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Abstract

Minimizing safety incidents and their consequent damage
has been a high priority for industries. Incident reports cap-
ture many details such as causes, failures as well as conse-
quences. However, automated analysis of repositories of in-
cident reports has remained a challenge. In this paper, we
propose to apply knowledge-based NLP algorithms to auto-
matically identify similar safety incidents from repositories
of historical industrial incidents. We devise a notion of sim-
ilarity among industrial incident reports based on their event
timelines. A timeline is an informative knowledge representa-
tion capturing the incident events and their chronological se-
quence. We construct an event timeline representation of each
incident using a transfer learning based event extraction algo-
rithm as well as a novel event temporal ordering approach that
makes use of domain-specific knowledge. We then propose an
unsupervised, dynamic programming based TLSim algorithm
to compute the similarity between two event timelines. Para-
phrased natural language descriptions of similar events in dif-
ferent incident reports pose a major challenge for computing
event timeline similarity. We explore two variants of approxi-
mate matching of the event nodes on the timelines: predicate-
arguments (PA) representation and the sentence transformer
based representation of event node description (ED). Effec-
tiveness of the proposed techniques is experimentally vali-
dated on real-life incidents from two different industries: (i)
Construction, and (ii) Aviation.

Introduction
Industrial safety incidents (such as accidents, hazards, or
near-misses) even though highly undesirable, are an un-
avoidable reality. Multiple studies estimate that the cost of
industrial incidents runs into multiple billion dollars (In-
juryFacts 2021; IEN 2017) per annum. Even more impor-
tantly, there is an irreparable human cost due to fatalities
and major injuries such as permanent disabilities. In most
cases, reports summarizing the incidents as well as their in-
vestigation are maintained in incident document reposito-
ries (Olivares, Rivera, and Mc Leod 2014). For example,
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Sample incident #1: On February 1,
2014, at approximately 11:37 a.m., a
340 ft.-high guyed telecommunication
tower, suddenly collapsed during upgrading
activities. Four employees were working
on the tower removing its diagonals. In
the process, no temporary supports were
installed. As a result of the tower’s
collapse, two employees were killed and
two others were badly injured.
Sample incident #2: On March 25, 2014,
two communication towers owned by Union
Pacific Railroad collapsed in Blaine,
KS, killing two workers. One employee
was engaged in disconnecting the 10 ft.
diameter dish and another employee was
on the same tower approximately 80 ft.
from the top. One worker died at the scene
and the other was pronounced dead at the
hospital.

Table 1: Sample Incidents

Table 1 shows two sample incident report summaries in the
construction domain. Multiple stakeholders spend extensive
efforts to analyze incidents, identify root causes, suggest
preventive actions and conduct trainings (OSHA 2021) to
avoid recurrence. However, most of these investigative stud-
ies (Latorella and Prabhu 2000; Chettouh, Hamzi, and Be-
naroua 2016) are carried out with manual analysis. There is
little work towards automated processing of repositories of
incident reports which can be useful for the above analysis.

In this paper, we propose techniques to facilitate auto-
mated analysis of a repository of incident reports using event
timelines. Timelines are an important knowledge represen-
tation that capture chronological ordering of the events. A
timeline is useful in the process of root cause analysis as
the causes temporally precede the effect (the incident in this
case). To construct an event timeline, we use a state-of-
the-art incident event extraction approach to obtain events
from incident reports and propose significant improvements
to the Document Level Time-anchoring (DLT) algorithm
for temporal ordering. We then propose TLSim, an unsuper-
sived algorithm that makes use of neural representations of
the events and longest approximate common subsequence
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Figure 1: Timelines corresponding to the sample incidents. The similar events are shown using dotted lines.

matching of the timeline representations of incidents to iden-
tify similar incident reports. Approximation of the longest
common sequence technique is necessary as the mentions of
events and their arguments could be paraphrased across dif-
ferent incident reports. Further, the event mentions may be
incomplete, and their similarity may be defined in complex,
domain-specific ways. To tackle the challenges posed due to
variation in describing an event, we explore two variants of
approximate matching of the event nodes on the timelines:
predicate-arguments (PA) representation and the sentence
transformer based representation of event description (ED).
As an illustration of the TLSim, Figure 1 shows events, their
ordering and desired similarity for the sample incidents pre-
sented in Table 1. We show effectiveness of the proposed
approach by considering real-life incident reports from two
industries, (i) Construction and (ii) Civil Aviation.

