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Abstract

Learning high-quality sentence embeddings from dialogue
has drawn increasing attention as it is essential to solving var-
ious dialogue-oriented tasks with low annotation costs. How-
ever, directly gathering utterance relationships from conver-
sations are difficult, while token-level annotations, e.g., en-
tities, slots, and templates, are much easier to obtain. Gen-
eral sentence embedding methods are based on sentence-
level self-supervised frameworks and cannot utilize token-
level extra knowledge. In this paper, we introduce a new dia-
logue utterance embedding framework, Template-augmented
Dialogue Sentence Embedding (TaDSE). This novel method
utilizes template information to learn utterance representation
effectively via a self-supervised contrastive learning frame-
work. TaDSE augments each sentence with its correspond-
ing template and then conducts pairwise contrastive learning
over both sentence and template. We evaluate TaDSE per-
formance on two downstream benchmark datasets. The ex-
periment results show that TaDSE achieves significant im-
provements over previous SOTA methods. We further ana-
lyze the representation quality and show improved alignment
and boosted local structure in semantic representation hyper-
space.

1 Introduction
Learning sentence embeddings from dialogue has recently
attracted increasing attention (Zhou et al. 2022; Liu et al.
2021). Learning high-quality dialogue semantics (Hou et al.
2020; Krone, Zhang, and Diab 2020; Yu et al. 2021) helps
solve various downstream tasks, especially in the scenarios
with limited annotations (Snell, Swersky, and Zemel 2017;
Vinyals et al. 2016; Kim et al. 2018; Li et al. 2021). Due
to the fast development of contrastive learning (Chen et al.
2020a; He et al. 2020; Hjelm et al. 2018; Radford et al.
2021; Chen et al. 2020c), there has been a solid success
in learning universal sentence representations in both super-
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Figure 1: Illustration of the relationship between templates
and corresponding utterances in semantic space. The orange
dot represents a given template in the semantic space and the
green dots represent its corresponding utterances. Ideally,
the utterances sharing the same template should be closer
and clustering over the template in the semantic space. On
the contrary, utterances with different templates should be
separated.

vised (Reimers and Gurevych 2019) and unsupervised man-
ner (Gao, Yao, and Chen 2021; Chuang et al. 2022; Giorgi
et al. 2021; Nishikawa et al. 2022; Jiang et al. 2022). How-
ever, universal sentence embeddings usually achieve unde-
sirable performance in the dialogue domain (Zhou et al.
2022) since the relationship between utterances is not well
utilized. This leads the universal sentence embedding mod-
els to over-index on cosmetic similarity and does not capture
the cluster properties of utterances as shown in Figure 1.

In this paper, we explore how we can create semantically
relevant sentence embeddings for dialogues. Pattern tem-
plates and slots are high-quality auxiliary data for dialogue
understanding purposes (Kim et al. 2018; Bastianelli et al.
2020; FitzGerald et al. 2022). They are hand-annotated to be
a variable representation of text structure and salient entity
values. Thus, we extract salient domain information from the



template and its pair relation with matching utterances via
representation learning methods. We present the Template-
augmented Dialogue Sentence Embeddings (TaDSE) gener-
ation framework which produces superior text embeddings
for dialogue understanding via both unsupervised training
and inference.

Our TaDSE training method encodes auxiliary template
representations and their pairwise relationships with match-
ing utterance representations. We introduce a pair of loss
terms that discriminate the templates and the pairwise re-
lationship in a contrastive manner. Our pairwise training
outperforms previous utterance-only methods, even without
learning utterance representations in conjunction with Sim-
CSE utterance-only contrastive loss. In addition, we report
the surprising performance of template-only representation
learning.

Our TaDSE inference method exploits the pairwise rela-
tionship between the auxiliary template and matching utter-
ance without further training. We balance representations of
the auxiliary template and matching utterances to produce an
enhanced representation. This induces compression of rep-
resentation hyperspace to further benefit concrete semantics
stored in templates. We experiment with variations of this
method, including utterance-only scenarios without corre-
sponding templates. Our TaDSE inference method enhances
the performance of TaDSE-trained models by a consistent
margin.

