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Abstract
Temporal knowledge graph reasoning (TKGR)001
aims to use historical data to predict future002
facts. Most existing works have achieved some003
results by directly incorporating temporal in-004
formation into static knowledge graph (SKG)005
embedding. However, they ignore the contex-006
tual information in the structure of the temporal007
knowledge graph (TKG). Moreover, the impor-008
tance of different relations within each times-009
tamp for predicting future facts has not been010
taken into account. How to comprehensively011
model the semantic relations of historical facts012
with different relations and the temporal infor-013
mation between facts is the difficulty of TKGR.014
To this end, this paper proposes a new temporal015
knowledge graph reasoning model based on hi-016
erarchical historical contrastive learning, called017
HHCLNET. Firstly, according to whether the018
relation with the query is the same, this model019
divides historical events into the same historical020
events (SHEs) and different historical events021
(DHEs), with corresponding entities called S-022
entities and D-entities. Then, S-entities and D-023
entities are analyzed and processed separately,024
and a graph attention mechanism is used to as-025
sign correlation scores for them. Next, using026
optimized contrastive learning methods, SHEs027
and DHEs are compared to obtain historical028
information that is truly relevant to the target029
query. Finally, a missing entity at future times-030
tamp is predicted based on the two-layer histor-031
ical learning results. Extensive experiments on032
five public available datasets demonstrate that033
the HHCLNET model has achieved significant034
improvements in performance. Especially, it035
achieves up to 8.7% improvement in MRR on036
GDELT for entity prediction comparing to the037
state-of-the-art baseline.038

1 Introduction039

Knowledge graphs have been widely used for nat-040

ural language processing downstream tasks such041

as automated question and answer, dialogue or in-042

formation retrieval due to their good knowledge043

storage capacity and reasoning ability. Traditional 044

knowledge graphs are usually static knowledge 045

graphs, which go about describing facts in the form 046

of RDF triples (SHU et al., 2021), typically repre- 047

sented as (s, r, o), where s denotes the head entity, o 048

denotes the tail entity, and r denotes the type of re- 049

lation between them. In reality, the relational facts 050

between entities are often time-sensitive, and the 051

facts continue to change over time. Static-based 052

knowledge graphs ignore the timeliness of entity- 053

relation representations, fail to portray the evolu- 054

tionary relations of dynamic facts, and the results 055

predicted based on static knowledge graphs are usu- 056

ally not accurate enough and are limited in many 057

tasks. For example, "Yao Ming played for the Hous- 058

ton Rockets of the NBA from 2002 to 2011", and 059

the fact that Yao Ming played for the Rockets in 060

2017 no longer holds true. Moreover, time plays 061

a very important role in some complex predictive 062

and deductive reasoning tasks. To this end, TKGs 063

have been proposed, which add temporal informa- 064

tion to the factual representation, expanding the 065

triple of SKG into the quadruple, which is repre- 066

sented as (s, r, o, t), where t denotes the temporal 067

information, e.g., (Barack Obama, Campaign, Pres- 068

ident, 2012). TKG utilizes quadruples to dynami- 069

cally represent facts, accurately capturing temporal 070

semantic dependencies, expressing rich temporal 071

semantic information (Liu et al., 2023), and achiev- 072

ing prediction of future temporal dynamic facts, 073

which has important application value. 074

Figure 1: An example of a temporal knowledge graph
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Figure 2: A reasoning example of temporal knowledge
graph