Related Work
Several articles such as (Wang et al. 2017; Tanguy et al.
2016; Zhang et al. 2020; Zhong et al. 2020) have focussed
on classification of incidents into multiple classes. Wang et
al. (2017) use different classifiers to classify reports of in-
cidents happened in a hospital. Tanguy et al. (2016) use
SVM for classification and topic models for visualization
of aviation safety reports. Rose et al. (2020) provide a clus-
tering and visualization framework for analysis of aviation
safety narratives. Zhang et al. (2020) propose a convolu-
tional bidirectional long short-term memory (C-BiLSTM)-
based method for classification of construction incident re-
ports obtained from the Occupational Safety and Health Ad-
ministration website. Zhong et al. (2020) propose a Convo-
lution Neural Network (CNN) model for classification of ac-
cident narratives in construction. All these papers classify
incident reports of respective domains into multiple classes.
However, such document classification based analysis can
be considered largely coarse-grained and may not be useful
where fine-grained analysis at sentence or token level is nec-
essary. Few other examples of coarse-grained incident report
analysis apart from classification are: (i) Tulechki (2015),
who proposes a system for measuring similarity between
incidents using a bag-of-features approach and, (ii) Liu et
al. (2021) employed K-means clustering and co-occurrence
network to infer latent causality of pipeline incidents.

Several authors have explored information extraction
from incidents in different domains, for example, Os-
oba (2015) extracts victims, hospitals, police from road acci-
dent reports, while Alkadi (2017) extracts crash site and date
from air-plane crashes reports. In general, the nuggets of in-
formation extracted in these papers are largely independent

and would require post-processing such as statistical analy-
sis or further NLP processing such as relation extraction for
deriving meaningful insights.

Timelines are an important knowledge representation. Ex-
traction of timelines (Bedi et al. 2017) and its variants (Pal-
shikar et al. 2019a; Hingmire et al. 2020) have been explored
in other domains such as history textbooks or software ana-
lytics (Palshikar et al. 2019b). However, automated extrac-
tion of timeline representation from safety incident reports
has not been explored in the literature.

As a progression over the discussed relevant literature, our
work considers three important aspects: (i) focus on extrac-
tion of fine-grained aspects such as events and their tem-
poral order using state-of-the-art NLP/ML techniques, (ii)
generation of the expressive timeline representation and its
use for analysis such as incident similarity and, (iii) support
for analysis of unstructured textual descriptions of incidents,
generally available across industrial domains.

Representing Incidents as Event Timelines
Constructing an event timeline from text involves solving
two important information extraction tasks: (i) Identifying
event triggers and their arguments, and (ii) Chronologically
ordering the extracted events.

Event Trigger and Argument Identification
As events are represented as nodes in an event timeline, ex-
tracting events from a narrative is an important step in time-
line construction. Events in the text of an incident report rep-
resent instantaneous occurrences or changes in states of the
involved participants.

The task of event-trigger extraction is a sequence clas-
sification task and recurrent networks such as BiLSTMs
with a CRF decoder require large amounts of data to train.
We follow the neural network based transfer learning ap-
proach (Ramrakhiyani et al. 2021) for event extraction. First,
a BiLSTM-CRF model is pre-trained with event labelled
data on general purpose text ECB corpus of generic news re-
ports. This helps the network to learn about “eventiveness”
property of verb-based and nominal phrases that describe
events. Then, the pre-trained network is fine-tuned on a rel-
atively smaller event annotated dataset of incident reports.
This allows us to create a transfer-learnt and effective event
extractor focused on industrial incidents.

