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Abstract

Temporal knowledge graph reasoning (TKGR)
aims to use historical data to predict future
facts. Most existing works have achieved some
results by directly incorporating temporal in-
formation into static knowledge graph (SKG)
embedding. However, they ignore the contex-
tual information in the structure of the temporal
knowledge graph (TKG). Moreover, the impor-
tance of different relations within each times-
tamp for predicting future facts has not been
taken into account. How to comprehensively
model the semantic relations of historical facts
with different relations and the temporal infor-
mation between facts is the difficulty of TKGR.
To this end, this paper proposes a new temporal
knowledge graph reasoning model based on hi-
erarchical historical contrastive learning, called
HHCLNET. Firstly, according to whether the
relation with the query is the same, this model
divides historical events into the same historical
events (SHEs) and different historical events
(DHEs), with corresponding entities called S-
entities and D-entities. Then, S-entities and D-
entities are analyzed and processed separately,
and a graph attention mechanism is used to as-
sign correlation scores for them. Next, using
optimized contrastive learning methods, SHEs
and DHEs are compared to obtain historical
information that is truly relevant to the target
query. Finally, a missing entity at future times-
tamp is predicted based on the two-layer histor-
ical learning results. Extensive experiments on
five public available datasets demonstrate that
the HHCLNET model has achieved significant
improvements in performance. Especially, it
achieves up to 8.7% improvement in MRR on
GDELT for entity prediction comparing to the
state-of-the-art baseline.

1 Introduction

Knowledge graphs have been widely used for nat-
ural language processing downstream tasks such
as automated question and answer, dialogue or in-
formation retrieval due to their good knowledge

storage capacity and reasoning ability. Traditional
knowledge graphs are usually static knowledge
graphs, which go about describing facts in the form
of RDF triples (SHU et al., 2021), typically repre-
sented as (s, 1, 0), where s denotes the head entity, o
denotes the tail entity, and r denotes the type of re-
lation between them. In reality, the relational facts
between entities are often time-sensitive, and the
facts continue to change over time. Static-based
knowledge graphs ignore the timeliness of entity-
relation representations, fail to portray the evolu-
tionary relations of dynamic facts, and the results
predicted based on static knowledge graphs are usu-
ally not accurate enough and are limited in many
tasks. For example, "Yao Ming played for the Hous-
ton Rockets of the NBA from 2002 to 2011", and
the fact that Yao Ming played for the Rockets in
2017 no longer holds true. Moreover, time plays
a very important role in some complex predictive
and deductive reasoning tasks. To this end, TKGs
have been proposed, which add temporal informa-
tion to the factual representation, expanding the
triple of SKG into the quadruple, which is repre-
sented as (s, 1, 0, t), where t denotes the temporal
information, e.g., (Barack Obama, Campaign, Pres-
ident, 2012). TKG utilizes quadruples to dynami-
cally represent facts, accurately capturing temporal
semantic dependencies, expressing rich temporal
semantic information (Liu et al., 2023), and achiev-
ing prediction of future temporal dynamic facts,
which has important application value.

Figure 1: An example of a temporal knowledge graph



Figure 2: A reasoning example of temporal knowledge
graph

TKGR (Mirtaheri et al., 2023) is the introduc-
tion of temporal information into knowledge repre-
sentation and reasoning tasks, aiming to infer un-
known information by existing historical informa-
tion, which not only achieves the mining and com-
pleting of missing information of dynamic events,
but also achieves the prediction of future events. It
has already shown good application prospects in
downstream tasks, such as stock prediction, public
opinion monitoring, and transaction recommenda-
tion. However, the existing TKG, although large in
volume, still suffers from the problem of missing
and incomplete knowledge. How to effectively use
the historical knowledge and temporal information
in the knowledge base to infer unknown knowl-
edge, and to supplement and extend the knowledge
graph is still an urgent problem. Since temporal
knowledge holds only for a fixed period of time
and knowledge emerges new knowledge over time,
TKGR is more challenging than traditional knowl-
edge graph reasoning.