TKGR (Mirtaheri et al., 2023) is the introduc-075

tion of temporal information into knowledge repre-076

sentation and reasoning tasks, aiming to infer un-077

known information by existing historical informa-078

tion, which not only achieves the mining and com-079

pleting of missing information of dynamic events,080

but also achieves the prediction of future events. It081

has already shown good application prospects in082

downstream tasks, such as stock prediction, public083

opinion monitoring, and transaction recommenda-084

tion. However, the existing TKG, although large in085

volume, still suffers from the problem of missing086

and incomplete knowledge. How to effectively use087

the historical knowledge and temporal information088

in the knowledge base to infer unknown knowl-089

edge, and to supplement and extend the knowledge090

graph is still an urgent problem. Since temporal091

knowledge holds only for a fixed period of time092

and knowledge emerges new knowledge over time,093

TKGR is more challenging than traditional knowl-094

edge graph reasoning.095

TKGR consists of two subtasks: entity predic-096

tion and relation prediction. This paper focuses on097

the former. For this task, the work RENET (Jin098

et al., 2020) and CyGNet (Zhu et al., 2021) try to099

solve the entity prediction task by modelling the100

historical events related to the subject entity in each101

query, but they neglect the treatment of the non-102

occurring historical entities and the impact of some103

non-significant entities on the prediction results104

within the same historical timestamp. In Figure 1,105

a segment of the development of the events of the106

conflict between Russia and Ukraine is shown for107

the target query (Ukraine, appeal, ?, 2022), the pre-108

dicted event is a repeated event that has occurred109

in history. It can be predicted using historical event110

modelling, as Ukraine has previously asked for111

help from the United States in the historical event.112

In reality, Ukraine may turn to countries that have113

not been contacted before, i.e., the entity that is114

ultimately predicted has not appeared in histori-115

cal events. As shown in Figure 2, this scenario is116

referred to as a new entity prediction. Presently,117

there are several temporal knowledge bases avail-118

able, such as Wikidata (LEHMANN et al., 2015), 119

Global Database of Events, Language, and Tone 120

(GDELT) (SHEN et al., 2020), and Integrated Cri- 121

sis Early Warning System (ICEWS) (WARD et al., 122

2012). When reasoning about the occurrence of 123

future events based on these datasets, a significant 124

portion of the events have few or no historical coun- 125

terparts in history, which poses a significant chal- 126

lenge to the reasoning. For example, in the ICEWS 127

database, new events that had never occurred before 128

accounted for about 40%. Most existing methods 129

focus on historical entities with a high frequency of 130

past occurrences, and this extrapolation often leads 131

to less accurate predictions. 132

To address the aforementioned challenges, this 133

paper proposes the HHCLNET model, which di- 134

vides the historical events into various historical 135

subgraphs according to different time periods, ag- 136

gregates the information representations of entities 137

and relations in their domains through the multirela- 138

tional neighbourhood aggregator, and then applies 139

the Graph Attention Network to assign different 140

weights to historical entities in each timestamp ac- 141

cording to the different relations, and in Optimizing 142

contrastive learning layer, the data are enriched by 143

joining the relevant historical events, and the proba- 144

bility distributions of predicted entities are obtained 145

at the end. 146

The contributions of the paper are summarized 147

as follows: 148

• A new TKGR model based on hierarchical 149

historical contrastive learning (HHCLNET) is 150

proposed for predicting future missing enti- 151

ties. This model not only can predict high- 152

frequency and repetitive events well, but also 153

predict low-frequency and new events well. 154

• To the best of our knowledge, HHCLNET 155

is the first to model the semantic relations 156

of historical events with different relations 157

and the temporal information between events, 158

and GAT is used to fully consider the im- 159

portance of different historical entities under 160

multi-relations in the model. 161

• In order to better predict new facts that have 162

not appeared in history, a historical contrastive 163

learning method is proposed. This method 164

optimizes and compares SHEs with DHEs, 165

and learns the truly relevant historical events 166

to the query. 167
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• The performance of the model is validated168

