
DEEP LEARNING FOR CODE
UNDERSTANDING AND GENERATION

CHALLENGES & OPPORTUNITIES

Chandan K. Reddy
Dept. of Computer Science

Virginia Tech
http://www.cs.vt.edu/~reddy

AI for Software Engineering

2

Common tasks in Software Engineering:

● Write code from a specification
● Translate code
● Fixing bugs

Can AI help in supporting humans and/or automating
some of these tasks?

● Yes! The availability of large open-source code
repositories and the feasibility of training large-
scale deep models, provides exciting possibilities.

AI Assisted Code Tasks

3

https://github.com/microsoft/CodeXGLUE

A benchmark for multiple code understanding and generation tasks.

StructCoder on the CodeXGLUE leaderboard!

4

https://microsoft.github.io/CodeXGLUE/

Code Generation

def add1(a):
s = a + 1
return s

s = add1(8)
print (s)

5

#include <stdio.h>

int add1 (int a) {
int s = a + 1 ;
return s ;

}

int main () {
int s = add1(8);
printf (“%d”, s);

}

Write a function add1()
to increment a number,
and test it with
add1(8).

Translate from C
to Python

Generate python code
from description.

Code generation is the problem of
generating code given a source code
that is either imperfect or in a different
language, or generating code from a
natural language description.

Given that the goal here is to read a
sequence and generate a sequence,
several NLP techniques have been
proposed to solve this problem.

Code is not Just a Sequence of Tokens !
● Can we improve syntactic and semantic correctness of generated codes?
● Can we encourage the model to preserve target code structure?

○ StructCoder does this using target AST and DFG preserving auxiliary tasks.

6

int add1 (int a) {
s = a + 1 ;
return s ;

}

An AST is a tree-like structure used to represent the syntactic structure of a program. It is a graph representation of
source code primarily used by compilers to read code and generate the target binaries.

DFG shows the data flow among variables in the code.

● Unlike existing models, StructCoder models code structure in both encoder and decoder by
incorporating both AST and DFG.

● Though some existing works modeled AST or DFG in the encoder, none of the state-of-the-art
pretrained code models utilize code structure in the decoder, which is crucial for code generation.

7

Table: A summary of the recent pre-trained models for code generation. (Abbreviations: DFG: Data Flow Graph, MLM: Masked
Language Modeling, DAE: Denoising Autoencoding, RTD: Replaced Token Detection, BT: Back Translation, EP: DFG Edge Prediction,
NA: Alignment prediction between code tokens and DFG nodes, DOBF: Deobfuscation, IT: Identifier Tagging, MSP: Masked Span
Prediction, MIP: Masked Identifier Prediction.)

Existing Approaches

S. Tipirneni, M. Zhu, and C. K. Reddy. "StructCoder: Structure-Aware Transformer for Code Generation." arXiv 2022.

StructCoder - Encoder

8

● Input tokens contain AST leaves and DFG variables in addition to source code.
● Embedding AST leaves:

○ Let (𝑟𝑟1, … , 𝑟𝑟 𝑙𝑙) be the path from root to leaf 𝑙𝑙 in the AST.
○ 𝐸𝐸 𝑙𝑙 = ∑𝑖𝑖=1

|𝑙𝑙| 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑖𝑖 . 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ⊙ 𝐸𝐸ℎ𝑡𝑡𝑖𝑖𝑒𝑒ℎ𝑡𝑡 𝑙𝑙 − 𝑖𝑖 ∈ 𝑅𝑅^𝑑𝑑

Incorporating such structural information can be model-agnostic, i.e., we can choose our favorite encoder-decoder
model (such as a SOTA CodeT5 model)

StructCoder - Decoder

Along with predicting the next token, the decoder also performs these auxiliary tasks:

1. Data Flow Prediction: predict the DFG edges incident on this token.

2. AST Paths Prediction: predict the node types on the root-leaf path to the leaf containing this token in the AST.

Hypothesis: The auxiliary tasks encourage the decoder to generate correct code. In this example, if the decoder
performs auxiliary tasks correctly, it knows that the next token is an identifier that gets its value from the function
argument ‘a’ and provides its value to the variable `s’. 9

Results on Code Translation

10

Results on code translation tasks from CodeXGLUE benchmark.

Ablation Study

11

Results on Java-C# (J-C) and C#-Java (C-J) translation by adding the proposed structure-based components
to a smaller T5 model. The best results are in bold and the second best are underlined. (‘i/p’ and ‘o/p’ indicate

whether the structure was included in the encoder and decoder, respectively.)

Case Study – Java-C# Translation

12

Case study: An example from Java-C# translation task where StructCoder is able to accurately predict the target code while CodeT5 fails. Red text indicates
errors made by CodeT5 and blue text indicates correctly predicted code by StructCoder where baseline generates errors. The blue arrows show some of the
correctly predicted data flow edges relevant to the colored text. StructCoder correctly generates the for loops by defining variable ‘c’ and the model predicts
most of the DFG edges incident on the variable ‘c’ inside these for loops and also in the first ‘if’ statement.