Finally, in an effort to clarify how our approach improve-
ments operate, we look into the properties of TaDSE repre-
sentations. We start our analysis with uniformity and align-
ment quatization (Wang and Isola 2020). We observe that
the TaDSE inference stage consistently improves alignment,
while the training stage slightly improves. We also find an
inverse relationship between alignment and uniformity for
our models, from which we form the hyperspace skew hy-
pothesis as a foundation of our improvements. We propose
that encoding pair relationship between utterances and auxil-
iary templates induces local compression to hyperspace that
aligns with dialogue semantics. We discover that the hypoth-
esis is supported by representation visualizations of TaDSE
training and inference methods, which shows a multitude of
distinctive local clusters.

2 Related Works
Unsupervised Semantic Representation methods train with
contrastive objectives effectively to learn universal sentence
embeddings. For vision, methods such as SimCLR (Chen
et al. 2020b,c) have effectively demonstrated the perfor-
mance of contrastive representation learning with data
augmentation operations. In NLP, methods such as Sim-
CSE (Gao, Yao, and Chen 2021) show that simple augmen-
tation such as dropout masking can be considered effec-
tive positive representation targets. DiffCSE (Chuang et al.
2022) showed that auxiliary reconstruction loss works well
with contrastive representation learning schemes with ran-
dom masking. EASE (Nishikawa et al. 2022) introduces En-
tity representation contrastive loss for better performance.
DeCLUTR (Giorgi et al. 2021) mark different spans of the
same document as positive pairs. Our method differs from

previously studied methods since we exploit pattern tem-
plates that pair the utterances for loss design and masking
during training. In addition, we introduce a novel template-
based inference method.

One of the critical components of modern dialogue un-
derstanding (SLU / NLU) systems is the template and slot
information. They are a good source of linguistic variability
in exact comparison settings; however, they are also known
to be a good auxiliary feature for a Bi-LSTM shortlister
model (Kim et al. 2018) or dense re-ranking model (Li et al.
2021). They are known to be applicable for entity predic-
tion (Bastianelli et al. 2020) with a suggestion to utilize them
for machine translation (FitzGerald et al. 2022). Rather than
only summarizing task-specific industry applications as in
previous papers, our method employs templates as auxiliary
data for sentence representation learning, and studies how
their pairwise relationship with utterances can be encoded
via unsupervised methods.

Previous work showed that text data augmentation is ef-
fective in classification tasks, with random insertions or
deletions (Wei and Zou 2019) and automatic compositional
policy search (Ren et al. 2021) among the methods explored.
Our study is different in that rather than random augmen-
tations performed towards universal embedding improve-
ments, we perform semantic augmentations relevant to di-
alogue structure, in which semantic information is provided
by template and slot annotations. In terms of augmentation
operations, we perform the token-level masking augmen-
tation technique in contrast to insertions or deletions. Our
method is designed to enhance concrete dialogue semantic
information stored in templates and slots, rather than a vari-
ety of permutations as in previous studies.

3 Proposed Method
3.1 Template Paired Dataset
We assign Template, Intent, and Skill for each spoken dia-
logue utterance. Utterance and Template work as inputs to
the model. Intent and Skill are labels that correspond to spo-
ken dialogue semantics. We gather 6.7M distinct rows. No
personally identifiable information was used in experiments.
Detailed description in Appendix B.

Xi = (Ti, Ui)

Yi = (Ii, Si)

Di : {Xi, Yi} = {(Ti, Ui), (Ii, Si)}
(1)

where Xi and Yi notate inputs and labels, Di notates sam-
ple, Ui is utterance, Ti is paired template, Ii is intent, and Si

is skill. Only Xi is utilized for unsupervised training, while
Yi is exclusively used for evaluation. We find that skill is too
granular of criteria as to determine the semantics of an ut-
terance within an evaluation set. Thus, We experiment with
intent.