on five publicly available datasets, and the169

experimental results show that the HHCLNET170

model obtains a large improvement in MRR,171

Hits@1, Hits@3, and Hits@10 compared to172

all baseline models.173

2 Related Works174

2.1 Static Knowledge Graph Reasoning175

In the early days of knowledge graph research,176

static knowledge graph reasoning (SKGR) was fo-177

cused, and it was an important task in knowledge178

graph completion. The TransE (BORDES et al.,179

2013) model based on SKGR regards relations as180

the translation of head entities to tail entities in181

vector space. It has a fast computation speed and is182

easy to implement, but it cannot solve the problems183

of one to many relations and many to one rela-184

tions. To address these issues, variant Trans-series185

models have emerged, such as TransH (WANG186

et al., 2014), TransR (LIN et al., 2015), TransD187

(HE et al., 2015), etc., which solve the multisyn-188

tactic expression relation to a certain extent, but189

with high computational complexity. Later a new190

knowledge graph embedding model, RotatE (SUN191

et al., 2019), defines each relation as a rotation192

from the source entity to the target entity in the193

complex vector space, which greatly simplifies the194

computational complexity, but the model is sensi-195

tive to the data quality and the generalisation ability196

is unknown. Subsequently, matrix decomposition-197

based models ComplEx (Trouillon et al., 2016)198

and DistMult (Yang et al., 2015) were proposed.199

ComplEx (Trouillon et al., 2016) introduced the200

complex space into the knowledge graph embed-201

ding for the first time, while the DistMult (Yang et202

al., 2015) model defined the embedding of relations203

as diagonal matrices. Although the above models204

perform well in the embedded representation of the205

knowledge graph, the training time is long and the206

interpretability is not strong enough to explain the207

complex patterns between entities and relations in208

KGs.209

2.2 Temporal Knowledge Graph Reasoning210

TKGR adds time information to the SKG and211

achieves better inference performance. To ad-212

dress the embedding of temporal information, the213

TTransE (Leblay and Chekol, 2018) model adds214

time to the embedding of relations for inference,215

but does not explicitly capture entity-level tempo-216

ral patterns, such as event periodicity. The RENET 217

(Jin et al., 2020) model decomposes the joint prob- 218

ability distribution of relevant historical events into 219

a series of conditional probability distributions and 220

captures certain long-term dependencies, but ig- 221

nores the problem of temporal variability, leading 222

to inaccurate predictions of the final entity. Aiming 223

at the lack of interpretability of the existing TKGR 224

models, the xERTE (Han et al., 2021) model es- 225

tablishes the first interpretable time-associated at- 226

tention prediction model, which is based on a new 227

time-associated attention mechanism that preserves 228

the causality of temporal multirelational data, but it 229

is not sufficiently comprehensive to capture the lo- 230

cal semantic information features of the entities in 231

the TKG, and the identification of some important 232

entities and the prediction of new entities are yet 233

to be further investigated in depth. CyGNet (Zhu 234

et al., 2021) combines Copy mode and Generation 235

mode to predict new facts in the entire entity vo- 236

cabulary using the historical vocabulary as a modu- 237

lus. However, it not only ignores the value of non- 238

negative frequency information, but also fails to 239

take into account the problem of temporal variabil- 240

ity in historical development. The RE-GCN (Li et 241

al., 2021) model learns by modelling the evolution 242

of historical sequences of a certain length, but ig- 243

nores the problem of time variability in TKGR. The 244

CEN (Li et al., 2022) model solves evolutionary 245

patterns of different lengths by means of a course- 246

learning strategy, but this approach requires con- 247

stant cyclic training of the dataset, which greatly 248

reduces the time efficiency of model training. The 249

DA-Net (Liu et al., 2022) model first obtains re- 250

peated historical facts and then uses a combination 251

of attentional mechanisms and frequency statistical 252

information to solve the time-varying problem, but 253

the statistical process of repeated historical facts 254

and the attentional supervision process are both 255

time-consuming . 256

3 Method 257

This section will focus on the HHCLNET model, 258

and the model architecture is shown in Figure 3. 259

The model consists of four modules: historical 260

subgraph construction, analysis and processing of 261

historical entities, optimizing contrastive learning 262

and entity prediction module. 263
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Figure 3: The HHCLNET model architecture. Firstly, the historical subgraph construction module generates
historical subgraphs based on the query. Then, the analyzing and processing of historical entities module uses the
graph attention mechanism to obtain the relevance scores of entities in each relation of the historical subgraph to
the target query. Thirdly, the optimizing contrastive learning module compares SHEs to DHEs and adds historical
events related to candidate entities to the comparison phase. Entity prediction module combines the previous two
modules to generate the final result.