Arguments of an event predicate define the participant
context of an event and are also important for creating
an informative label for an event node on a timeline.
To obtain arguments of the extracted events, we use the
AllenNLP Semantic Role Labelling tool (Gardner et al.



2018). We primarily focus on A0 (agent like) and A1 (Pa-
tient/Experiencer/Theme like) arguments.

Temporal Ordering of Events
To construct event timelines, temporal ordering of the iden-
tified events is a crucial task. We propose a set of event tem-
poral ordering annotation guidelines that are useful for inci-
dent report analysis and are in congruence with the recent re-
search literature (Ning, Subramanian, and Roth 2019; Ning,
Wu, and Roth 2018).

Event Ordering Annotation: The event temporal rela-
tion extraction literature consists of work on some ma-
jor datasets - TimeBank (Pustejovsky et al. 2003), Time-
Bank Dense (Cassidy et al. 2014) and MATRES (Ning,
Wu, and Roth 2018). The most important difference among
them is the granularity of the tag set. TimeBank Dense
(TB-Dense) considers six relations namely BEFORE, AF-
TER, INCLUDES, INCLUDED IN, SIMULTANEOUS and
VAGUE. However, the more recent work by Ning, Wu, and
Roth (2018) for MATRES dataset reduces the inter-event
temporal relations to only BEFORE, AFTER, EQUAL (i.e.,
SIMULTANEOUS) and VAGUE. Han, Ning, and Peng
(2019) show that extracting event relations from the denser
tag-set of TB-Dense with high accuracy is challenging. We
consider the MATRES tag-set to annotate the event relations
as it is intuitive to understand for a user consuming the event
timeline. We exclude the VAGUE relation from the tagset as
it increases the reader’s confusion and is not directly usable
for the process of timeline construction. We devise a mini-
mal event temporal relation tagging scheme, as follows:

• The annotation scheme in the literature involves tagging
relations for every event pair in the same sentence
and the consecutive sentence. But this scheme leads to
annotation of multiple unnecessary event connections
in turn reducing performance and understanding. We
restrict the annotator to tag consecutive events in a
sentence for a relation. As an example, consider the
sentence: While flying over water, the
pilots got distracted by the dolphins
splashing in the water. We focus on annotating
temporal relations for the consecutive event pairs (flying,
distracted) and (distracted, splashing), only.

• Further, we ask the annotator to identify first and last
events temporally in a sentence and only add the annota-
tion between the last event in sentence i and the first event
in sentence i+1. As an example, consider the consecutive
sentences While flying over water, the
pilots got distracted by the dolphins
splashing in the water. and Inadvertant
inputs got fed to the controls leading
to the plane yawing. Here, we observe that the
last event for the first sentence is distracted and the
first event for the second sentence is fed. So, we focus
on annotating the temporal relation for the event pair
(distracted, fed), only.

• One of limitations of the MATRES annotation scheme
is that it does not provide any rules for annotating

INCIDENT: On February 1, 2014, at
approximately 11:37 a.m., a 340 ft.-high
guyed telecommunication tower, suddenly
collapsed during upgrading activities.
BACKGROUND: Four employees were working on
the tower removing its diagonals.
BACKGROUND: In the process, no temporary
supports were installed.
CONSEQUENCES: As a result of the tower’s
collapse, two employees were killed and
two others were badly injured.

Table 2: Sentence-wise aspect marking - Sample Incident #1

relations with nominal events. We address this limi-
tation in our work. If nominal events occur as argu-
ments to verb-based events, we ask the annotators to
mark a SIMULTANEOUS relation between the two.
For example, a SIMULTANEOUS relation needs to
be marked between survived and excursion in
the sentence The plane survived the runway
excursion. In all other cases when nominal events oc-
cur independently, they need to be treated similar to the
verb-based events for relation annotation.

• We also make the annotators ensure that any relations
which can be derived through transitivity are not labelled.