TKGR consists of two subtasks: entity predic-
tion and relation prediction. This paper focuses on
the former. For this task, the work RENET (Jin
et al., 2020) and CyGNet (Zhu et al., 2021) try to
solve the entity prediction task by modelling the
historical events related to the subject entity in each
query, but they neglect the treatment of the non-
occurring historical entities and the impact of some
non-significant entities on the prediction results
within the same historical timestamp. In Figure 1,
a segment of the development of the events of the
conflict between Russia and Ukraine is shown for
the target query (Ukraine, appeal, 7, 2022), the pre-
dicted event is a repeated event that has occurred
in history. It can be predicted using historical event
modelling, as Ukraine has previously asked for
help from the United States in the historical event.
In reality, Ukraine may turn to countries that have
not been contacted before, i.e., the entity that is
ultimately predicted has not appeared in histori-
cal events. As shown in Figure 2, this scenario is
referred to as a new entity prediction. Presently,
there are several temporal knowledge bases avail-

able, such as Wikidata (LEHMANN et al., 2015),
Global Database of Events, Language, and Tone
(GDELT) (SHEN et al., 2020), and Integrated Cri-
sis Early Warning System (ICEWS) (WARD et al.,
2012). When reasoning about the occurrence of
future events based on these datasets, a significant
portion of the events have few or no historical coun-
terparts in history, which poses a significant chal-
lenge to the reasoning. For example, in the ICEWS
database, new events that had never occurred before
accounted for about 40%. Most existing methods
focus on historical entities with a high frequency of
past occurrences, and this extrapolation often leads
to less accurate predictions.

To address the aforementioned challenges, this
paper proposes the HHCLNET model, which di-
vides the historical events into various historical
subgraphs according to different time periods, ag-
gregates the information representations of entities
and relations in their domains through the multirela-
tional neighbourhood aggregator, and then applies
the Graph Attention Network to assign different
weights to historical entities in each timestamp ac-
cording to the different relations, and in Optimizing
contrastive learning layer, the data are enriched by
joining the relevant historical events, and the proba-
bility distributions of predicted entities are obtained
at the end.

The contributions of the paper are summarized
as follows:

* A new TKGR model based on hierarchical
historical contrastive learning (HHCLNET) is
proposed for predicting future missing enti-
ties. This model not only can predict high-
frequency and repetitive events well, but also
predict low-frequency and new events well.

* To the best of our knowledge, HHCLNET
is the first to model the semantic relations
of historical events with different relations
and the temporal information between events,
and GAT is used to fully consider the im-
portance of different historical entities under
multi-relations in the model.

* In order to better predict new facts that have
not appeared in history, a historical contrastive
learning method is proposed. This method
optimizes and compares SHEs with DHEs,
and learns the truly relevant historical events
to the query.



* The performance of the model is validated
on five publicly available datasets, and the
experimental results show that the HHCLNET
model obtains a large improvement in MRR,
Hits@1, Hits@3, and Hits@ 10 compared to
all baseline models.

2 Related Works

2.1 Static Knowledge Graph Reasoning

In the early days of knowledge graph research,
static knowledge graph reasoning (SKGR) was fo-
cused, and it was an important task in knowledge
graph completion. The TransE (BORDES et al.,
2013) model based on SKGR regards relations as
the translation of head entities to tail entities in
vector space. It has a fast computation speed and is
easy to implement, but it cannot solve the problems
of one to many relations and many to one rela-
tions. To address these issues, variant Trans-series
models have emerged, such as TransH (WANG
et al., 2014), TransR (LIN et al., 2015), TransD
(HE et al., 2015), etc., which solve the multisyn-
tactic expression relation to a certain extent, but
with high computational complexity. Later a new
knowledge graph embedding model, RotatE (SUN
et al., 2019), defines each relation as a rotation
from the source entity to the target entity in the
complex vector space, which greatly simplifies the
computational complexity, but the model is sensi-
tive to the data quality and the generalisation ability
is unknown. Subsequently, matrix decomposition-
based models ComplEx (Trouillon et al., 2016)
and DistMult (Yang et al., 2015) were proposed.
ComplEx (Trouillon et al., 2016) introduced the
complex space into the knowledge graph embed-
ding for the first time, while the DistMult (Yang et
al., 2015) model defined the embedding of relations
as diagonal matrices. Although the above models
perform well in the embedded representation of the
knowledge graph, the training time is long and the
interpretability is not strong enough to explain the
complex patterns between entities and relations in
KGs.