3.1 Historical Subgraph Construction264

The module transforms the event and time con-265

text related to the query into a structured his-266

tory subgraph. For the query q (s, r, ?, tn) or267

(?, r, s, tn) , the historical subgraphs for each times-268

tamp are obtained based on the known head entity269

s or tail entity o, and the event relations within270

each timestamp are multi-relational. In order271

to predict the missing entities in q, the histori-272

cal entities within each timestamp are denoted as273 {
Xti ∈ RN |t0 ≤ ti ≤ tn

}
and the relations are de-274

noted as ri. Then, vectorize the historical entities275

and relations and send them to the next module for276

processing.277

3.2 Analysis and Processing of Historical278

Entities279

This module focuses on analysing and processing280

the historical entities and corresponding relations281

within each timestamp. Firstly, a multi-relational282

neighbourhood aggregator is used to aggregate the283

entity information within the same timestamp. Sec-284

ondly, the history information of each timestamp285

is fed into the GRU encoder to learn the dynamic286

features of the event evolution, and then each re-287

lation is assigned an attention weight through the288

graph attention network (GAT). Finally, the history289

entities are classified into positively and negatively290

correlated entities, and the corresponding scores291

are computed. 292

Multi-Relational Neighbourhood Aggregator. 293

Since the entities within each timestamp are multi- 294

relational, a neighbourhood aggregator is first used 295

to aggregate the multi-relation neighbourhood en- 296

tity features at the same time, further obtaining 297

the graph representation of the target entity ei, as 298

shown in equation 1: 299

hi = σ(
∑
r∈R

∑
o∈Nt

1

Cs
Wr

lho
l+Wo

lhs
l) (1) 300

where Nt denotes the set of neighboring nodes of 301

the target entity s in relation r at timestamp t, and 302

Cs denotes the number of edges in the graph of 303

the target entity s at the timestamp, which is used 304

here as a normalization factor. hlo and hlsdenote the 305

trainable embedding of entities eo and es respec- 306

tively. l denotes the number of aggregation layers. 307

W l
r and W l

o are the learnable weight matrices, and 308

σ(·) is the activation function RELU. 309

GRU components. According to the charac- 310

teristics of temporal variability, the entities will 311

continuously update and change, and the corre- 312

sponding frequency will also change. Therefore, 313

GRU (CHUNG et al., 2014) component is used to 314

record the changes of neighboring entities to fur- 315

ther enhance learning ability, as shown in equation 316

2: 317

ei = GRU(Xro,t1 ,Xro,t2 , . . . ,Xro,tn) (2) 318
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Graph Attention Network. Here, the historical319