Proposed Event Ordering Approach: Our approach for
temporal ordering of events not only makes use of the tem-
poral expressions (TIMEX), but also makes use of insights
derived from domain-specific knowledge. We first dwell
upon these domain-specific insights which are useful for the
temporal ordering of events.

Note that an incident occurs due to a series of events
which eventually lead to some aftermath, either serious (e.g.,
a major injury, a death or damage to equipment or material)
or something milder (e.g., a minor injury). We observe that
the sentences in an incident report give information on one
of the three aspects of the incident: pre-incident background
circumstances (referred to as BACKGROUND), description
of the incident (INCIDENT) and a post-incident aftermath
(CONSEQUENCES).

For instance in Table 2, the Sample incident #1 report
is shown with each sentence marked with the correspond-
ing aspect. The first sentence which mentions the collapse
of the communication tower is describing the incident. The
next two sentences however, give a description of events that
were in progress just before the collapse such as the ongoing
removal the diagonals. The final sentence describes the after-
math involving death and injury to the employees. In certain
cases, a sentence describes more than one aspect (such as the
incident and the aftermath) for example, the first sentence in
Sample incident #2. However, this mixing of aspects in the
same sentences was observed sparingly. We use the follow-
ing two insightful observations to develop the first step of
the temporal ordering component of our approach.
• Observation 1: While recording the incident, the author

of the incident report would formulate a sentence to en-
code information about one or more of the three aspects:



(i) BACKGROUND, (ii) INCIDENT, and (iii) CONSE-
QUENCES. However, to describe the incident she may
present these aspects (i.e. the corresponding sentences) in
the order she thinks is most important to communicate.
Events described as part of the BACKGROUND aspect
sentences would have occurred first and would temporally
precede the events described in INCIDENT aspect sen-
tences which in turn would precede events described as
CONSEQUENCES. This implies that if the sentences can
be associated to the aspect they describe, an effective way
to order the sentences chronologically can be devised.

• Observation 2: These three aspects mentioned above
can be the defining dimensions if a comparison needs to
be carried out between any two incidents. Similar back-
grounds may indicate similar prevalent conditions and
possibly causes. Similar incident descriptions may indi-
cate similar series of failure events. More interestingly,
similar incident descriptions but dissimilar backgrounds
may indicate scenarios with different causes but similar in-
cidents. Similarly, more such scenarios can be deciphered.

The event ordering approach we propose is built on this
premise. We divide the task of event temporal ordering into
two steps - inter-sentence ordering and intra-sentence order-
ing. As part of the inter-sentence ordering step, we first
make a simplifying assumption that each sentence reports
about only one of the three aspects - BACKGROUND, IN-
CIDENT and CONSEQUENCES. We then train a neural
network based classifier to perform the classification of each
sentence to its corresponding aspect. As output of this step,
a list of sentences ordered temporally is obtained by plac-
ing the BACKGROUND aspect sentences first, followed
by the INCIDENT aspect sentences and then the CON-
SEQUENCES aspect sentences. The classifier architecture
(shown in Figure 2) comprises of

• a sentence representation layer: converts every sen-
tence into a vector representation by passing the sentence
through a pre-trained BERT-Base model and considering
the output CLS representation

• hidden layer: reduces the input high-dimensional BERT
representation to a smaller dimension, followed by a
dropout layer for regularization.

• output layer: a softmax activation layer for the three
classes output classification

Once the sentences are ordered, events inside each sen-
tence need to be ordered which is carried out as part of the
intra-sentence ordering step. We harness the time expres-
sions (TIMEX) as well as temporal cues occurring as lex-
ical markers (after, before, when, etc.) to place intra-
sentence events in correct order. The process involves check-
ing the presence of these temporal markers on the low-
est common ancestor path between the events and check-
ing their occurrence with respect to the first event in the
pair. Nominal events are also handled by establishing a SI-
MULTANEOUS relation with their dependency parent verbs
which are verb-based events. The detailed algorithm for the
intra-sentence ordering step is presented in Algorithm 1.

