
Agent Planning with World Knowledge Model

Shuofei Qiao♠∗, Runnan Fang♠∗, Ningyu Zhang♠†, Yuqi Zhu♠, Xiang Chen♠,
Shumin Deng♣, Yong Jiang♢, Pengjun Xie♢, Fei Huang♢, Huajun Chen♠†

♠Zhejiang University
♣National University of Singapore ♢Alibaba Group

{shuofei,zhangningyu}@zju.edu.cn

Abstract

Recent endeavors towards directly using large
language models (LLMs) as agent models to
execute interactive planning tasks have shown
commendable results. Despite their achieve-
ments, however, they still struggle with brain-
less trial-and-error in global planning and gen-
erating hallucinatory actions in local planning
due to their poor understanding of the real
world. Imitating humans’ mental world knowl-
edge model which provides global prior knowl-
edge before the task and maintains local dy-
namic knowledge during the task, in this paper,
we introduce parametric World Knowledge
Model (WKM) to facilitate agent planning.
Concretely, we steer the agent model to self-
synthesize knowledge from both expert and
sampled trajectories. Then we develop a WKM,
providing prior task knowledge to guide the
global planning and dynamic state knowledge
to assist the local planning. Experimental re-
sults on three real-world simulated datasets
with Mistral-7B, Gemma-7B, and Llama-3-8B
demonstrate that our method can achieve supe-
rior performance compared to various strong
baselines. Besides, we analyze to illustrate that
our WKM can effectively alleviate the blind
trial-and-error and hallucinatory action issues,
providing strong support for the agent’s under-
standing of the world1.

1 Introduction

The remarkable advances in Large Language Mod-
els (LLMs) have witnessed a rapid development of
various natural language processing tasks (Meta,
2024; Jiang et al., 2023; OpenAI, 2023; Tou-
vron et al., 2023; Zhao et al., 2023a; Qiao et al.,
2023b). Recently, multiple attempts that directly
exploit LLMs as agent models to carry out physical

∗ Equal contribution.
† Corresponding Author.

1Code will be available at https://github.com/
zjunlp/WKM.

world planning tasks have demonstrated promis-
ing achievements (Yao et al., 2023; Zeng et al.,
2023; Yin et al., 2023; Qiao et al., 2024; Shen et al.,
2024; Zhu et al., 2024; Song et al., 2024). However,
as most state-of-the-art LLMs are autoregressive
models trained with next-token prediction, they
lack the ability to essentially understand the real
world, leading to generating hallucinatory actions
and performing brainless trial-and-error in the en-
vironment as shown in Figure 1(a).

In contrast to LLMs, humans possess a
mental knowledge model about the physical
world (Briscoe, 2011; Johnson-Laird, 1983, 2010;
Pramod et al., 2020). When facing a specific task,
they will first briefly rehearse the entire process
in mind using their rich prior knowledge before
performing mindless actions. We call this kind of
knowledge global task knowledge. In addition, dur-
ing the task procedure, the mental world knowledge
model will constantly maintain a kind of local state
knowledge, representing humans’ cognition of the
current world state. For example, imagine you are
in a room and your task is to put a clean egg
in microwave. The task knowledge may refer
to The egg is most likely in the fridge
... The workflows are: 1) locate and
take the egg; 2) clean the egg using
sinkbasin ... The state knowledge possibly
refers to My task is to ... I have found and
taked the egg ... Next I should ... The
absence of world knowledge can lead to blind trial-
and-error in the early planning stages when envi-
ronmental information is limited. Conversely, in
later stages when information is redundant, it can
easily result in a confused cognition of the current
world state and generate hallucinatory actions.