information obtained by GRU is input into the GAT320

to assign different weights to neighboring entities321

of different relations. Some important nodes will322

receive higher weights, thereby alleviating the im-323

pact of non important facts on neighborhood. The324

attention weight is calculated as follows:325

gijk = βTσ(hei · φ(ej , rk)) (3)326

where βT ∈ Rd is the parameter vector, · denotes327

the element multiplication symbol, and rk is the328

relation between the target head entity and the tail329

entity.330

Score of positive and negative related enti-331

ties. Historical entities are divided into positive332

and negative related entities based on whether the333

relations is the same as the query. In order to calcu-334

late the correlation score of historical entities, the335

frequency of each historical entity is counted. As336

shown in equation 4:337

C
(s,r)
t = c

(s,r)
t−n + c

(s,r)
t−n+1 + ...+ c

(s,r)
t−1 (4)338

where C
(s,r)
t represents the number of times the339

entity has appeared in the history and c
(s,r)
t−n is the340

number of times the entity has appeared in differ-341

ent time. Since historical facts are multi-relational342

within each timestamp, we assign positive correla-343

tion scores to S-entities, and negative correlation344

scores to D-entities. The positive correlation score345

is calculated by formula 5:346

H
(s,r)
positive = tanh(W1(s⊕r)+b1)E

T+C
(s,r)
t +gijk

(5)347

where tanh is the activation function, ⊕ represents348

the connection symbols, W1 ∈ Rd×2d is the train-349

able weights, and b1 ∈ Rd is the trainable bias.350

Adding bias here can play a stabilizing role in han-351

dling missing entities of different events, which is352

very necessary. Then we multiply the output of353

the linear layer by the E vector and add the fre-354

quency C
(s,r)
t and the entity attention scores gijk,355

thus assigning higher scores to the relevant entities356

and obtaining more accurate attention scores. Neg-357

atively correlated entity scores are calculated by358

formula 6:359

H
(s,r)
negative = tanh(W2(s⊕r)+b2)E

T+C
(s,r)
t +gijk

(6)360

Finally, the positive correlation entities and rela-361

tions, and negative correlation entities and relations362

are vectorized for representation, and passed to363

softmax to get the probability of candidate enti- 364

ties, which is calculated as shown in equation 7, 365

equation 8: 366

P1 = softmax(H
(s,r)
positive) (7) 367

368

P2 = softmax(H
(s,r)
negative) (8) 369

P1 and P2 are the probabilities of positively and 370

negatively correlated entities, respectively. Entities 371

with higher probability values are more correlated 372

with predicted entities. 373

3.3 Optimizing Contrastive Learning 374

Over time, new events that have not appeared in his- 375

tory or have a lower frequency in history may arise. 376

It requires a fuller understanding of the historical 377

contextual information, not only from the set of 378

positively correlated entities but also from the set 379

of negatively correlated entities to discover entities 380

related to the query. Moreover, existing models 381

generally suffer from the data sparsity problem, 382

leading to poor learning performance. Therefore, 383

this module adopts an optimized contrastive learn- 384

ing method to compare and contrast the positively 385

and negatively correlated historical information, 386

and to identify the historical entities that are truly 387

correlated and uncorrelated with the query. 388

Firstly, through the TransE embedding method, 389

the positively related entities and relations, neg- 390

atively related entities and relations, and the fre- 391

quency of their respective occurrences in the his- 392

tory are represented, so as to obtain richer historical 393

information. The TransE knowledge representation 394

is used here to better model similarities knowledge 395

and improve the reasoning accuracy. Let Iq be the 396

embedded representation of the query information: 397

Iq = TransE(s⊕ r ⊕ tanh(WcC
(s,r)
t )) (9) 398

The sequence of historical subgraphs is de- 399

fined here as
{
g
ej
t1
, g

ej
t2
, ..., g

ej
tn

}
, n is the maximum 400

length of the sequence, and each subgraph is multi- 401

relational. Firstly, the query is projected onto the 402

plane by TransE, then the positively related entities 403

are used as a positive sample and the negatively re- 404

lated entities are used as a negative sample in com- 405

parison training. These related historical events are 406

added to enrich the positive and negative sample 407

data. 408

Next, the definitions are given: minbatch is de- 409

noted as M , and the set with the same relation to 410

query q is defined as Q(q). The identification of 411
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whether to focus on historical or new entities is412

done by minimizing the contrast loss function. The413

specific loss function is shown in equation 10:414

Lcon =
∑
q∈M

−1

|Q(q)|
∑

k∈Q(q)

log
exp(Iq · Ik/τ)∑
i=0 exp(Iq · Ii/τ)

(10)415

where τ ∈ R+ is the temperature parameter, being416

set to 0.1 here. After the data is enhanced by the417

comparison samples, it minimizes the Lcon loss418

function, effectively modeling the characteristics419

of related samples, which helps to better model the420

semantic relatedness between related entities in the421

representation learning and improves the model’s422

representational and inference capabilities.423

Next, a binary classifier is used to output scalars424

between 0 and 1. Here, we set Iq greater than or425

equal to 0.5 to indicate that the prediction tends426

towards positively correlated entities, and Iq less427

than 0.5 to indicate that attention should be paid428

to negatively correlated entities. Finally, a mask-429

ing strategy is used to process the predicted entity.430

Here we denote it by Zs,r
t (o) ∈ R|ε| vector. If the431

positively correlated entities are focused, Zs,r
t (o) is432

set to 1 for the positions of all positively correlated433

entities, and Zs,r
t (o) is set to 0 for the positions of434

all negatively correlated entities. In other words,435

if the missing entity is predicted to be in SHEs,436

then S-entities set will receive more attention. The437

reverse is true, too.438

3.4 Entity prediction439

In order to enhance the learning ability of the440

model, this module combines the probability ob-441

tained from the analysis and processing module442

of relevant historical entities with the optimizing443

contrastive learning module to obtain the probabil-444

ity distribution of the correlated entity. The prob-445

abilities of positively correlated entities P1 and446

negatively correlated entities P2 will be summed447

and averaged to obtain the probabilityP s,r
t . Finally,448

P s,r
t will be multiplied with the vector Zs,r

t (o) to449

obtain the predicted probability of candidate enti-450

ties. The entity with the highest probability will be451

selected as the final predicted entity.452

P (o|s, r, C(s,r)
t ) = P s,r

t (o) · Zs,r
t (o) (11)453

3.5 Training Strategy454

The training process of the model mainly includes455

four steps. Firstly, HHCLNET searches for all his-456

torical events related to entity s for a given query457

(s, r,?, t). Sencondly, the model performs rela- 458

tion processing on relevant entities within different 459

timestamps, generates a set of positively correlated 460

and negatively correlated candidate entities, and 461

uses a GAT to assign correlation scores to different 462

entities. Thirdly, by increasing the data of positive 463

and negative samples during the contrastive learn- 464

ing layer, a reasonable pair of positive and negative 465

samples is selected for training. Finally, Combin- 466

ing the above two steps to obtain the contextual 467

representation of the predicted entity, and proba- 468

bility distribution of candidate entity is obtained 469

through a binary classifier and masking strategy. 470

Finally the model parameters are trained by the 471

cross-entropy loss function. 472

L = −
∑

(s,r,o)∈G

log p(o|s, r) + λ1Lcon (12) 473

where G represents the entire history event, 474

p(o|s, r) denotes the probability of candidate entity 475

o based on the given entity s and the relation r, and 476

λ1 is the weight coefficient. 477

4 Experiments 478

4.1 Datasets and Metrics 479

Dataset Entities Relation Training Validation Test Time gap

ICEWS18 23 033 256 373 018 45 995 49 545 24 hours
ICEWS14 7 128 260 63 685 — 13 222 24 hours
GDELT 7 691 240 1 734 399 238 765 305 241 24 hours
WIKI 12 554 24 539 286 67 538 63 110 1 year
YAGO 10 623 10 161 540 19 523 20 026 1 year