2.2 Temporal Knowledge Graph Reasoning

TKGR adds time information to the SKG and
achieves better inference performance. To ad-
dress the embedding of temporal information, the
TTransE (Leblay and Chekol, 2018) model adds
time to the embedding of relations for inference,
but does not explicitly capture entity-level tempo-

ral patterns, such as event periodicity. The RENET
(Jin et al., 2020) model decomposes the joint prob-
ability distribution of relevant historical events into
a series of conditional probability distributions and
captures certain long-term dependencies, but ig-
nores the problem of temporal variability, leading
to inaccurate predictions of the final entity. Aiming
at the lack of interpretability of the existing TKGR
models, the XERTE (Han et al., 2021) model es-
tablishes the first interpretable time-associated at-
tention prediction model, which is based on a new
time-associated attention mechanism that preserves
the causality of temporal multirelational data, but it
is not sufficiently comprehensive to capture the lo-
cal semantic information features of the entities in
the TKG, and the identification of some important
entities and the prediction of new entities are yet
to be further investigated in depth. CyGNet (Zhu
et al., 2021) combines Copy mode and Generation
mode to predict new facts in the entire entity vo-
cabulary using the historical vocabulary as a modu-
lus. However, it not only ignores the value of non-
negative frequency information, but also fails to
take into account the problem of temporal variabil-
ity in historical development. The RE-GCN (Li et
al., 2021) model learns by modelling the evolution
of historical sequences of a certain length, but ig-
nores the problem of time variability in TKGR. The
CEN (Li et al., 2022) model solves evolutionary
patterns of different lengths by means of a course-
learning strategy, but this approach requires con-
stant cyclic training of the dataset, which greatly
reduces the time efficiency of model training. The
DA-Net (Liu et al., 2022) model first obtains re-
peated historical facts and then uses a combination
of attentional mechanisms and frequency statistical
information to solve the time-varying problem, but
the statistical process of repeated historical facts
and the attentional supervision process are both
time-consuming .

3 Method

This section will focus on the HHCLNET model,
and the model architecture is shown in Figure 3.
The model consists of four modules: historical
subgraph construction, analysis and processing of
historical entities, optimizing contrastive learning
and entity prediction module.
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Figure 3: The HHCLNET model architecture. Firstly, the historical subgraph construction module generates
historical subgraphs based on the query. Then, the analyzing and processing of historical entities module uses the
graph attention mechanism to obtain the relevance scores of entities in each relation of the historical subgraph to
the target query. Thirdly, the optimizing contrastive learning module compares SHEs to DHEs and adds historical
events related to candidate entities to the comparison phase. Entity prediction module combines the previous two

modules to generate the final result.

3.1 Historical Subgraph Construction

The module transforms the event and time con-
text related to the query into a structured his-
tory subgraph. For the query ¢ (s,7,7,t,) or
(?,r,s,ty) , the historical subgraphs for each times-
tamp are obtained based on the known head entity
s or tail entity o, and the event relations within
each timestamp are multi-relational. In order
to predict the missing entities in ¢, the histori-
cal entities within each timestamp are denoted as
{Xti e RN lto < t; < tn} and the relations are de-
noted as r;. Then, vectorize the historical entities
and relations and send them to the next module for
processing.

3.2 Analysis and Processing of Historical
Entities

This module focuses on analysing and processing
the historical entities and corresponding relations
within each timestamp. Firstly, a multi-relational
neighbourhood aggregator is used to aggregate the
entity information within the same timestamp. Sec-
ondly, the history information of each timestamp
is fed into the GRU encoder to learn the dynamic
features of the event evolution, and then each re-
lation is assigned an attention weight through the
graph attention network (GAT). Finally, the history
entities are classified into positively and negatively
correlated entities, and the corresponding scores

are computed.