The process by which humans handle planning
tasks reminds us to develop a parametric World
Knowledge Model (WKM) to facilitate agent
model planning. As humans typically acquire
knowledge from expertise and practical experience,

https://github.com/zjunlp/WKM
https://github.com/zjunlp/WKM
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Figure 1: Traditional agent planning vs. Agent planning with world knowledge model.

we first enable the agent model to self-synthesize
task knowledge from the comparison between ex-
pert trajectories and self-exploration trajectories.
Then we prompt the agent model to summarize
state knowledge for each planning step from expert
trajectories and combine the previous and next ac-
tions to build a state knowledge base. Lastly, we
integrate the generated knowledge into expert tra-
jectories and train a world knowledge model. The
agent model needs to be re-trained to adapt to the
incorporation of task knowledge. Note our agent
model and knowledge model are both trained with
LoRA (Hu et al., 2022) sharing the same backbone.

During the planning phase, we use the WKM to
provide global prior task knowledge and maintain
local dynamic state knowledge for the agent model
as shown in Figure 1(b). The task knowledge will
be concatenated in natural language form following
the specific task to guide the agent model’s trial-
and-error. At each planning step, to prevent the
occurrence of hallucinatory actions, we utilize the
generated state knowledge as the query to conduct
kNN retrieval from the pre-built state knowledge
base. We then use the constraints from the previ-
ous action, the probabilities of the retrieved next
actions, and the probabilities from the agent model
to make a weighted prediction for the next action.

We evaluate our method on three real-world sim-
ulated planning tasks with three state-of-the-art
open-source LLMs: Mistral-7B (Jiang et al., 2023),
Gemma-7B (Mesnard et al., 2024), and Llama-3-
8B (Meta, 2024). Empirical results demonstrate
that our method achieves superior performance
compared to various strong baselines on both seen
and unseen tasks. Moreover, further analytical re-
sults show that 1) our WKM can effectively reduce
blind trial-and-error and hallucinatory actions, 2)
our model-generated instance-level knowledge can
generalize better to unseen tasks, 3) weak-guide-
strong is feasible, 4) multi-task unified WKM pos-
sesses strong potential, and 5) explicit state knowl-
edge will hurt the performance of agent planning.

2 Preliminaries

We mainly focus on interactive tasks with partial
observations from environments. Following the
task formulation in (Song et al., 2024), the problem
can be viewed as a Partially Observable Markov
Decision Process (POMDP): (U ,S,A,O, T ). The
instruction space U defines the task and its corre-
sponding regulations. S is the state space, A is
the action space, and O is the observation space.
T : S × A → S defines the transition function,
which we assume to be given. It is noticed that
U , A, and O are subspaces of the natural language
space in the language agent scenarios.

Based on the above, the historical trajectory ht
that consists of a list of actions and observations at
time t can be represented as:

ht = (u, a0, o0, a1, o1, . . . , at, ot), (1)

where u ∈ U is the task instruction and a ∈ A,
o ∈ O are the action and the observation. Given a
task, the language agent with parameter θ serves as
the policy model πθ responsible for generating the
action at+1 based on ht at each time step t+ 1:

at+1 ∼ πθ(·|ht). (2)

Specifically, a0 ∼ πθ(·|u) is generated according
to the task instruction u. The whole trajectory τ
concludes when the task is completed or exceeds
the maximum time steps. Then the entire trajectory
with time length n can be modeled as:

πθ(τ |u) =
n∏

t=0

πθ(at+1|ht)πθ(a0|u). (3)

Ultimately, the final reward r(u, τ) ∈ [0, 1] is cal-
culated. Note that we follow a REACT-style (Yao
et al., 2023) trajectory that includes rationales be-
fore each action. We use a to represent the action
with rationales for convenience.
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Figure 2: Overview of our WKM. We train a world knowledge model on the knowledge synthesized by the agent model
itself from both expert and explored trajectories, providing prior task knowledge to guide global planning and dynamic state
knowledge to assist local planning.

3 Method

We introduce agent planning with world knowledge
model, of which the world knowledge consists of
two components: task knowledge and state knowl-
edge, as shown in Figure 2

3.1 Task Knowledge Synthesis

The task knowledge serves as the prior knowledge
to guide the agent model’s global planning and
prevent it from dropping into blind trial-and-error.

