledge sentences is randomly shuffled, and each sen-
tence is divided with a special token. A model is trained to
generate the pseudo response r̃i by minimizing the negative
log-likelihood.

LNLL = E{(c̃i,k̃i,r̃i,K̃
−
i )}B

i ∼D̃

[− 1

T

T∑
t

logP (r̃i,t|c̃i, k̃i, K̃−
i , r̃i,<t; θ)]

(3)

where r̃i,t refers to the token to be generated at t-th time
step and r̃i,<t is the preceding tokens at time step t. After



WoW Train Valid test-seen test-unseen
Utterances 166,787 17,715 8,715 8,782
Dialogues 18,430 1.948 965 968
Topics 1,247 599 533 58

Table 2: The statistics on the Wizard-of-Wikipedia (WoW)
dataset. We denote train dataset as D.

training the model with the CECADA dataset, we fine-tuned
the model with a downstream task dataset to adapt to the
targeting domain with the same loss as in Equation 3.

3 Experiments
3.1 Dataset
Wizard-of-Wikipedia (WoW) (Dinan et al. 2019) is a
knowledge-grounded dialogue benchmark consisting of a
one-to-one conversation between an apprentice who wants
to learn about a specific topic in an open-domain environ-
ment and a wizard who responds by referring to a sen-
tence from a Wikipedia document. For each wizard’s turn
of the dialogue, the wizard has to select one of the prefer-
ring knowledge sentence among the knowledge candidates
then to respond which reflects the selected knowledge.

The data statistics are shown in Table 2. We hereafter
denote D – defined in Section 2.1 Task Description – as
the training dataset of Wizard-of-Wikipedia. Note that D =
(ci, ki, ri,K

−
i )

n

i contains the set of negative knowledge can-
didates, K−

i . The models we present in the experiments are
all trained with this downstream task dataset, D.

3.2 Experimental Setup
We demonstrate our presented models for clarity. Two mod-
els below are used in the knowledge selection task:

• KS has a structure depicted in Figure 2a as a binary
classification model that predicts the relatedness score
of given knowledge and the dialogue context. However,
for the purpose of comparison, it is not trained with the
CECADA dataset. The model is only fine-tuned with the
WoW dataset, D.

• KS+ takes the same structure as the KS. However, it is
trained with the CECADA dataset and then fine-tuned
with the WoW dataset.

The below four models are used in knowledge-grounded
generation task:

• BART is only fine-tuned with the WoW dataset to gen-
erate a response given dialogue context and knowledge
candidates with negative log-likelihood (NLL) objective.
The model’s structure can be seen in Figure 2b. How-
ever, this model is not trained with the CECADA dataset.
In the inference phase, the model takes concatenated se-
quence of dialogue context (ci) and a set of knowledge
candidates (ki∪K−

i ) as the input. Here, the set of knowl-
edge candidates are shuffled.

• BART+ differs from the above BART in that it is trained
with the CECADA dataset and then fine-tuned with the

WoW dataset. The input to the model in the inference
phase is the same as one with BART.

• KS-BART first receives the scored list of knowledge
candidates by the KS model. Then, starting from the
top-most similar knowledge in the list to the descend-
ing order, the input for BART is formed by concatenat-
ing knowledge sentence to the dialogue context until it
reaches or exceeds the max length of the model. BART
is only fine-tuned with the WoW dataset.

• KS+-BART has a difference between the KS-BART in
that the KS+ model provides the scored list of knowledge
candidates to the fine-tuned BART. Here, the generation
model is only fine-tuned with the WoW dataset.

3.3 Training Details
In training the knowledge selection model, KS+, with the
CECADA dataset, we trained with a batch size, B, of 16.
The learning rate was set to 2e − 5, and the model was
trained for three epochs with AdamW optimizer (Loshchilov
and Hutter 2019) whose adam epsilon was 1e− 8. The con-
catenated input for the knowledge selection model was trun-
cated from the foremost part of the context, with the model’s
max length of 256. The o and p are 2 and 3, respectively.
Fine-tuning steps that follow the training with the CECADA
dataset, the hyper-parameter setups are the same as above.