Multi-Relational Neighbourhood Aggregator.
Since the entities within each timestamp are multi-
relational, a neighbourhood aggregator is first used
to aggregate the multi-relation neighbourhood en-
tity features at the same time, further obtaining
the graph representation of the target entity e;, as
shown in equation 1:

1
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where N; denotes the set of neighboring nodes of
the target entity s in relation 7 at timestamp ¢, and
C5 denotes the number of edges in the graph of
the target entity s at the timestamp, which is used
here as a normalization factor. i} and hldenote the
trainable embedding of entities e, and e; respec-
tively. 1 denotes the number of aggregation layers.
W' and W are the learnable weight matrices, and
o(+) is the activation function RELU.

GRU components. According to the charac-
teristics of temporal variability, the entities will
continuously update and change, and the corre-
sponding frequency will also change. Therefore,
GRU (CHUNG et al., 2014) component is used to
record the changes of neighboring entities to fur-
ther enhance learning ability, as shown in equation
2:

€; = GRU(XTO,tl ) Xro,t27 cety XTO,tn) (2)



Graph Attention Network. Here, the historical
information obtained by GRU is input into the GAT
to assign different weights to neighboring entities
of different relations. Some important nodes will
receive higher weights, thereby alleviating the im-
pact of non important facts on neighborhood. The
attention weight is calculated as follows:

gijk = BLo(he; - p(ej, 1)) 3)

where 5T € R? is the parameter vector, - denotes
the element multiplication symbol, and 7}, is the
relation between the target head entity and the tail
entity.

Score of positive and negative related enti-
ties. Historical entities are divided into positive
and negative related entities based on whether the
relations is the same as the query. In order to calcu-
late the correlation score of historical entities, the
frequency of each historical entity is counted. As
shown in equation 4:

Of =) el ek @

where Ct(s’r) represents the number of times the
entity has appeared in the history and cﬁir) is the

n
number of times the entity has appeared in differ-
ent time. Since historical facts are multi-relational
within each timestamp, we assign positive correla-
tion scores to S-entities, and negative correlation
scores to D-entities. The positive correlation score
is calculated by formula 5:

H(S ;)

positive

= tanh(W1 (s®r)+b1) ET+C5 4 giin
&)
where tanh is the activation function, & represents
the connection symbols, W; € R%*24 is the train-
able weights, and b; € R< is the trainable bias.
Adding bias here can play a stabilizing role in han-
dling missing entities of different events, which is
very necessary. Then we multiply the output of
the linear layer by the E vector and add the fre-
quency Ct(s’r) and the entity attention scores g; k.,
thus assigning higher scores to the relevant entities
and obtaining more accurate attention scores. Neg-
atively correlated entity scores are calculated by
formula 6:
H(S ;)

negative

= tanh(Wy(s@r)+bo) ET+C" 4 g,

(6)
Finally, the positive correlation entities and rela-
tions, and negative correlation entities and relations
are vectorized for representation, and passed to

softmax to get the probability of candidate enti-
ties, which is calculated as shown in equation 7,
equation 8:

Py = so0 ftma:v(H}SZ;ste) 7)
P = Softmasc(HéL:gritiz)e) ®)

P, and P, are the probabilities of positively and
negatively correlated entities, respectively. Entities
with higher probability values are more correlated
with predicted entities.

3.3 Optimizing Contrastive Learning

Over time, new events that have not appeared in his-
tory or have a lower frequency in history may arise.
It requires a fuller understanding of the historical
contextual information, not only from the set of
positively correlated entities but also from the set
of negatively correlated entities to discover entities
related to the query. Moreover, existing models
generally suffer from the data sparsity problem,
leading to poor learning performance. Therefore,
this module adopts an optimized contrastive learn-
ing method to compare and contrast the positively
and negatively correlated historical information,
and to identify the historical entities that are truly
correlated and uncorrelated with the query.
Firstly, through the TransE embedding method,
the positively related entities and relations, neg-
atively related entities and relations, and the fre-
quency of their respective occurrences in the his-
tory are represented, so as to obtain richer historical
information. The TransE knowledge representation
is used here to better model similarities knowledge
and improve the reasoning accuracy. Let I, be the
embedded representation of the query information:

I,=TransE(s®r @ tanh(WcCt(S’r))) ©

The sequence of historical subgraphs is de-
fined here as {g;”, g;7, ..., g;’ }, n is the maximum
length of the sequence, and each subgraph is multi-
relational. Firstly, the query is projected onto the
plane by TransE, then the positively related entities
are used as a positive sample and the negatively re-
lated entities are used as a negative sample in com-
parison training. These related historical events are
added to enrich the positive and negative sample
data.