Experienced Agent Exploration. We primarily
acquire task knowledge through the comparison
of preference trajectories (chosen vs. rejected).
In order to improve the quality of rejected trajec-
tories and obtain more targeted task knowledge,
we employ an experienced agent for exploration.
Firstly, we train a vanilla language model with ex-
pert trajectories2 from the training set to obtain an
experienced agent. Subsequently, the experienced
agent explores the training set tasks again to gener-
ate rejected trajectories. Our purpose is to extract
superior task knowledge that cannot be acquired
solely through supervised fine-tuning on chosen
trajectories, thus further effectively boosting the
agent’s capabilities.

Self Knowledge Synthesis. With the expert tra-
jectories as the chosen ones and the trajectories
sampled from the experienced agent as the rejected

2For details on collecting expert trajectories, please refer
to Appendix A

ones, we prompt the agent model itself to synthe-
size the task knowledge. Supposing K is the task
knowledge space:

κ ∼ πθ(·|ρTaskKnow, u, τw, τl), (4)

where κ ∈ K is the task knowledge, ρTaskKnow

stands for the prompt to instruct the task knowledge
extraction, and τw, τl are the chosen and rejected
trajectories respectively. Note that given the same
task u, τw and τl always satisfy r(u, τw) ≥ r(u, τl).
Even when r(u, τw) = r(u, τl), we still consider
trajectories sampled from the experienced agent as
rejected ones. This is because expert trajectories of-
ten have shorter step lengths, enabling the agent to
learn more knowledge of efficient planning. For de-
tailed prompts of task knowledge synthesis, please
refer to Appendix H.1.

3.2 State Knowledge Summarization
The state knowledge serves as the dynamic knowl-
edge to constrain the agent model’s local plan-
ning and prevent it from generating hallucina-
tory actions. We prompt the agent model to self-
summarize state knowledge at each planning step
based on the expert trajectories to guarantee quality.
For detailed prompts of state knowledge summa-
rization, please refer to Appendix H.2. Supposing
the prompt used to summarize state knowledge is
ρStateKnow and the state knowledge s ∈ S is a
part of the state space S, the generation of state
knowledge at time t can be represented as:

st ∼ πθ(·|ρStateKnow, ht). (5)



State Knowledge Base Construction. To avoid
confusion caused by excessive additional infor-
mation, instead of explicitly concatenating the
state knowledge to the context, we construct a
state knowledge base for retrieval (we analyze
in §4.3 how explicit state knowledge may af-
fect the performance of agent model). We com-
bine the state knowledge st with the previous
action at and next action at+1 from the expert
trajectory to form a action-state-action triplet
(at, st, at+1). After iterating through all expert
trajectories, we obtain a State Knowledge Base
B = {(s, apre, anext)(i)}|B|i=1, where |B| is the size
of the state knowledge base.

3.3 Model Training

We integrate the generated world knowledge into
expert trajectories and train a world knowledge
model. The agent model needs to be re-trained to
adapt to the incorporation of task knowledge. Note
that our agent model and knowledge model are both
trained with LoRA sharing the same backbone. We
list the examples of training data for both the agent
model and WKM in Appendix E.

Agent Model Training. Given the expert trajec-
tories dataset D = {(u, κ, τw)(i)}|D|

i=1 with task
knowledge κ generated in §3.1, we train the agent
model to follow the task knowledge to generate
actions. Under an auto-regressive manner, the loss
of the agent model can be formulated as:

Lagent(πθ) = −Eτw∼D[πθ(τw|u, κ)] (6)

Suppose X = (x1, x2, . . . , x|X |) is the token se-
quence of the trajectory τw, we have:

πθ(τw|u, κ) =

−
|X |∑
j=1

(1(xj ∈ A)× log πθ(xj |u, κ, x<j)) . (7)

Here 1(xj ∈ A) is the indicator function to mask
tokens related to observations.