Algorithm 1: Intra-sentence Event Temporal Order-
ing Algorithm

Input: Set of events E for a sentence S, set of POS tags P
for sentence S and set of dependency relations D
for sentence S

Result: Temporally ordered list of the input events
OE LIST

1 OE LIST := array(0 . . . |E|);
2 order number = 1;
3 for i in 0 . . . |E| − 1 do
4 for j in 1 . . . |E| do
5 if P [i] = ’NOUN’ and P [j] = ’VERB’ and i in

D[j][’children’] and D[j][i][’relation’] in
[’nsubj’, ’nsubjpass’] then
// ’SIMULTANEOUS’ relation when

nominal event is subject of
verb-based event

6 OE LIST [order number].add(i);
7 OE LIST [order number].add(j);
8 order number := order number + 1;

9 else if P [i] = ’VERB’ and P [j] = ’NOUN’ and j
in D[i][’children’] and D[i][j][’relation’] in
[’dobj’, ’nmod:*’] then
// ’SIMULTANEOUS’ relation when

nominal event is object of
verb-based event

10 OE LIST [order number].add(i);
11 OE LIST [order number].add(j);
12 order number := order number + 1;

13 else
14 lca path =

compute lowest common ancestor(i, j)
for k in lca path do

15 lca path token = S[k] if lca path token
== ’after’ and i < k then
// event1 happened after

event2
16 OE LIST [order number].add(j);
17 order number := order number +

1;
18 OE LIST [order number].add(i);

19 else if lca path token == ’after’ and k < i
then
// after event1, event2

happened
20 OE LIST [order number].add(i);
21 order number := order number +

1;
22 OE LIST [order number].add(j);

// The above check is made
for multiple temporal
markers such as ’before’,
’while’, ’when’,
’during’, ’at the same
time’ and appropriate
relations are
established. The exact
pseudocode is skipped for
brevity.

23 return OE LIST ;



Figure 2: Architecture of the sentence aspect classifier

Using Event Timeline Similarity for Retrieving
Similar Incidents

Identifying incidents with similar causes or similar conse-
quences or both can help in devising strategies to minimize
the recurrence of similar incidents. It will also help to recom-
mend best practices and better post-incident remedial mea-
sures. However, to derive such minute observations and in-
sights, a simple textual query based search of similar inci-
dents may not suffice. We propose that in addition to the in-
dex based searching, finding similar event timelines would
help in establishing and observing fine-grained facets of in-
cident similarity. The task of finding similar timelines is not
straightforward even for human experts owing to the com-
plex nature of the timeline representation. To obtain a quan-
titative measure of similarity between two event timelines,
there is a need to devise an objective definition of the simi-
larity which should allow for an ordinal grading instead of a
binary similar/not-similar scoring. Our proposed definition
of timeline similarity is grounded in multiple observations
we make while manually exploring multiple pairs of time-
lines to understand their similarity. Some of them are high-
lighted as follows:

• A higher number of similar events which describe the ac-
tual incident, indicate a high similarity between the inci-
dent timelines (simactual).

• If the actual incident is not similar, but there are a
high number of similar events which describe the back-
ground/context of the incident, a lower value of similar-
ity can be assumed between the incident timelines (say
simcontext where simcontext < simactual).

• If the actual incident and incident contexts are not similar,
but there are a high number of similar events which de-
scribe the aftermath of the incident, an even lower value of
similarity can be assumed between the incident timelines
(say simaftermath where simaftermath < simcontext).

• Depending on the number of similar events correspond-
ing to the three facets above, a graded similarity can be

assigned on a Likert scale of 0 to 3.