Next, the definitions are given: minbatch is de-
noted as M, and the set with the same relation to
query ¢ is defined as ;). The identification of



whether to focus on historical or new entities is
done by minimizing the contrast loss function. The
specific loss function is shown in equation 10:

n_ exp(Iy - Iy /T)
2wz,

keQ( ZZ _oexp(ly - I;/T)
(10)
where 7 € R is the temperature parameter, being
set to 0.1 here. After the data is enhanced by the
comparison samples, it minimizes the £ loss
function, effectively modeling the characteristics
of related samples, which helps to better model the
semantic relatedness between related entities in the
representation learning and improves the model’s
representational and inference capabilities.

Next, a binary classifier is used to output scalars
between 0 and 1. Here, we set I, greater than or
equal to 0.5 to indicate that the prediction tends
towards positively correlated entities, and I, less
than 0.5 to indicate that attention should be paid
to negatively correlated entities. Finally, a mask-
ing strategy is used to process the predicted entity.
Here we denote it by Z;"" (o) € Rl vector. If the
positively correlated entities are focused, Z;" (o) is
set to 1 for the positions of all positively correlated
entities, and Z,”" (o) is set to 0 for the positions of
all negatively correlated entities. In other words,
if the missing entity is predicted to be in SHEs,
then S-entities set will receive more attention. The
reverse is true, too.

3.4 Entity prediction

In order to enhance the learning ability of the
model, this module combines the probability ob-
tained from the analysis and processing module
of relevant historical entities with the optimizing
contrastive learning module to obtain the probabil-
ity distribution of the correlated entity. The prob-
abilities of positively correlated entities P; and
negatively correlated entities P, will be summed
and averaged to obtain the probability P,*". Finally,
P;" will be multiplied with the vector Z;"" (o) to
obtain the predicted probability of candidate enti-
ties. The entity with the highest probability will be
selected as the final predicted entity.

P(ols,r,C"y = PP (0) - Z57(0)  (11)

3.5

The training process of the model mainly includes
four steps. Firstly, HHCLNET searches for all his-
torical events related to entity s for a given query

Training Strategy

(s, 1,7, t). Sencondly, the model performs rela-
tion processing on relevant entities within different
timestamps, generates a set of positively correlated
and negatively correlated candidate entities, and
uses a GAT to assign correlation scores to different
entities. Thirdly, by increasing the data of positive
and negative samples during the contrastive learn-
ing layer, a reasonable pair of positive and negative
samples is selected for training. Finally, Combin-
ing the above two steps to obtain the contextual
representation of the predicted entity, and proba-
bility distribution of candidate entity is obtained
through a binary classifier and masking strategy.

Finally the model parameters are trained by the
cross-entropy loss function.

L=— Z log p(o|s,r) + A\ L7 (12)

(s,r,0)EG

where G represents the entire history event,
p(ols, r) denotes the probability of candidate entity
o based on the given entity s and the relation r, and
A1 is the weight coefficient.