World Knowledge Model Training. The main
difference in the training data between the agent
and knowledge model is the added state knowledge.
Given the expert trajectories dataset with both
task and state knowledge D′ = {(u, κ, τ ′w)(i)}

|D′|
i=1

where τ ′w = (a0, o0, s0, . . . , an, on, sn), the loss of

the knowledge model πϕ can be formulated as:

Lknow(πϕ) = −Eκ,τ ′w∼D′ [πϕ(κ|u)πϕ(τ ′w|u, κ)]

(8)

Suppose X ′ = (x′1, x
′
2, . . . , x

′
|X ′|) is the token se-

quence of the expert trajectory with state knowl-
edge τ ′w and Y = (y1, y2, . . . , y|Y|) represents the
token sequence of the task knowledge κ, we have:

πϕ(κ|u) = −
|Y|∑
i=1

log πϕ(yi|u, y<i) (9)

πϕ(τ
′
w|u, κ) =

−
|X ′|∑
j=1

(
1(x′j ∈ S)× log πϕ(x

′
j |u, κ, x′<j)

)
,

(10)

where 1(xj ∈ S) is the indicator function to mask
tokens unrelated to state knowledge.

3.4 Agent Planning with World Knowledge
Model

At inference time, the agent model plans on the
evaluation tasks with the aid of the world knowl-
edge model. We redefine the historical trajectory
ht = (u, κ, a0, o0, a1, o1, . . . , at, ot). Given a spe-
cific task instruction u, the knowledge model first
generates the task knowledge κ ∼ πϕ(·|u), then
the agent model starts planning. Assuming the
available action set Au ⊆ A for the task u is
(α

(1)
u , α

(2)
u , . . . , α

(|Au|)
u ), at any time t ≥ 0, instead

of directly generating a next action at+1 ∈ Au

based on ht, we first employ the world knowl-
edge model to generate the current state knowl-
edge st ∼ πϕ(·|ht) and leverage st to query the
state knowledge base B = {(s, apre, anext)(i)}|B|i=1.
With the state knowledge as the key, we retrieve
N nearest triplets from where apre = at based
on semantic similarity and collect the correspond-
ing next actions anext. We count the probability of
each action pknow(α

(i)
u ) = Ni

N , where Ni is the oc-

currence number of action α
(i)
u in all the collected

anext. Therefore, we get the probability acquired
from the state knowledge base:

Pknow(Au) = (pknow(α
(1)
u ), pknow(α

(2)
u ), · · · ,

pknow(α
(|Au|)
u )),

|Au|∑
i=1

pknow(α
(i)
u ) = 1. (11)



Backbone Method ALFWorld WebShop ScienceWorld

Seen Unseen Seen Unseen

GPT-3.5-Turbo
u REACT

8.57 5.97 44.37 15.41 13.99
GPT-4 44.29 38.05 62.76 67.32 65.09

Mistral-7B

u REACT 7.86 5.22 14.63 20.72 17.65
u Reflexion 11.56 6.00 16.64 21.07 18.11
v NAT 64.43 68.96 61.01 57.12 50.79
v ETO 66.84 71.43 64.09 58.17 51.85
v KNOWAGENT 70.44 70.72 61.28 59.32 47.24

WKM 73.57 +3.13 76.87 +5.44 65.48 +1.39 62.12 +2.80 53.62 +1.77

Gemma-7B

u REACT 6.43 2.24 5.93 3.58 3.51
u Reflexion 7.14 2.99 7.71 4.94 3.93
v NAT 67.86 65.88 55.82 47.63 44.98
v ETO 66.43 68.66 62.67 50.44 47.84
v KNOWAGENT 69.29 67.60 58.80 48.55 45.28

WKM 70.71 +1.42 70.40 +1.74 63.75 +1.08 53.68 +3.24 49.24 +1.40

Llama-3-8B

u REACT 2.86 3.73 19.32 24.76 22.66
u Reflexion 4.29 4.48 22.73 27.23 25.41
v NAT 60.71 59.70 61.60 55.24 48.76
v ETO 64.29 64.18 64.57 57.90 52.33
v KNOWAGENT 66.71 62.69 64.40 58.67 49.18

WKM 68.57 +1.86 65.93 +1.75 66.64 +2.07 60.12 +1.55 54.75 +2.42

Table 1: Main Results. The best results of each model are marked in bold and the second-best results are marked with underline.
All the prompt-based baselines (u ) are evaluated under one-shot prompting and all the fine-tuning-based baselines ( v ) are
trained through LoRA. Red represents the changes of WKM relative to the optimal results in the baselines.