Proposed Approach
We propose an approach to find similar incidents through a
combination of an inverted index based similarity and event
timeline similarity. As the first filtering step, we build an in-
verted index on the corpus of incidents and given a query
incident, we query the index to retrieve a set of k most simi-
lar incidents. We use the standard Information Retrieval (IR)
pipeline of stop word removal and lemmatization for both
corpus documents and query incidents while creating and
querying the inverted index respectively. This index search
step is important as the incidents vary in their characteris-
tics widely, and it would be wise to perform the fine-grained
timeline comparison only with the incidents having simi-
lar overall characteristics (e.g., in aviation domain, an air-
craft fuel starvation incident may have more similarity with
other fuel starvation incidents than, say, aircraft bird hit or
runway excursion incidents). This step also improves com-
putational efficiency of the overall pipeline by reducing the
search space of possible matching incidents.

As the second step, we propose the TLSim algorithm to
perform an unsupervised timeline similarity matching on
the k most similar incidents obtained from the first step.
As timelines are ordered sequences of events, a matching
algorithm which compares two strings (ordered sequences
of characters) can be employed. Further, the matching of
items in the sequence need not be contiguous as the time-
lines may have extra unrelated events between two highly
matching events. We can observe such characteristics of
event timelines in Figure 1. Considering these factors, we
devise a technique based on the Longest Common Sub-
sequence (LCS) (Bergroth, Hakonen, and Raita 2000) ap-
proach to match two event timelines. It is important to note
that LCS counts a match when the characters under consid-
eration are exactly same, which may not be true for events
as similar events may be expressed through different lex-
ical/semantic forms. Hence, we modify the exact matching
process to make it “approximate” through embeddings based
similarity of the event words and their arguments, while re-
taining the dynamic programming based computation.

We discuss in detail the event similarity procedure which
forms the basis for the TLSim timeline matching algorithm.
We consider two ways to represent an event node on the
timeline: (i) “Predicate-Argument” (PA) representation
of an event: We represent an event node as a three-tuple
(e, A0, A1) which includes the event trigger e, argument
A0 and argument A1. Arguments A0 and A1 represent
semantic roles of the event e, such that A0 represents
the prototypical agent (i.e., the doer or initiator of the
event) and A1 represents patient (i.e., the experiencer,
undergoer or affected entity) of the event e. (ii) “Event
Description” (ED) representation of an event: We construct
a sentence-like description of the event by combining the
event trigger, argument A0 and argument A1 using syntactic
dependencies. The event description is constructed in such
a manner that it expresses the event completely as a string
or sentence while being succinct. We propose two variants
of approximate LCS based TLSim timeline matching which



use the two event definitions respectively:

TLSim PA: In this variant of the TLSim algorithm, we use
the predicate and arguments based representation of each
event node on the timeline and compute the similarity using
word embeddings along with multiple linguistic constraints.
• Word embedding based similarity:

– Similar events should have high cosine similarity be-
tween the word embeddings of their respective ele-
ments. This implies that two events are similar to each
other if there is high word embeddings similarity be-
tween the event triggers as well as the entities at their
respective semantic roles (A0, A1).

– For example, in the events (hit, the beam,
the worker) and (struck, the beam, the
employee), apart from the exactly same A0 argu-
ments, both the event triggers and the A1 arguments
have high word embeddings based similarity, respec-
tively, leading to prediction of both the events being
similar.

• Linguistic constraints:
– Similar events should show negation compatibil-

ity. For example, the events (did not hit,
the beam, the worker) and (struck, the
beam, the employee) are not similar even
though their event phrases (hit and struck) are similar.

– If two events are antonyms of each other they
should not be considered similar. However, if the
two events are antonyms but have opposite negation
compatibility, then the events are likely to be similar.
For example, the events, (failed to open,
the worker, the valve) and (did not
succeed in opening, the employee,
the valve) are similar to each other.

– If two events are similar then their respective
particles/post-positions should be compatible to each
other. For example, in the events (was climbing
up, he, the stairs) and (was climbing
down, he, the stairs), the particles (up and
down) associated with the event phrase climbing
are antonyms and non-compatible, and hence the
events are not similar even though the arguments of
the events are same.