4 Experiments

4.1 Datasets and Metrics

Dataset  Entities Relation Training Validation Test Time gap
ICEWSI18 23033 256 373018 45995 49 545 24 hours
ICEWS14 7128 260 63 685 — 13222 24 hours

GDELT 7691 240 1734399 238 765 305241 24 hours

WIKI 12 554 24 539 286 67 538 63110 1 year

YAGO 10 623 10 161 540 19523 20 026 1 year

Table 1: Statistics information of datasets

To evaluate the method proposed in this paper,
five commonly used benchmark datasets are used:
ICEWS (including ICEWS14 and ICEWSI18),
YAGO, WIKI and GDELT. The ICEWS14 and
ICEWSI18 datasets divide each timestamp in 24-
hour intervals. The ICEWS14 dataset collects
events that occurred from 1 January 2014 to 31
December 2014, and the ICEWS18 dataset collects
events from 1 January 2018 to 31 December 2018.
The YAGO dataset collected from 2013 to 2017.
The WIKI dataset is extracted from the Wikipedia
database, which collects data from 2008 to 2017.
During the experimental evaluation, the dataset is
divided into training, validation and test sets by
timestamps, which are 80%, 10% and 10%, respec-
tively. We set the training batch size to 1024, the



Method ICEWSI18 ICEWS14 GDELT
MRR Hits@l Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@l0 MRR Hits@l Hits@3 Hits@10

TransE 17.56 248 26.95 43.87 18.65 1.12 31.34 47.07 16.05  0.00 26.10 42.29
DisMult 22.16  12.13 26.00 42.18 19.06  10.09 22.00 36.41 1871  11.59 20.05 32.55
CompIEX  30.09 21.88 34.15 4596 2447 16.13 27.49 41.09 2277 1577 24.05 36.33
R-GCN 23.19 16.36 25.34 3648 2631 18.23 30.43 4534 2331 17.24 24.96 34.36
ConvE 36.67  25.81 39.80 50.69  40.73  33.20 43.92 54.35 3599  27.05 39.32 49.44
HyTE 7.31 3.10 7.50 14.95 11.48 5.64 13.04 22.51 6.37 0.00 6.72 18.63
TTransE 8.36 1.94 8.71 21.93 6.35 1.23 5.80 16.65 5.52 0.47 5.01 15.27
TeMp 4048 3397 42.63 5238  43.13  35.67 45.79 56.12 3756 29.82 40.15 48.60
RE-NET 4293  36.19 45.47 5580 4571 38.42 49.06 59.12 40.12 3243 43.40 53.80
RE-GCN 3278  24.99 35.54 48.01 3237 2443 35.05 48.12 2946 21.74 32.01 43.62
CyGNet 46.69  40.58 49.82 57.14  48.63  41.77 52.50 60.29 5029 4453 54.69 60.99
EvoKG 29.67 12.92 33.08 58.32 18.30  6.30 19.43 39.37 11.29 293 10.84 25.44
HGAT 28.55 19.68 32.74 46.60  46.68  29.72 42.46 56.45 39.12 2635 45.31 56.62
GLANET 2754 17.90 31.20 46.57  38.06 27.97 42.92 57.65 3893 2648 43.62 61.36
RPC 3491 24.34 38.74 55.89 4455 34.87 49.80 65.08 2241 14.42 24.36 38.33
HIP 48.37 4351 51.32 5849  50.57 45.73 54.28 61.65 52776  46.35 55.31 61.87
HHCLNET 53.08 49.15 53.97 60.53 55.08 51.15 54.02 62.53 59.35 55.05 60.03 60.35

Table 2: Experimental results of models in ICEWS18, ICEWS14 and GDELT

embedding dimension of entities and relations to
200, the learning rate to 0.001, the dropout to 0.5
to prevent overfitting, and the Adam optimizer is
used for parameter optimization. We set the train-
ing epoch size to 30, the test epoch size to 20, and
the validation epoch size to 10. The statistical in-
formation for the datasets is shown in Table 1.

The evaluation metrics generally used for TKGR
are Mean Reciprocal Ranks (MRR) and the hit rate
Hits@K for results in the top K. In this experiment,
Hits@1, Hits@3, and Hits@10 are chosen as the
evaluation metrics.