In training the generation model, BART+, with the
CECADA dataset, the model was trained with a batch size of
8. The model’s max length was set to 256, and each knowl-
edge that exceeds the length of 64 was truncated. Given
the context and the sequence of knowledge candidates, if
the whole sequences are longer than the max length of the
model, then we truncated the knowledge sequence to fit in.
The model was trained with AdamW, a learning rate of
5e− 5, adam epsilon, ϵ = 1e− 8, training epoch of 3. Fine-
tuning with the downstream task dataset follows the same
setting as the one with training with the CECADA dataset.
In the inference time, generation was performed with greedy
decoding with sampling. It took six hours and five hours to
train for one epoch with two RTX3090 GPUs in training the
knowledge selection model and the generation model, re-
spectively. We used the Huggingface Transformers library
for both to download the model parameter and train the
model.

3.4 Evaluation Metrics
For the knowledge selection task, we measure Recall@{1,
2, 5, 10} scores where Recall@k is the ratio of correct pre-
dictions that the label knowledge – the one that the wizard
selected in the dataset – was present within the top-k list of
the sorted ranks. In the response generation task, we eval-
uate BLEU (Papineni et al. 2002) and ROUGE (Lin 2004)
scores, both of which the lexical overlaps are used between
the predicted response and the label response. DIST1 (Li
et al. 2016a) calculates the model’s diversity of vocabulary
use in generating the response. Finally, we report the per-
plexity score.

https://github.com/huggingface/transformers



Model R@1 R@2 R@5 R@10
TF-IDF 11.00 18.86 37.44 56.43
Transformer MemNet 22.5 - - -
KS 20.29 28.44 44.17 59.53
KS+ 25.47 36.32 55.47 71.78

Table 3: knowledge selection task performance on Wizard-
of-Wikipedia (WoW) test-seen dataset. R@k refers to Re-
call@k. For some of the scores that the baseline work does
not report are marked as ‘-’. The units are in %p.

3.5 Baselines
Here we briefly explain each baseline model in knowledge
selection and knowledge-grounded generation task.

• Transformer MemNet (Dinan et al. 2019): Along with
releasing the Wizard-of-Wikipedia dataset, the authors
proposed a baseline model which encodes each knowl-
edge sentence and the dialogue context using Trans-
former encoder (Vaswani et al. 2017). Each encoded
knowledge vector and the context vector are compared
using dot-product attention. The model outputs the sorted
list of knowledge candidates based on the similarity
scores.

• SKT (Kim, Ahn, and Kim 2020): proposes a sequen-
tial knowledge transformer (SKT) that keeps track of the
prior and posterior distribution over knowledge by using
a latent variable. This technique helps maintain the tem-
poral features of the dialogue in selecting knowledge, and
the knowledge selection results are fed into the genera-
tion model.

• LCK (Zhao et al. 2020a): Inspired by the nature of chit-
chat dialogue, its generation model splits separate prob-
ability models with respect to the language model, con-
text, and knowledge. The encoders and the decoder used
GRUs (Cho et al. 2014) in generating the response.

3.6 Result of Knowledge Selection
Table 3 shows the knowledge selection performance of var-
ious models. The TF-IDF model at the first row of the table
measures tf-idf based similarity scores between the dialogue
history and the list of knowledge candidates to sort relevant
knowledge in descending order. KS+ scored the highest in
every measure R@1, R@2, R@5, and R@10, and improved
significantly upon the KS by 5.18%p, 7.88%p, 11.3%p,
12.25%p respectively. This fact proves that our data aug-
mentation method contributes to improving the knowledge
selection task of the knowledge-grounded dialogue system.
KS+ also outperformed the baseline Transformer MemNet
by 2.97%p in R@1 score.