3.2 Pairwise Modeling
We introduce a new concept of ”pairwise anchoring”, where
the representation of auxiliary data (template) is trained in
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Figure 2: We show our template contrastive learning methods in this diagram. The first diagram displays template contrastive
learning (Lt

i), while the second diagram displays pairwise contrastive learning with utterance negatives (Lpairu
i ). M represents

the embedding generation model and yellow, and green represent template and utterance representations respectably. Solid lines
designate positive pairs and dotted lines designate negative pairs when connecting representations.

tandem with the paired sentence (utterance) via an unsuper-
vised representation learning method while teaching the ca-
pability to distinguish pairwise relationship via contrastive
learning (Figure 2).

First, we define template representation loss, where we
encourage the model to learn template representation such
that we have a spoken language relevant anchor with which
we further induce utterance representations. We process the
template with the tokenization strategy selected from Ap-
pendix A and train with contrastive loss. We apply the
dropout technique from (Gao, Yao, and Chen 2021) to ob-
tain positive representations.

Lt
i = − log

esim(ti,t
+
i )/τp

ΣN
j=1e

sim(ti,t
+
j )/τp

(2)

where ti is template representation, t+i is template rep-
resentation dropout variant, τp is temperature hyperparame-
ter for the template representation, and sim(ti, tj) is cosine

similarity tTi tj
||ti||·||tj || . While we utilize the template provided

with the dataset in our experiments, such templates can be
also manufactured in a heuristic manner. We leave this to
future research.

Next, we compute utterance representation loss simi-
larly in a contrastive manner. This is to ensure we correctly
learn utterance representation without over-reliance on tem-
plate representation.

Lu
i = − log

esim(ui,u
+
i )/τu

ΣN
j=1e

sim(ui,u
+
j )/τu

(3)

where ui is utterance representation, u+
i is utterance rep-

resentation dropout variant, τu is temperature hyperparam-
eter for the utterance representation, and sim(ui, uj) is co-
sine similarity.

Finally, we introduce pairwise representation loss,
where we bring utterance and template representations from
the same pair closer via contrastive loss. We introduce 2
variants of the loss depending on the negative selection strat-
egy.

1. Compare against template negatives.

Lpairt
i = − log

esim(ui,ti)/τpairt

ΣN
j=1e

sim(ui,tj)/τpairt

(4)

2. Compare against utterance negatives.

Lpairu
i = − log

esim(ti,ui)/τpairu

ΣN
j=1e

sim(ti,uj)/τpairu
(5)

We define pairwise representation loss from Eq. 4, 5:

Lpair
i = Lpairt

i or Lpairu
i (6)

Finally, our training loss is following :

Ltrain
i = Lt

i + λuLu
i + λpairLpair

i (7)

where λu and λpair are hyperparameters to scale impor-
tance of utterance and pairwise learning. Lt

i, L
u
i , Lpair

i are
defined in Eq. 2, 3, 6 respectively. We do not introduce a
hyperparameter for template loss to emphasize the pairwise
anchoring effect. Empirically, we find that test performance
does not always increase with bigger λu.

3.3 Inference Scaling
In addition to the training procedure in Section 3.2, we in-
troduce a new modification for inference. Rather than just
producing utterance representation as an inferred result, we
introduce a scaled template representation term. We intend
the inclusion of domain-adjacent anchor representation with
the new representation form. We show the effect in Figure 3.
We take influence from recent studies on multi-modality rep-
resentations (Liang et al. 2022; Radford et al. 2021) where it
is shown that representation of multiple modalities each map
to distinct narrow cones in hyperspace, as such we hypothe-
size relatively separate utterance and template representation
clusters which we balance via our method.

repri = λinferti + (1− λinfer)ui (8)



Figure 3: We demonstrate effect of inference scaling method
(Section 3.3). Green, orange points represent input utter-
ance, template representations respectably. Red points rep-
resent resulting scaled utterance representations in the hy-
perspace. We expect this adjustment to compress the local
cluster of utterance representations at a granular level.

where λinfer is relative importance of template represen-
tation with range 0 ≤ λinfer ≤ 1. A relevant template could
be easily paired via heuristics or similarity computation
for utterance-only scenarios, especially for the 1Slot vari-
ant (Appendix A). Other token-based augmentation methods
could be also developed for such scenarios.