Table 1: Statistics information of datasets

480

To evaluate the method proposed in this paper, 481

five commonly used benchmark datasets are used: 482

ICEWS (including ICEWS14 and ICEWS18), 483

YAGO, WIKI and GDELT. The ICEWS14 and 484

ICEWS18 datasets divide each timestamp in 24- 485

hour intervals. The ICEWS14 dataset collects 486

events that occurred from 1 January 2014 to 31 487

December 2014, and the ICEWS18 dataset collects 488

events from 1 January 2018 to 31 December 2018. 489

The YAGO dataset collected from 2013 to 2017. 490

The WIKI dataset is extracted from the Wikipedia 491

database, which collects data from 2008 to 2017. 492

During the experimental evaluation, the dataset is 493

divided into training, validation and test sets by 494

timestamps, which are 80%, 10% and 10%, respec- 495

tively. We set the training batch size to 1024, the 496
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Method ICEWS18 ICEWS14 GDELT
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE 17.56 2.48 26.95 43.87 18.65 1.12 31.34 47.07 16.05 0.00 26.10 42.29
DisMult 22.16 12.13 26.00 42.18 19.06 10.09 22.00 36.41 18.71 11.59 20.05 32.55
CompIEX 30.09 21.88 34.15 45.96 24.47 16.13 27.49 41.09 22.77 15.77 24.05 36.33
R-GCN 23.19 16.36 25.34 36.48 26.31 18.23 30.43 45.34 23.31 17.24 24.96 34.36
ConvE 36.67 25.81 39.80 50.69 40.73 33.20 43.92 54.35 35.99 27.05 39.32 49.44
HyTE 7.31 3.10 7.50 14.95 11.48 5.64 13.04 22.51 6.37 0.00 6.72 18.63
TTransE 8.36 1.94 8.71 21.93 6.35 1.23 5.80 16.65 5.52 0.47 5.01 15.27
TeMp 40.48 33.97 42.63 52.38 43.13 35.67 45.79 56.12 37.56 29.82 40.15 48.60
RE-NET 42.93 36.19 45.47 55.80 45.71 38.42 49.06 59.12 40.12 32.43 43.40 53.80
RE-GCN 32.78 24.99 35.54 48.01 32.37 24.43 35.05 48.12 29.46 21.74 32.01 43.62
CyGNet 46.69 40.58 49.82 57.14 48.63 41.77 52.50 60.29 50.29 44.53 54.69 60.99
EvoKG 29.67 12.92 33.08 58.32 18.30 6.30 19.43 39.37 11.29 2.93 10.84 25.44
HGAT 28.55 19.68 32.74 46.60 46.68 29.72 42.46 56.45 39.12 26.35 45.31 56.62
GLANET 27.54 17.90 31.20 46.57 38.06 27.97 42.92 57.65 38.93 26.48 43.62 61.36
RPC 34.91 24.34 38.74 55.89 44.55 34.87 49.80 65.08 22.41 14.42 24.36 38.33
HIP 48.37 43.51 51.32 58.49 50.57 45.73 54.28 61.65 52.76 46.35 55.31 61.87
HHCLNET 53.08 49.15 53.97 60.53 55.08 51.15 54.02 62.53 59.35 55.05 60.03 60.35