3.7 Result of Knowledge-Grounded Response
Generation Task

Table 4 presents the evaluation result on test-seen dataset
of WoW in knowledge-grounded response generation task.
Compared to the baseline model BART, our proposed
model, BART+, shows a slight performance improvement

in every metrics except for the perplexity score. For KS+-
BART, the BLEU1 score was 25.09%p, which showed an
improvement of 3.61%p compared to the baseline (BART).
This infers that the result of the knowledge selection can
considerably help boosting the knowledge-grounded re-
sponse generation task. The KS+-BART outperforms even
the high-performing model SKT and LCK by 1.95%p in
ROUGE1 and 3.29%p in the BLEU1 metric. To measure
the effectiveness of the CECADA, we compared the KS+-
BART to the KS-BART model, whose knowledge selection
model was not trained by the CECADA dataset. The KS+-
BART improved upon the KS-BART in every metric ex-
cept the DIST1 by 0.59%p, 0.55%p, 0.96%p, 0.77%p in
BLEU1, BLEU4, ROUGE1, and perplexity score, respec-
tively. Therefore, the CECADA contributes to helping in-
crease the knowledge-grounded generation capability.

3.8 Effect of CECADA in Low-resource
Environment

Here, we set the low-resource environment as the
knowledge-grounded dialogue datasets generally encounter
the low-resource problem. Table 5 shows the decreased per-
formance rate of BLEU1 score from where the entire data
was used in fine-tuning to the ones where the fine-tuning
dataset becomes proportionally reduced. Considering the
Wizard-of-Wikipedia dataset belongs to the domain of ‘dia-
logue,’ we additionally performed the CECADA in the 2019
Reddit corpus from Pushshift (Baumgartner et al. 2020). The
model, which is trained with the Reddit-based CECADA
dataset, refers to the BART+

Redd. BART+
Wiki is the same

model as the BART+. Note that every model in Table 5 does
not take any knowledge selection result of a separate knowl-
edge selection model.

When the training set is reduced, every model starts to
degrade, except for the only case of BART+

Wiki where the
training dataset was half the entire dataset. When the train-
ing data is reduced to 25% of the entire data, the decrease
rate plummeted in the BART model to -27.19%. However,
compared to the baseline model, the models that took ad-
vantage of the CECADA maintained the performance more
robustly. In particular, The decrease rate of BART+

Redd is
remarkably low of -2.16%, which is lower than the baseline
model with a 25.03%p difference. When the size of the train-
ing model highly drops to 6.25%, the difference between
the baseline model and BART+

Redd is 25.28%p. The aver-
age performance decrease rate in the four size decrease set-
tings are -21.52%, -12.71%, -4.67% in BART, BART+

Wiki,
and BART+

Redd, respectively. It is noteworthy that training
the CECADA dataset was not significantly helpful in the
knowledge-grounded response generation task, as in Table
4, when the entire training dataset was used for fine-tuning.
However, our proposed method becomes essential in mak-
ing the model robust to the low-resource setting. As the
CECADA dataset can fill the gap that attributes to the re-
duced part of the WoW dataset, this result supports our hy-
pothesis that the CECADA dataset that is automatically aug-
mented resembles the knowledge-grounded dataset, which is
manually annotated.



Model CECADA B1 B4 R1 DIST1 PPL
SKT (Kim, Ahn, and Kim 2020) X - - 19.3 - 52.0
LCK (Zhao et al. 2020a) X 21.8 5.5 - - 23.0
BART X 21.48 4.21 18.07 6.87 49.24
BART+ O 21.70 4.22 18.1 7.07 49.39
KS-BART X 24.50 5.52 20.29 9.34 30.47
KS+-BART O 25.09 6.07 21.25 9.33 29.70

Table 4: Knowledge-grounded response generation task performance on Wizard-of-Wikipedia (WoW) test-seen dataset. The
units are in %p. B1, B4, R1, DIST1, PPL refer to the BLEU1, BLEU4, ROUGE1, Diversity-1, and perplexity score, respectively.
In the CECADA column, the model with the ‘O’ indicates that it gained help from the CECADA in training, and ’X’ otherwise.