4 Experimental Setup
We train on NVIDIA V100 GPU and evaluate with AWS R5
instances. More details on our configurations can be found
in Appendix C. We evaluate with a fine-grained NLU eval-
uation method for spoken dialogue semantics, which is de-
scribed in Appendix E.

5 Results
In our experiments, models only trained with pairwise mod-
eling method (Section 3.2) is marked TaDSE-train, while
models also inferred with inference scaling method (Sec-
tion 3.3) are marked TaDSE-infer. Lt

i +Lu
i +Lpairu

i is our
representative model. We notate our data set (Section 3.1) as
TPD (Template Paired Dataset).

Evaluation results are available in Table 1. We first show
the importance of domain-specific training data by compar-
ing TPD utterance-only trained models with external Wiki
data trained models. The results suggest the strong effective-
ness of TaDSE methods and the pairwise anchoring effect.

5.1 Pairwise Modelling
We present ablations of our pairwise contrastive learning
loss in Table 2. We find that inclusion of Lt

i, L
pair
i , Lu

i

losses each enhances performance. We also find that Lpairu
i

is slightly more performant than Lpairt
i in test set, likely due

Model Valid Test

SimCSEWiki 58.98 60.85
DiffCSEWiki 52.24 53.93

SimCSEutt-only 60.24 62.10
DiffCSEutt-only 55.98 57.46
DSE-BERTbase 15.88 16.18
TaDSE-train 76.26 80.93
TaDSE-infer 82.04 82.26

Table 1: Semantic representation performance on NLU eval-
uation benchmark (Section 4). ”Wiki” variants are models
trained with the ”wiki1M” dataset provided with SimCSE
according to configurations described in respective papers.
”utt-only” variants are model architectures trained only us-
ing utterances in our TPD training set. We discuss low per-
formance of DSE-BERTbase checkpoint in Section 6.3.

Model Valid Test

Lt
i only (unique) 68.31 69.31

Lt
i + Lpairt

i 76.29 77.02
Lt
i + Lu

i + Lpairt
i 77.04 77.86

Lt
i + Lpairu

i 76.16 77.23
Lt
i + Lu

i + Lpairu
i 76.26 80.93

Table 2: Performance for different loss variants in Sec-
tion 3.2. ’Lt

i only (unique)’ model is trained with unique
template data, duplicates are removed. Training configura-
tions for each model is selected via process described in C.

to availability of more valid negatives in the batch leading to
increased generalization capability.

Moreover, interesting fact is that training only with few-
shot template data (details in Appendix F) increases the per-
formance of the model significantly compared to SimCSE
baseline only trained on utterances (Table 1). We hypoth-
esize that it is significantly easier for the model to form a
distribution about how the important keywords relate to the
labels when trained on unique template data. Keywords may
include ”turn”, ”on”, ”off”, ”horoscope”, ”play”, ”sound”.
We further posit that due to salient masking available in
template data, an effect akin to ”blurring the image” (Park
and Kim 2022) is occurring, resulting in better representa-
tion via enhancing the keywords in relation to their relative
positions. We leave this interesting observation to future re-
search.

5.2 Inference Scaling
We perform inference scaling with various backbone mod-
els and report the results in Table 3. We observe consistent
performance increase across the evaluation sets. The results
suggest consistent effectiveness of inference scaling method.

We further perform inference scaling with different back-
bone models for each utterance and template representation.
The results are available in Table 4. We find that even with



Model Valid Test

Lt
i only (unique) 68.31 69.31

Inference Scaling 74.40 74.73

Lt
i + Lpairt

i 76.29 77.02
Inference Scaling 82.51 82.65

Lt
i + Lu

i + Lpairt
i 77.04 77.86

Inference Scaling 82.14 82.38

Lt
i + Lpairu

i 76.16 77.23
Inference Scaling 82.03 82.10

Lt
i + Lu

i + Lpairu
i 76.26 80.93

Inference Scaling 82.04 82.26

Table 3: Performance for inference scaling method (Sec-
tion 3.3). We infer utterance and template representations
using same model in this table. λinfer for each model is se-
lected via process described in Appendix D.