13

PPOCoder - Code Generation using Deep Reinforcement Learning

Goal: Improving the quality of codes generated from pre-trained models

● Proposed Idea: Designing a deep reinforcement learning fine-tuning framework which can
incorporate the compiler/execution feedback (i.e., syntactic or functional correctness) as the
external source of knowledge in the model optimization.

● We develop a new reward function based on the discrete compiler feedback (compilation or unit test
signal when available) and the syntactic and semantic matching scores between the AST sub-trees and
DFG edges of the sampled generations and the correct targets.

This can provide a more stable and generalizable model optimization that is less sensitive to new environments
(i.e., tasks, PLs, or datasets).

PPOCoder – Block Diagram

14

For Code Generation Tasks, we can have Computer Feedback instead of Human Feedback.
 Instead of RLHF, we have RLCF.

P. Shojaee, A. Jain, S. Tipirneni, and C. K. Reddy, “Execution-based Code Generation using Deep Reinforcement
Learning”, arXiv 2023 (under review).

Policy Gradient Optimization

Source
Data 𝑥𝑥

Value
Head

Value Model 𝑽𝑽𝝅𝝅 (Critic)

Pre-trained
Model

Reward

Value
Loss

Policy
Loss

KL Penalty
−𝑲𝑲𝑲𝑲[𝝅𝝅𝜽𝜽 . 𝒙𝒙 ,𝝆𝝆(. |𝒙𝒙)]

Policy Model 𝝅𝝅𝜽𝜽 (Actor)

Pre-trained
Model

Generation
Head

Values

𝝅𝝅𝜽𝜽(. |𝒙𝒙)

Reference
Pre-trained

Model
Generation

Head

Compiler Feedback
𝑹𝑹𝒄𝒄𝒄𝒄 �𝒚𝒚 +

𝝆𝝆(. |𝒙𝒙)

�𝒚𝒚

(a)

(d)

Value Function Optimization

Action
(Generated

Code �𝑡𝑡)

Semantic Match Score
𝑹𝑹𝒅𝒅𝒅𝒅𝒅𝒅 �𝒚𝒚,𝒚𝒚 =

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝑮𝑮 �𝒚𝒚 ∩ 𝑮𝑮 𝒚𝒚)
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝑮𝑮 𝒚𝒚)

Executable
Target
Code 𝑡𝑡

𝑮𝑮 �𝒚𝒚

Data Flow
Graph
(DFG)

Data Flow
Graph
(DFG)𝑮𝑮 𝒚𝒚

(c)

+

+

+

Matching
Non-Matching

PPO
Loss

(b)

Syntactic Match Score
𝑹𝑹𝒂𝒂𝒄𝒄𝑪𝑪 �𝒚𝒚,𝒚𝒚 =

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝑨𝑨𝑨𝑨𝑻𝑻�𝒚𝒚 ∩ 𝑨𝑨𝑨𝑨𝑻𝑻𝒚𝒚)
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝑨𝑨𝑨𝑨𝑻𝑻𝒚𝒚)

Abstract
Syntax Tree

(AST)

Abstract
Syntax Tree

(AST)𝑨𝑨𝑨𝑨𝑻𝑻�𝒚𝒚 𝑨𝑨𝑨𝑨𝑻𝑻𝒚𝒚

PPOCoder

16

Experimental Results
Code Completion: Results on the code completion task for completing the last 25 masked tokens.

Code Translation: Performance comparison of PPOCoder and baselines on XLCoST. The column and row
language headers represent the translation target languages. These values are a weighted average scores
over six different source languages. The best results are shown in bold font.

17

Results on Program Synthesis

Results of the zero-shot transferability on MBPP. Both zero-shot models are
finetuned on APPS and evaluated on MBPP in the zero-shot setting.

➔ Converting source code from one programming language to another

18

Program Translation

Manual/Rule-based program translation:

➔ Requires expertise in both source and target programming languages

➔ Requires significant amount of time and resources depending on the scale of the code base

➔ Submitted solutions to online code
challenges

➔ Significant distribution discrepancy
across different languages

Source: https://atcoder.jp/contests/abc174/tasks/abc174_d
19

Problem Description:
Given an input string, find the minimal number of steps to ensure W is not on the
immediate left of R. You can swap any two characters, or flip R to W and vice versa.

Input: WRWWRWRR
Output: 3
Swap: WRWWRWRR; Flip (twice): RRWWWWRR; Result: RRWWWWWW

Available Code Translation Datasets

https://atcoder.jp/contests/abc174/tasks/abc174_d

20

A Cross-lingual Code Snippet Translation (XLCoST) dataset

➔ Parallel at both program and snippet level
◆ Snippets are aligned by comments

➔ 7 common programming languages
◆ C++, Java, Python, C#, Javascript, PHP, C
◆ 42 languages pairs for Translation

Our XLCOST Dataset

➔ Similar distribution of source and target languages
◆ Similar length, vocabulary and style

➔ Manually verified for misalignment and other errors
◆ Data quality ensured

https://www.geeksforgeeks.org/

➔ Huge amount of code data from open source repos, but unlabelled

◆ GitHub, billions of programs in all possible programming languages

➔ Labelled data are very small in size

◆ CoST only has around 70 programs for testing and 50 programs for validation

➔ Labelled data covers very limited languages

◆ CodeXGLUE translation, only Java-C#

➔ Quality of the data are generally unverified

◆ Many of the available programs are crowd-sourced

21

Challenges with Available Code Translation Datasets

22

XLCoST - Data and Tasks

M. Zhu, A. Jain, K. Suresh, R. Ravindran, S. Tipirneni, and C. K. Reddy, XLCoST: A Benchmark Dataset
for Cross-lingual Code Intelligence. arXiv 2022.