Table 2: Experimental results of models in ICEWS18, ICEWS14 and GDELT

embedding dimension of entities and relations to497

200, the learning rate to 0.001, the dropout to 0.5498

to prevent overfitting, and the Adam optimizer is499

used for parameter optimization. We set the train-500

ing epoch size to 30, the test epoch size to 20, and501

the validation epoch size to 10. The statistical in-502

formation for the datasets is shown in Table 1.503

The evaluation metrics generally used for TKGR504

are Mean Reciprocal Ranks (MRR) and the hit rate505

Hits@K for results in the top K. In this experiment,506

Hits@1, Hits@3, and Hits@10 are chosen as the507

evaluation metrics.508

4.2 Baselines and Results509

In order to validate the effectiveness of this model,510

comparisons are made among 16 baseline mod-511

els, which can be classified into two types: SKGR512

methods, including TransE (BORDES et al., 2013),513

DistMult (Yang et al., 2015), CompIEX (Trouillon514

et al., 2016), R-GCN (Schlichtkrull et al., 2018),515

and ConvE (Dettmers et al., 2018); TKGR meth-516

ods, including HyTE (DASGUPTA et al., 2018),517

TTransE (Leblay and Chekol, 2018), TeMp (Wu et518

al., 2020), RE-NET (Jin et al., 2020), RE-GCN (Li519

et al., 2021), CyGNet (Zhu et al., 2021), EvoKG520

(Park et al., 2022), HGAT (Shao et al., 2023),521

GLANET (Wang et al., 2023), RPC (Liang et al.,522

2023) and HIP (He et al., 2024). The entity predic-523

tion results of the above different models on the five524

datasets are given in Table 2 and Table 3, respec-525

tively. The experimental results show that the HH-526

CLNET model has achieved the best performance527

on most metrics in all datasets. Especially on the528

WIKI and YAGO datasets, the performance im-529

provement is particularly significant, respectively 530

MRR and Hit@3 improved by 3.15% and 2.81% 531

compared to the best baseline. Compared to this, 532

the improvement on the ICEWS18, ICEWS14, and 533

GDELT datasets is slightly smaller, because both 534

the ICEWS and GDELT datasets are event-based 535

datasets containing more complex relational net- 536

works and large amounts of data, which makes the 537

processing slower and the probability of new events 538

is high. However, the WIKI and YAGO datasets 539

have a temporal granularity of years, fewer types of 540

relations and most of them remain constant, with 541

a high proportion of repetitive events. Therefore, 542

when predicting entities on the WIKI and YAGO 543

datasets, the factual relations that can be relied on 544

are relatively stable, making the model’s improve- 545

ment effect significant. From the above experi- 546

mental results, it can be seen that the HHCLNET 547

model has significant effects on all datasets, and 548

it also indicates that the model has indeed learned 549

historical information related to the prediction in 550

the historical entity analysis and processing module 551

and optimizing contrastive learning module. The 552

experimental results above indicate that compared 553

to other baseline models, the model exhibits strong 554

robustness and generalization when dealing with 555

complex and noisy datasets. Detailed analysis can 556

be found in the case studies provided in the ap- 557

pendix. 558

4.3 Ablation Study 559

In order to validate the importance of each mod- 560

ule of the HHCLNET model, ablation experiments 561

were carried out by keeping the experimental setup 562
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Method WIKI YAGO
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE 46.68 36.19 49.71 51.71 48.97 46.23 62.45 66.05
DisMult 46.12 37.24 49.81 51.38 59.47 52.97 60.91 65.26
CompIEX 47.84 38.15 50.08 51.39 61.29 54.88 50.08 51.39
R-GCN 37.57 28.15 39.66 41.90 41.30 32.56 44.44 52.68
ConvE 47.57 38.76 50.10 50.53 62.32 56.19 63.97 65.60
HyTE 43.02 44.16 45.12 49.49 23.16 39.73 45.74 51.94
TTransE 31.74 35.36 36.25 43.45 32.57 26.10 43.39 53.37
TeMp 49.61 46.96 50.24 52.13 62.25 55.39 64.63 66.02
RE-NET 51.97 48.01 52.07 53.91 65.16 63.29 65.63 68.08
RE-GCN 44.86 39.82 46.75 47.56 65.69 59.98 68.70 69.22
CyGNet 45.50 50.48 50.79 52.80 63.47 64.26 65.71 68.95
EvoKG 50.66 12.21 63.84 68.03 55.11 54.37 81.38 79.65
HGAT 56.12 52.90 58.16 61.82 63.62 59.80 66.02 71.58
GLANET 53.18 58.23 61.16 71.52 65.05 76.32 77.86 79.24
RPC 65.31 67.82 69.73 70.23 84.71 83.82 82.73 85.23
HIP 64.71 63.82 68.73 58.23 77.55 76.32 78.49 80.23
HHCLNET 68.46 70.35 71.44 71.66 85.53 85.28 85.54 85.84