Model Pair Test

Baseline (Lu
i ) 62.10

Lu
i & Lt

i 67.40
Lu
i & Lt

i + Lu
i + Lpairu

i 70.45

Baseline (Lt
i + Lu

i + Lpairu
i ) 80.93

Lt
i + Lu

i + Lpairu
i & Lt

i 81.71

Table 4: Performance for inference scaling method (Sec-
tion 3.3) with different utterance and template representa-
tion models. λinfer for each model is selected via process
described in Appendix D.

unrelated hyperspaces resulting from different models, our
effort of merging representations is constantly effective and
achieves notable performance increases across variants.

6 MASSIVE Experiments
6.1 Metadata Extraction Method
As to evaluate our representation learning methods in down-
stream tasks such as MASSIVE (FitzGerald et al. 2022),
We present a metadata extraction method that we use to
extract corresponding metadata from similar training utter-
ances (Figure 4). This is similar to REINA (Wang et al.
2022), which is a methodology that first retrieves training
data that are similar to input text and provide both as input
to a given task-performing model. While we do not use a
task-performing model at the end, we filter retrieved train-
ing data on inference time to create a high-quality reference
set. We create a neural index via inference with the TaDSE
model on the training set and search it during inference time.

6.2 Experimental Setup
We train our model with MASSIVE training data and evalu-
ate on test set data for the intent classification task. We work
with the en-US locale. Because intent corresponds to spoken

Model Intent Accuracy (%)

Baseline (DSE) 11.60
Baseline (SimCSE) 74.14

Utterance only 76.90
Template only 76.97

Lt
i + Lu

i + Lpairt
i 77.17

Lt
i + Lu

i + Lpairu
i 77.30

Best (n = 5) 79.52

Table 5: Unsupervised performance on MASSIVE intent
classification task with metadata extraction method and
TaDSE trained models. Best model is based on Lt

i + Lu
i +

Lpairu
i with n-best tuning. The models are trained on MAS-

SIVE data according to the process described in Section 6.2.
We discuss low performance of DSE-BERTbase checkpoint
in Section 6.3.

dialogue semantics, we consider this a suitable proxy task to
evaluate the model and methodology. More details on Ap-
pendix I.

6.3 Results
We report the result of our experiments in Table 5. We find
the good performance of the inference-only pipeline, with
TaDSE models trained with template data achieving strong
performance. We also report the results of ablation regarding
n-best setup, in which we find that performance increase up
to top-5 and stays relatively stable with higher n (Figure 5).

We compare our results with another dialogue-trained
sentence representation model DSE (Zhou et al. 2022) and
find surprisingly low performance. We posit that since the
DSE model is trained on consecutive utterances in dialogue,
it is optimized for NLI entailment or question-answer rela-
tionship. Correspondingly, the DSE paper reports lower per-
formance of NLI supervised trained version of the model in
certain dialogue tasks. We present some examples in Ap-
pendix J.

7 Analysis
7.1 Uniformity / Alignment
As to further analyze how our methods modify the represen-
tation hyperspace of utterances, we utilize key properties of
uniformity and alignment (Wang and Isola 2020).

Uniformity is a measurement of the degree of uniform-
ness of the representations :

ℓuniform ≜ log E
x,y

i.i.d.∼ pdata

e−2∥f(x)−f(y)∥2
2 (9)

Alignment measures the distance between positive nor-
malized representations :

ℓalign ≜ E
(x,x+)∼ppos

∥f(x)− f(x+)∥α2 (10)

We compute uniformity/alignment on our test set and de-
fine ppos as pairs with the same intent label, and pdata as
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the full test set. We show uniformity/alignment for our best
models in Figure 6.