4.2 Baselines and Results

In order to validate the effectiveness of this model,
comparisons are made among 16 baseline mod-
els, which can be classified into two types: SKGR
methods, including TransE (BORDES et al., 2013),
DistMult (Yang et al., 2015), CompIEX (Trouillon
et al., 2016), R-GCN (Schlichtkrull et al., 2018),
and ConvE (Dettmers et al., 2018); TKGR meth-
ods, including HyTE (DASGUPTA et al., 2018),
TTransE (Leblay and Chekol, 2018), TeMp (Wu et
al., 2020), RE-NET (Jin et al., 2020), RE-GCN (Li
et al., 2021), CyGNet (Zhu et al., 2021), EvoKG
(Park et al., 2022), HGAT (Shao et al., 2023),
GLANET (Wang et al., 2023), RPC (Liang et al.,
2023) and HIP (He et al., 2024). The entity predic-
tion results of the above different models on the five
datasets are given in Table 2 and Table 3, respec-
tively. The experimental results show that the HH-
CLNET model has achieved the best performance
on most metrics in all datasets. Especially on the
WIKI and YAGO datasets, the performance im-

provement is particularly significant, respectively
MRR and Hit@3 improved by 3.15% and 2.81%
compared to the best baseline. Compared to this,
the improvement on the ICEWS18, ICEWS14, and
GDELT datasets is slightly smaller, because both
the ICEWS and GDELT datasets are event-based
datasets containing more complex relational net-
works and large amounts of data, which makes the
processing slower and the probability of new events
is high. However, the WIKI and YAGO datasets
have a temporal granularity of years, fewer types of
relations and most of them remain constant, with
a high proportion of repetitive events. Therefore,
when predicting entities on the WIKI and YAGO
datasets, the factual relations that can be relied on
are relatively stable, making the model’s improve-
ment effect significant. From the above experi-
mental results, it can be seen that the HHCLNET
model has significant effects on all datasets, and
it also indicates that the model has indeed learned
historical information related to the prediction in
the historical entity analysis and processing module
and optimizing contrastive learning module. The
experimental results above indicate that compared
to other baseline models, the model exhibits strong
robustness and generalization when dealing with
complex and noisy datasets. Detailed analysis can
be found in the case studies provided in the ap-
pendix.

4.3 Ablation Study

In order to validate the importance of each mod-
ule of the HHCLNET model, ablation experiments
were carried out by keeping the experimental setup



Method WIKI YAGO

MRR Hits@l Hits@3 Hits@l0 MRR Hits@l Hits@3 Hits@10
TransE 46.68  36.19 49.71 51.71 48.97 46.23 62.45 66.05
DisMult 46.12  37.24 49.81 51.38 5947 5297 60.91 65.26
ComplEX  47.84  38.15 50.08 51.39  61.29 54.88 50.08 51.39
R-GCN 37.57  28.15 39.66 4190 4130 3256 44.44 52.68

ConvE 47.57  38.76 50.10 50.53 6232 56.19 63.97 65.60
HyTE 43.02  44.16 45.12 4949 2316 3973 45.74 51.94
TTransE 3174 3536 36.25 43.45 3257 2610 43.39 53.37
TeMp 49.61  46.96 50.24 52.13  62.25  55.39 64.63 66.02

RE-NET 51.97  48.01 52.07 5391 65.16  63.29 65.63 68.08
RE-GCN 44.86  39.82 46.75 47.56  65.69  59.98 68.70 69.22

CyGNet 45.50  50.48 50.79 52.80 6347 64.26 65.71 68.95
EvoKG 50.66  12.21 63.84 68.03 5511  54.37 81.38 79.65
HGAT 56.12 52.90 58.16 61.82  63.62  59.80 66.02 71.58
GLANET  53.18 58.23 61.16 71.52  65.05 76.32 77.86 79.24
RPC 65.31  67.82 69.73 70.23 84.71  83.82 82.73 85.23
HIP 64.71  63.82 68.73 5823 7755 76.32 78.49 80.23

HHCLNET 68.46  70.35 71.44 71.66 8553 85.28 85.54 85.84

Table 3: Experimental results of models in WIKI and
YAGO

constant and creating variants by adjusting the dif-
ferent components of the model, and ICEWS18
and YAGO datasets were chosen to carry out the
experiments. The results of the experiments are
shown in Table 4.