Multilingual Snippet Training (MuST)

23M. Zhu, K. Suresh, and C. K. Reddy. "Multilingual Code Snippets Training for Program Translation." AAAI 2022.

24

Problem Description:
Count the number of 1s
in the binary of form of
the given integer.

DOBF: outputs a
different function (that
returns the weighted
sum of an array)

CodeBERT: infinite
loop; undefined
variable; incorrect logic

Transformer: totally
incorrect logic

Generated Outputs

CodeAttack

 A simple yet effective black-box attack model for generating adversarial samples.
 Detect the vulnerabilities of pre-trained Code PL models to adversarial attacks.
 Transferable across different downstream tasks and different programming language tasks.

CodeAttack makes a small modification (in red) which changes the output significantly.

CodeAttack: Code-based Adversarial Attacks

A. Jha and C. K. Reddy. "CodeAttack: Code-based Adversarial Attacks for Pre-Trained Programming
Language Models." AAAI 2023. 25

➔ Adversary’s Capabilities

◆ Character-level / Token-level perturbations

◆ Perturb only a small number of tokens/characters

◆ High similarity between the perturbed (Xadv) the original (X) code

➔ Adversary’s Knowledge

◆ Black-box access – no access to model parameters, model architectures, gradients

◆ Access to output logits for supervision

➔ Adversary’s Goal

◆ Degrade the quality of the generated output sequence.

◆ Objective function: ∆atk = argmaxδ [Q(F(X)) − Q(F(Xadv))]

◆ Q(.) measures the quality; F is the given pre-trained model

26

CodeAttack – Threat Model

Code-specific constraints for code consistency and for limiting the search space for efficient attacks.

➔ Downstream Task and Languages

◆ Code Translation, Code Repair, Code Summarization

◆ C#, Java, Python, PHP

➔ Victim Models

◆ CodeT5, CodeBERT, GraphCodeBERT, RoBERTa

➔ Baseline Models

◆ TextFooler, BERT-Attack

27

Qualitative Results: Code Translation for C#-Java tasks

Performance Results

Generates adversarial samples that are efficient, effective, imperceptible, fluent, and consistent.

Conclusion & Future Directions

28

● StructCoder improves code generation by introducing two structure-preserving tasks for the decoder. Incorporating AST
and DFG code structure constraints can improve the syntax and semantics of the generated code.

● PPOCoder - Reinforcement learning can aid in developing codes of high quality by incorporating various feedbacks –
which will compile and pass unit test cases along with syntactic and functional correctness.

● Data quality is extremely important and can significantly help in reducing the size of the massive deep learning
architectures. We released a code snippet level translation dataset XLCOST.

● Developed CodeAttack, a black-box adversarial attack model to detect vulnerabilities of the SOTA Code pre-trained LMs
by finding the most vulnerable tokens to identify contextualized substitutes subject to code-specific constraints.

● How well do these models work on low-resource programming languages (legacy codes)?

● Identify vulnerabilities through structure-preserving attacks that will allow the code to compile and execute.

● Can we build defense mechanisms against such attacks and make these models robust?

Acknowledgements
Graduate Students and Collaborators

Funding Agencies

Karthik SureshParshin ShojaeeSindhu Tipirneni Aneesh Jain Akshita Jha Ming Zhu

Questions and Comments

Feel free to email questions or suggestions to
reddy@cs.vt.edu

http://www.cs.vt.edu/~reddy/

https://github.com/reddy-lab-code-research

mailto:reddy@cs.vt.edu
http://www.cs.vt.edu/%7Ereddy/
https://github.com/reddy-lab-code-research

	DEEP LEARNING FOR CODE UNDERSTANDING AND GENERATION��CHALLENGES & OPPORTUNITIES
	AI for Software Engineering
	AI Assisted Code Tasks
	StructCoder on the CodeXGLUE leaderboard!
	Code Generation
	Code is not Just a Sequence of Tokens !
	Existing Approaches
	StructCoder - Encoder
	StructCoder - Decoder
	Results on Code Translation
	Ablation Study
	Case Study – Java-C# Translation
	PPOCoder - Code Generation using Deep Reinforcement Learning
	PPOCoder – Block Diagram
	PPOCoder
	Slide Number 16
	Slide Number 17
	Program Translation
	Available Code Translation Datasets
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Multilingual Snippet Training (MuST)
	Generated Outputs
	CodeAttack
	Slide Number 26
	Performance Results
	Conclusion & Future Directions
	Slide Number 29
	Slide Number 30