We observe that TaDSE-infer method (rightmost in the
graph) has improved alignment by almost 70% compared
to the SimCSE baseline, while uniformity is inferior. We
observe that models trained via the TaDSE method (t′, u′,
t′+u, u′+u) show relatively superior alignment and slightly
inferior uniformity compared to the baseline. The inclusion
of Lu

i loss weakens alignment, which may mean that the
models learn representations that are independent of spoken
dialogue.

Interestingly, we detect that models further inferred via
the TaDSE method (inference scaling with t′ + u, u′ + u)
exhibit comparatively superior alignment that positively cor-
relates with λinfer, with inverse correlation for uniformity
strength. This consistent trend could be interpreted as for
TaDSE methods introducing ”skew” to the hyperspace, in
which successive application of pairwise anchoring meth-
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Figure 6: Uniformity & alignment of our best model vari-
ants. The smaller value is superior for both metrics. Base-
line is Lu

i trained model (SimCSEutt-only), while t′, u′, u are
Lt
i+Lpairt

i , Lt
i+Lpairu

i , Lu
i losses denoting models trained

via pairwise modelling methods. Floating point labels are
λinfer values for inference scaling variants of the model.

ods for both training (Section 3.2) and more markedly infer-
ence (Section 3.3) redistribute the representations to a more
compressed, well-aligned hyperspace. This also explains in-
ferior uniformity. We discover that TaDSE methods obtain
improved performance for spoken dialogue that roughly cor-
responds to superior alignment.

7.2 Qualitative Analysis
We analyze distributions of our representations via the 2D
T-SNE method. We employ the default T-SNE configuration
from the Scikit-learn library with a perplexity of 30.0.

T-SNE diagrams with color-coded intents are shown in



Figure 7, 8 with more intent cluster diagrams in Appendix H.
While we can observe global intent clusters in all diagrams,
TaDSE models reveal a clear local structure with a multitude
of clusters per label. This observation aligns with an in-depth
discussion about ”hyperspace skew” in Section 7.1.

T-SNE diagrams with auxiliary template representations
are shown in Figure 10, 11 and 12 of Appendix G. Figure 10
exhibits sparse template representation groupings learned
via Lt

i loss, while utterance representations are roughly gath-
ered together. TaDSE models (Figure 11, 12) display an
abundance of local utterance representation clusters along
with dense template representation clusters. Global utter-
ance representation structure is observed to have also ex-
panded. However, we observe pronounced representation
clusters with separate utterance and template represen-
tations. This suggests a possible interpretation as multi-
modality (Liang et al. 2022).

8 Conclusions
In this work, we propose TaDSE, a novel unsupervised rep-
resentation learning method that produces semantic repre-
sentations for dialogue. We present methods of encoding
pair relationships between templates and matching utter-
ances via a new training scheme and adjusting the inferred
representations. We achieve a strong performance increase
on the NLU task and MASSIVE downstream task in contrast
to utterance-only representation models and methodology.
We further explain the inner workings of our methods via
uniformity/alignment analysis and representation visualiza-
tion, in which we report that our methods induce informed
compression of semantic hyperspace as per the intended ef-
fect. Correspondingly, we report distinct local structures in
resulting hyperspace that is consistent with our expectation
of semantic representations for spoken dialogue. We believe
that problem of producing correct representations for non-
universal domains is of immediate importance in enriching
our understanding of language usage patterns in a particular
domain, of which spoken dialogue is an interesting exam-
ple. Some examples of this could be sentences in legal or
medical documents. We leave it to future work.
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A Tokenization Strategy Ablations
We experiment with 3 tokenization strategies to evaluate whether template structure or slot values are more important. We start
with 1Slot configuration, where all slots are uniformly replaced with {SLOT} token, and keep top 300 / 1000 occurring slots in
the dataset as unique tokens in 300Slot / 1000Slot variants respectively. Sample in Table 6.

1Slot : ∀sj → {SLOT}

kSlot : sj →
{
sj , if sj in top k

{SLOT}, otherwise
(11)

where sj notates each slot value and {SLOT} notates replacement token.