Ablation ICEWSI18 YAGO

MRR Hits@1 Hits@3 Hits@l0 MRR Hits@1 Hits@3 Hits@10
HHCLNET-GAT  48.71  47.04 49.93 53.91 84.46  84.33 84.52 84.65
HHCLNET-OCon  52.09  48.21 51.92 58.78 84.79 8535 85.02 84.49

HHCLNET 53.08  49.15 53.97 60.53 8553 8528 85.54 85.84

Table 4: Results of ablation study in ICEWS18 and
YAGO

Here ICEWS18 and YAGO are chosen to inves-
tigate the effectiveness of graph attention network
(GAT) and optimizing contrast learning (OCon).
Table 4 shows the result of ablation. HHCLNET-
GAT only cosiders the GAT module without OCon,
while HHCLNET-OCon only keeps OCon module.
From the experimental results, it can be seen that
all two modules play a significant role in the model.
The graph attention network makes the model fully
consider the degree of importance of different
neighborhood entities under multi-relations, which
helps the model to obtain a more accurate probabil-
ity distribution of entities. Optimizing contrastive
learning can improve the model performance, re-
flecting the importance of selecting positive and
negative samples in contrastive learning. And it
can further strengthen the learning ability of the
model and enhance the reasoning ability of the
model.

4.4 Hyper-parameter Analysis

In order to assess the sensitivity of the HHCLNET
model to the parameters, an experimental compar-
ison of two parameters ( batch size and Dropout
) was performed on the dataset YAGO, where the
batch size was set to {64, 128, 256, 512, 1024},

and the Dropout was set to {0.1, 0.3, 0.5, 0.7,
0.9}. As can be seen from Figure 4 and Figure
5, when the batch size and Dropout are (1024,
0.5) on the YAGO data set, the model achieved
the best performance. This demonstrates that the
HHCLNET model is sensitive to pairwise batch
size and Dropout.
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Figure 4: Batch training size on YAGO
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Figure 5: Droupout on YAGO

5 Conclusion and Future Work

In this paper, we proposes a new temporal knowl-
edge graph reasoning model based on hierarchical
historical contrastive learning (HHCLNET). The
model analyses and processes the acquired histori-
cal entities, and then uses optimizing comparative
learning to further identify truly relevant entities
with the query, allowing the model to focus more
on the useful entities. Moreover, the model has
shown good performance in predicting new events,
high-frequency events, and low-frequency events.
Therefore, the model has good generalization abil-
ity. In subsequent research, we will work on fus-
ing multi-source information to enhance the en-
tity feature representation and thus continuously
strengthen the learning capability of the model.
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A Case Study

To further demonstrate the effectiveness of the
proposed model, a relevant case study was con-
ducted. As shown in Figure 6, we selected three
representative queries from the ICEWS dataset to
analyze the prediction results of HHCLNET.

- When the query is (Russia, visit, ?, t), it has not
appeared in related historical events. The model an-
alyzes negatively correlated entities through an op-



timization and comparison stage, predicting a high
likelihood of such entities in China, with results
consistently matching the correct answers. This
indicates the model’s ability to predict the correct
entities that do not appear in the same historical
relationship events.

- When given a query (US, invitation, ?, t), it
can be observed from the graph that Canada has
the highest probability of occurrence and belongs
to a historical entity. The historical entity analysis
processing module of the model assigns high corre-
lation scores through graph attention, thus selecting
the Canadian entity with the highest probability as
the final prediction result.

- When given a query (United States, Coopera-
tion, ?, t), as the relationship “US and Japan coop-
eration” appeared once in history, belonging to the
positively correlated historical entities, the model
combines the historical entity analysis module and
the optimization and comparison learning module
to get the final entity prediction result of Japan. The
final prediction matched the correct answer. So the
model’s predictions are correct.
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Figure 6: Case study of HHCLNET’s predictions.

From the above cases, it can be seen that the
hierarchical historical contrastive learning method
proposed in this paper enables the model to auto-
matically learn and query truly relevant historical
events and candidate entities when facing tasks
such as predicting new events, low-frequency event
forecasting, and high-frequency event forecasting.
The cases demonstrate that identifying useful en-
tities helps improve reasoning outcomes, further
proving the strong generalization ability of the pro-
posed model.
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