Model CECADA FULL 50% 25% 12.5% 6.25% Average
BART X 21.48 20.89 (-2.75%) 15.64 (-27.19%) 16.89 (-21.37%) 14.01 (-34.78%) -21.52%
BART+

Wiki O 21.70 21.72 (+0.09%) 18.47 (-14.88%) 17.75 (-18.20%) 17.83 (-17.83%) -12.71%
BART+

Redd O 22.20 21.41 (-3.56%) 21.72 (-2.16%) 21.41 (-3.56%) 20.09 (-9.50%) -4.67%

Table 5: The evaluation result on WoW test-seen dataset in a low-resource training environment. 50%, 25%, 12.5%, 6.25% in
the first row of the table are the degree to which the dataset is reduced. CECADA column indicates whether the model was trained
with the CECADA dataset before fine-tuning. The units of performance are in %p. The number in parenthesis is performance
decrease rates from when the model was fine-tuned with the entire dataset to when the model is fine-tuned with the reduced
dataset size.

4 Related Works
4.1 Knowledge-Grounded Dialogue Systems
Research on dialogue systems recently has been actively
conducted to deliver information desired by users by
grounding on the external knowledge source in the form
of dialogue (Li et al. 2022; Zhou et al. 2022; Tuan et al.
2022). This external knowledge refers to the information or
data that the dialogue model did not train in advance. Task-
oriented dialogue systems that utilize external knowledge
vary in their form of knowledge as DB (Eric et al. 2019),
a description sentence for specific venues (Kim et al. 2021),
images (Kottur et al. 2021; Hori et al. 2022), and documents
(Feng et al. 2020; Reddy, Chen, and Manning 2019). In the
case of Chit-chat dialogue systems, external knowledge can
also be provided in documents that focus on specific do-
mains (Zhou, Prabhumoye, and Black 2018; Moghe et al.
2018) or those that cover multi-domains (Dinan et al. 2019;
Komeili, Shuster, and Weston 2022). Recently, a knowledge-
grounded dialogue dataset that provides a knowledge graph
as external knowledge with each dialogue turn is linked to
its referring node is released (Moon et al. 2019). In addition,
Zhang et al. (2018) is a dataset that provides a person’s char-
acteristics as a sentence and aims to chit-chat based on the
characteristics.

4.2 Data Augmentation
Data augmentation is a prevalent method of collecting data
without explicit collection to solve a data-insufficient prob-
lem for training data (Feng et al. 2021). The data augmen-
tation method can be divided into rule-based, example in-
terpolation, and model-based methods (Feng et al. 2021).
Regardless of the fields, data augmentation is actively used,
such as machine translation (Wang et al. 2018), question an-

swering (Longpre et al. 2019), summarization (Fabbri et al.
2021), etc. Study of data augmentation that is involved in
dialogue systems, various ways to improve the performance
using data augmentation have been proposed. A method to
increase the number of responses to train by splitting the di-
alogue is widespread (Kummerfeld et al. 2019). Han et al.
(2021) pointed out that the dialogue models should train
augmented fine-grained examples to capture the relationship
inside the dialogue as the turn level. Whang et al. (2021)
devised novel tasks that can be derived within the dialogue
data to improve the model by multi-tasking. Our study takes
advantage of the linguistic features of conjunctive adverbs
to augment data that shares the parallel structure of the
knowledge-grounded dialogue system.

5 Conclusion

The manual annotation process of knowledge-grounded di-
alogue data suffers from insufficient data problems be-
cause annotating each grounding knowledge to the response
is time-consuming. We proposed a simple and automatic
data augmentation method using the linguistic feature of
cause-effect conjunctive adverbs appearing in documents.
Through this method, the performance of the knowledge
selection task where the model finds the most appropri-
ate knowledge to be referenced given a dialogue context is
highly improved. Furthermore, our proposed data augmen-
tation method achieved a slight performance improvement
in the knowledge-grounded response generation. In partic-
ular, when training the knowledge-grounded dialogue sys-
tem with the augmented data by the proposed method, we
showed that the performance was maintained robustly in a
low-resource situation.
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