Raw Input Example

Utterance Turn on the lamp in study.
Template Turn on the {LIGHT} in {ROOM}.
Slot Rank {LIGHT}:750th, {ROOM}:52th

Tokenization Output

1Slot Turn on the {SLOT} in {SLOT}.
300Slot Turn on the {SLOT} in {ROOM}.
1000Slot Turn on the {LIGHT} in {ROOM}.

Table 6: Tokenization schemes.

We find that 1Slot, 300Slot, and 1000Slot variants each achieve similar performance on a separate large validation set (2.6M
rows) when trained with Lt

i loss. We posit that Lt
i performance comes from masking and remaining keywords, thus the number

of slot tokens could be irrelevant.

Model Hit Rate MRR MAP Average

Skill Intent Skill Intent Skill Intent

Lt
i (1Slot) 80.35 75.85 88.10 85.57 86.72 83.86 83.41

Lt
i (300Slot) 80.26 74.48 88.43 84.90 86.97 83.13 83.03

Lt
i (1000Slot) 80.85 75.12 88.56 85.02 87.28 83.38 83.34

Table 7: Evaluation of tokenization variants.

B Template Paired Dataset
We define training set from random 80% of unique rows (5.3M). We further randomly sample 0.5% of the remaining data each
to create valid and test sets (6K each). Templates and slots are defined with human annotations, which are subsequently applied
to utterances. We show the dataset sizes in Table 8. Refer to Table 6 for example data.

Data Split Train Valid Test

Data Size 5.3M 6K 6K

Table 8: Dataset size.

C Training Details
We work with BERT-base (Devlin et al. 2019) model. We train the models using a modification of SimCSE (Gao, Yao,
and Chen 2021) code-base. The learning rate is 3e − 5 and we use ’cls’ pooler in our experiments. We select the resulting
model after 1 epoch. We mostly experiment with the 1Slot variant as similar performance improvements are observed (Ap-
pendix A). We iterate over loss ratio λu, λpair ∈ {0, 0, 0.1, 0.5, 1.0}. We experiment with different temperatures τu, τp, τpair ∈
{0.05, 0.5, 5, 100}, and we find that 0.05 works best. For inference scaling ratio λinfer ∈ {0.0, 0.25, 0.5, 0.75, 1.0}, we ablate



on the validation set and choose the best value for each configuration. The best values are found to be 0.5 or 0.75 (experiments
in Appendix D).

The following hyperparameters are selected via the above process:

1. Lt
i + Lu

i + Lpairt
i , Lt

i + Lpairt
i : λpairt = 0.5 & λu = 0.5, 0.0

2. Lt
i + Lu

i + Lpairu
i , Lt

i + Lpairu
i : λpairu = 1.0 & λu = 0.1, 0.0

D Inference Scaling Experiments
We display inference scaling ablation results on the validation set. We tune hyperparameter λinfer according to the validation
set performance and select the best configuration for test set evaluations in Section 5.2.

Model λinfer = 0.0 λinfer = 0.25 λinfer = 0.5 λinfer = 0.75 λinfer = 1.0

Lt
i + Lpairt

i 76.29 80.38 82.43 82.51 43.31
Lt
i + Lu

i + Lpairt
i 77.04 79.23 82.14 81.96 42.98

Lt
i + Lpairu

i 76.16 80.43 82.03 81.87 42.73
Lt
i + Lu

i + Lpairu
i 76.26 79.77 81.94 82.04 42.83

Table 9: TaDSE inference scaling method with different λinfer values, evaluated on validation set. Selected models are high-
lighted in bold.

E NLU Metrics per Evaluation Set
We develop new evaluation metrics as to better reflect spoken dialogue semantics. For this, we utilize intent labels already
present in NLU datasets (FitzGerald et al. 2022; Bastianelli et al. 2020). To enable fine-grained evaluation of semantic relevance,
we borrow ranking methodology. After computing representations for all utterances in selected evaluation set, we iterate over
the utterances to each select their top-k (k = 5) most similar utterance candidates from the evaluation set from which we
evaluate based on selected label.