Table 3: Experimental results of models in WIKI and
YAGO

constant and creating variants by adjusting the dif-563

ferent components of the model, and ICEWS18564

and YAGO datasets were chosen to carry out the565

experiments. The results of the experiments are566

shown in Table 4.567

Ablation ICEWS18 YAGO
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

HHCLNET-GAT 48.71 47.04 49.93 53.91 84.46 84.33 84.52 84.65
HHCLNET-OCon 52.09 48.21 51.92 58.78 84.79 85.35 85.02 84.49
HHCLNET 53.08 49.15 53.97 60.53 85.53 85.28 85.54 85.84

Table 4: Results of ablation study in ICEWS18 and
YAGO

Here ICEWS18 and YAGO are chosen to inves-568

tigate the effectiveness of graph attention network569

(GAT) and optimizing contrast learning (OCon).570

Table 4 shows the result of ablation. HHCLNET-571

GAT only cosiders the GAT module without OCon,572

while HHCLNET-OCon only keeps OCon module.573

From the experimental results, it can be seen that574

all two modules play a significant role in the model.575

The graph attention network makes the model fully576

consider the degree of importance of different577

neighborhood entities under multi-relations, which578

helps the model to obtain a more accurate probabil-579

ity distribution of entities. Optimizing contrastive580

learning can improve the model performance, re-581

flecting the importance of selecting positive and582

negative samples in contrastive learning. And it583

can further strengthen the learning ability of the584

model and enhance the reasoning ability of the585

model.586

4.4 Hyper-parameter Analysis587

In order to assess the sensitivity of the HHCLNET588

model to the parameters, an experimental compar-589

ison of two parameters ( batch size and Dropout590

) was performed on the dataset YAGO, where the591

batch size was set to {64, 128, 256, 512, 1024},592

and the Dropout was set to {0.1, 0.3, 0.5, 0.7, 593

0.9}. As can be seen from Figure 4 and Figure 594

5, when the batch size and Dropout are (1024, 595

0.5) on the YAGO data set, the model achieved 596

the best performance. This demonstrates that the 597

HHCLNET model is sensitive to pairwise batch 598

size and Dropout. 599

Figure 4: Batch training size on YAGO

Figure 5: Droupout on YAGO

5 Conclusion and Future Work 600

In this paper, we proposes a new temporal knowl- 601

edge graph reasoning model based on hierarchical 602

historical contrastive learning (HHCLNET). The 603

model analyses and processes the acquired histori- 604

cal entities, and then uses optimizing comparative 605

learning to further identify truly relevant entities 606

with the query, allowing the model to focus more 607

on the useful entities. Moreover, the model has 608

shown good performance in predicting new events, 609

high-frequency events, and low-frequency events. 610

Therefore, the model has good generalization abil- 611

ity. In subsequent research, we will work on fus- 612

ing multi-source information to enhance the en- 613

tity feature representation and thus continuously 614

strengthen the learning capability of the model. 615
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A Case Study 816

To further demonstrate the effectiveness of the 817

proposed model, a relevant case study was con- 818

ducted. As shown in Figure 6, we selected three 819

representative queries from the ICEWS dataset to 820

analyze the prediction results of HHCLNET. 821

· When the query is (Russia, visit, ?, t), it has not 822

appeared in related historical events. The model an- 823

alyzes negatively correlated entities through an op- 824
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timization and comparison stage, predicting a high825

likelihood of such entities in China, with results826

consistently matching the correct answers. This827

indicates the model’s ability to predict the correct828

entities that do not appear in the same historical829

relationship events.830

· When given a query (US, invitation, ?, t), it831

can be observed from the graph that Canada has832

the highest probability of occurrence and belongs833

to a historical entity. The historical entity analysis834

processing module of the model assigns high corre-835

lation scores through graph attention, thus selecting836

the Canadian entity with the highest probability as837

the final prediction result.838

· When given a query (United States, Coopera-839

tion, ?, t), as the relationship “US and Japan coop-840

eration” appeared once in history, belonging to the841

positively correlated historical entities, the model842

combines the historical entity analysis module and843

the optimization and comparison learning module844

to get the final entity prediction result of Japan. The845

final prediction matched the correct answer. So the846

model’s predictions are correct.847

Figure 6: Case study of HHCLNET’s predictions.

From the above cases, it can be seen that the848

hierarchical historical contrastive learning method849

proposed in this paper enables the model to auto-850

matically learn and query truly relevant historical851

events and candidate entities when facing tasks852

such as predicting new events, low-frequency event853

forecasting, and high-frequency event forecasting.854

The cases demonstrate that identifying useful en-855

tities helps improve reasoning outcomes, further856

proving the strong generalization ability of the pro-857

posed model.858
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