We employ two thresholds one for the event trigger
similarity (τ1) and another for argument similarity (τ2). We
find these thresholds empirically and set them as τ1 = 0.6
and τ2 = 0.25. If either of the arguments are not extracted,
we default on the arguments being similar. Further, for
multi-word event or argument phrases, we devise the
vector representation as an average of constituent word’s
embeddings. We use the GloVe based 100 dimensional
word embeddings for all the experiments.

TLSim ED: In this variant of the TLSim algorithm,
we use the sentence-level embeddings of the event
descriptions from sentence transformers (such as Sentence-
BERT (Reimers and Gurevych 2019)). We gauge similarity

between event nodes on the two different timelines based
on similarity between these sentence representations. Two
event nodes are similar if the cosine similarity between
the Sentence-BERT representations of their event descrip-
tions is high. For example, the event descriptions the
worker was electrocuted and the employee
received an electric shock discuss similar
events as they emit highly similar Sentence-BERT represen-
tations.

We employ a threshold for the event description similar-
ity (found empirically), setting it as τ3 = 0.7. We use the
sentence transformers model all-MiniLM-L6-v2 available on
HuggingFace for obtaining the sentence representations of
the event descriptions.

Algorithm 2: TLSim Timeline Matching
Input: Event Sequences S1 and S2,

variant type (TLSim PA or TLSim ED),
event similarity threshold τ1,
argument similarity threshold τ2 and
event description similarity threshold τ3

Result: Longest subsequence of approximately
matching events Stlsim and its score

1 C := array(0 . . . |S1|, 0 . . . |S2|);
2 for i in 0 . . . |S1| do
3 C[i,0] := 0
4 for i in 0 . . . |S2| do
5 C[0,i] := 0
6 for i in 0 . . . |S1| do
7 for j in 0 . . . |S2| do
8 if approximate similarity(S1[i], S2[j],

variant type, τ1, τ2, τ3) then
9 C[i,j] := C[i-1,j-1] + 1

10 else
11 C[i,j] := max(C[i,j-1], C[i-1,j])

12 Stlsim, scoretlsim := backtrack(C);
13 return Stlsim, scoretlsim

The TLSim algorithm used to compute the longest ap-
proximate common subsequence of events is given in Algo-
rithm 2. The function approximate similarity computes the
event level similarities depending on the variant type spec-
ified as input parameter and returns a True or False match
result. Given a pair of event timelines, we compute their
matching event subsequence and a match score as the sum
of similarity between the matching events. A list of match-
ing incidents, ordered descending on this score, is presented
as output.

Datasets
We evaluate the performance of the proposed approach
on two real-life incidents datasets from the aviation
industry and construction industry. For aviation, we
crawl summaries of aircraft incidents from the Skybrary

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2



LCS
(Baseline) TLSim PA TLSim ED

Aviation
Object Strikes 0.53 0.56 0.60
Equipment Faults 0.58 0.60 0.58
Path Excursion 0.65 0.70 0.68
Construction
Electrocution 0.63 0.65 0.61
Worker falls 0.53 0.75 0.75
Vehicle related 0.61 0.69 0.68

Table 3: Evaluation - Event Timeline Similarity

repository (https://www.skybrary.aero/index.php/Category:
Accidents and Incidents) for multiple years, leading to a to-
tal of 1225 incidents. For construction industry, we obtain
a dataset of 1863 OSHA incident report summaries con-
tributed by Zhang et al. (2020). For evaluating the proposed
approach, we select a sample of incidents as query incidents
from these datasets and remove them from the rest of the
corpus used for finding similar incidents. Considering the
wide variety of incidents we group the query incidents based
on a common incident type. For aviation, we collect 4 sub-
sets of 10 queries each, relating to waterbody crashes, ob-
ject hits/strikes (e.g., bird hit), equipment malfunctions and
flight path excursions. Similarly, for construction we collect
4 subsets of 10 queries each relating to electrocution, worker
falls, asphyxiation and vehicle related accidents.