We average 3 performance metrics :
1. Hit Rate (HR@K) : Number of positive pairs within candidates.
2. Mean Reciprocal Rank (MRR@K) : We select first positive candidate and calculate its reciprocal rank.
3. Mean Average Precision(MAP@K) : We find all positive candidates and calculate average precision.

We compute intent ranking metric on validation and test set via designating average of all ranking metrics per data set as its
representative metric.

We display raw results for each of the evaluation sets, Valid and Test. We find that individual metrics correlate well with each
other in terms of relative performance.

E.1 Valid

Model Hit Rate (Intent) MRR (Intent) MAP (Intent) Average

SimCSE, Wiki 50.24 64.66 62.05 58.93
SimCSE, TPD 55.13 63.43 62.17 60.24
TaDSE-train 70.06 80.14 78.59 76.26
TaDSE-infer 76.47 85.42 84.24 82.04

Table 10: Evaluation of major models on Valid set.

E.2 Test

Model Hit Rate (Intent) MRR (Intent) MAP (Intent) Average

SimCSE, Wiki 52.46 66.34 63.76 60.85
SimCSE, TPD 56.88 65.19 64.23 62.10
TaDSE-train 72.00 81.04 89.75 80.93
TaDSE-infer 76.71 85.50 84.57 82.26

Table 11: Evaluation of major models on Test set. We find that Valid and Test performance mostly align.



F Template Data Distribution

We display relative number of utterances per representative templates in graph below. In terms of unique templates in training
data, there are 10K templates with slot values and 6K utterances without such slots.

F.1 Top 20 Templates

Figure 9: We display top 20 templates in terms of paired utterance count. We only present relative template count in accordance
with organizational policy.

F.2 Few-shot Utterances

We observe the existence of utterances without matching templates with slot values. They function as few-shot utterance data
for training Lt

i model. Most are unique utterances with a specific purpose (i.e. ”how is the stock market”). We do not show the
actual utterances in accordance with organizational policy.

G Visualization of Template Representations

T-SNE diagrams for template representation distribution is available in Figure 10, 11 and 12. Discussion in Section 7.2.



Figure 10: T-SNE diagram with utterance (orange) / template (blue) representations from Lt
i only model.

Figure 11: T-SNE diagram with utterance (orange) / template (blue) representations from Lt
i + Lu

i + Lpairu
i model.



Figure 12: T-SNE diagram with utterance (orange) / template (blue) representations from Lt
i + Lu

i + Lpairt
i model.

H Visualization of Intent Labels

Additional T-SNE diagrams for intent label distribution are available in Figure 13, 14 and 15. Discussion in Section 7.2.

Figure 13: T-SNE diagram with intent label distribution of Lt
i only model.



Figure 14: T-SNE diagram with intent label distribution of Lt
i + Lpairu

i model.

Figure 15: T-SNE diagram with intent label distribution of TaDSE-infer (Lt
i + Lu

i + Lpairu
i ) model.

I MASSIVE Experiment Setup
We follow the TaDSE methodology for training and perform experiments with a learning rate of 3e− 5. We select the resulting
model after 1 epoch. Our MASSIVE models have λu = 1, λpair = 0.01. We further experiment with tuning the reference set
by changing n-best criteria, in which we find n = 5 best. We obtain a reference set by filtering the retrieved training data based
on the overall frequency of intent label and similarity score. Training data from the dominant cluster near the test utterance will
be selected as a reference set.



J DSE MASSIVE Samples

Query Top-1 Result

could you please help me in listening to the radio the radio should play only on nine hundred and ninety nine f. m.
i would be happy if you update me the events going on our area go silent until three p. m.

please describe that object for me open internet
book me a cab going to location book a taxi uber

send mom an email now start a new email to
i got promoted today it feels so good how busy am i this week

Table 12: MASSIVE samples from DSE-BERTlarge. This model achieves lower intent accuracy of 9.99%.