Evaluation
For incidents in the above datasets, we first construct their
event timelines as per the approaches discussed earlier. We
execute the index search and TLSim based matching be-
tween the query incidents and the corpus incidents and ob-
tain a list of 10 best matching incidents with respect to a
query incident based on the match score. To obtain gold
standard annotations for incident similarity, we set-up a
Likert-scale based grading exercise of the top 5 best inci-
dents for each of the 40 queries in the two datasets. As part
of this grading exercise, the annotators were required to an-
notate each of the top-5 timelines predicted to be most simi-
lar by the algorithm for a query timeline on a Likert scale of
0 to 3, where 0 indicates no similarity and 3 indicates very
high similarity.

Two annotators were employed and each of them were
required to understand the objective definition of incident
timeline similarity described earlier. A sample of the queries
were repeated between the annotators to compute an agree-
ment score for both Likert-scale based simlarity scores. A
Krippendorff’s alpha of 0.8941 is observed for the similarity
scores assigned by the two annotators indicating high inter-
annotator agreement.

We compute a Normalized Discounted Cummulative
Gain (NDCG) (Schütze, Manning, and Raghavan 2008) over
the scores of the 5 results for each query and then report
the average over the scores for queries in each incident
domain (Table 3). As a baseline, we compare against an
approach which uses the standard longest common subse-
quence (LCS) algorithm over the index search results. We

do not compare with any supervised baseline as no labelled
training data on incident similarity is available.

As we can observe, the approximate nature of the TL-
Sim matching based on word/sentence embeddings based
similarity, surpasses the performance of the exact match-
ing based LCS algorithm in all of the incident types in
both datasets. Also, the similarity based on event description
representations from Sentence-BERT (TLSim ED) seem to
work at par with the TLSim PA variant which works at a
fine-grained element level and is equipped with linguistic
constraints. In specific cases of Waterbody Crashes and Ob-
ject Strikes the TLSim ED variant performs better the pred-
icate argument variant.

It is important to note that incident types such as “Wa-
terbody Crashes” and “Object Strikes” are challenging ow-
ing to high embeddings similarity in event arguments such
as sea/water and terrain/land and event triggers
such as crashing and striking. Similarly, for Con-
struction, asphyxiation proves to be a challenging dataset.
This is mainly because a major cause of asphyxiation is the
trapping of the employee and getting overcome by debris
from mud/trench collapses. However, similarity with such
collapse like events cause other incidents to crawl up the
rank list even though they have no mention of asphyxiation.

Conclusions and Future Work

In this paper, we proposed to represent incident reports
through their event timelines, an expressive knowledge rep-
resentation; and find similar incidents based on their event
timelines. In order to compute similarity between two in-
cident reports, we use the TLSim algorithm based on the
dynamic programming paradigm. To tackle the challenges
posed due to paraphrased natural language descriptions of
an event in different incident reports, we explored two vari-
ants of approximate matching of the event nodes on the time-
lines: predicate-arguments (PA) view and the sentence trans-
former based representation of event node description (ED).
The proposed approach was applied to identify similar inci-
dents using two real-world incident datasets from construc-
tion and aviation industries. Both variants of the TLSim al-
gorithm work better than the standard longest common sub-
sequence algorithm. The groups of similar incidents identi-
fied are useful for identifying recurring patterns in the inci-
dent event sequences, root cause analysis as well as to rec-
ommend preventive actions to avoid recurrence of similar
actions.

As part of future work, we are exploring an ensemble of
the TLSim variants to further improve the accuracy. Tem-
poral question generation (Bedi, Patil, and Palshikar 2021)
from the timelines of a similar set of incidents could be use-
ful in the incident investigation as well as in root cause anal-
ysis process. We also plan to explore the effect of corefer-
ence resolution of the entities that appear as the arguments
of events (Patil et al. 2018; Gupta et al. 2018) on efficacy of
both versions of TLSim algorithm.
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