Afterward, we sample all the logits of α(i)
u , 1 ≤ i ≤

|Au| from the agent model and apply a softmax
function to normalize the probability. We define
the probability acquired from the agent model as:

Pagent(Au) = (pagent(α
(1)
u ), pagent(α

(2)
u ), · · · ,

pagent(α
(|Au|)
u )),

|Au|∑
i=1

pagent(α
(i)
u ) = 1. (12)

Finally, we determine the next action by combining
the above two probabilities:

at+1 = argmax
α
(i)
u ∈Au,1≤i≤|Au|

(γ · pagent(α(i)
u )+

(1− γ) · pknow(α(i)
u )), (13)

where γ is the hyperparameter that controls the
proportion of Pagent(Au).

4 Experiments

4.1 Experimental Settings
Datasets and Metrics. We evaluate our method
on three real-world simulated planning datasets:
ALFWorld (Shridhar et al., 2021), WebShop (Yao
et al., 2022), and ScienceWorld (Wang et al., 2022).
AlFWorld and ScienceWorld include unseen tasks
to evaluate the agent’s generalization ability. The
reward of ALFWorld is binary 0 or 1, indicating

whether the agent has completed the task or not.
WebShop and ScienceWorld provide dense rewards
from 0 to 1 to measure the completion level of the
task. For all the datasets, we apply average reward
as the final metrics. Please refer to Appendix B for
detailed dataset information.

Models and Baselines. We evaluate on three
state-of-the-art open-source models: 1) Mistral-7B
(Jiang et al., 2023), the Mistral-7B-Instruct-v0.2
version. 2) Gemma-7B (Mesnard et al., 2024),
the Gemma-1.1-7B-it version. 3) Llama-3-8B
(Meta, 2024), the Meta-Llama-3-8B-Instruct ver-
sion. We compare our method with two prompt-
based baselines: REACT (Yao et al., 2023) and
Reflexion (Shinn et al., 2023). Besides, we adopt
two strong baselines that introduce rejected tra-
jectories into the training process to learn from
experience: NAT (Wang et al., 2024b), learn
from rejected trajectories through SFT, and ETO
(Song et al., 2024), learn from rejected trajectories
through DPO (Rafailov et al., 2023). Moreover, we
compare with a knowledge-augmented planning
method KNOWAGENT. We also include ChatGPT
(gpt-3.5-turbo-0125) (OpenAI, 2022) and GPT-4
(gpt-4-32K) for comparison. All the prompt-based
baselines are tested under one-shot and all the fine-
tuning-based baselines are trained with LoRA (Hu
et al., 2022). Please refer to Appendix C for base-
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with only task knowledge. w/ task&state is our WKM with both task knowledge guidance and state knowledge constraints.

lines and re-producing details.

Training and Inference Setups. We fine-tune
all our models with LoRA (Hu et al., 2022) using
the LlamaFactory (Zheng et al., 2024) framework.
We set the learning rate of 1e-4 and the sequence
length of 2048 for all the models. The training
epoch is 3 and the batch size is 32. We use the
AdamW optimizer (Loshchilov and Hutter, 2019)
with a cosine learning scheduler. During inference,
the number of retrieved action-state-action triplets
N is set to 3000 and the Pagent(Au) weight γ is set
to {0.4, 0.5, 0.7}. All the training and inference ex-
periments are conducted on 8 NVIDIA V100 32G
GPUs within 12 hours. Please refer to Appendix D
for detailed hyperparameters used in our paper.

4.2 Results

Main Results. As shown in Table 1, for prompt-
based baselines on open-source models, both RE-
ACT and Reflexion exhibit poor performance, far
behind our method and fine-tuning-based baselines
on various datasets. GPT-3.5-Turbo performs or-
dinarily on two datasets other than WebShop, and
it even falls behind Mistral-7B and Llama-3-8B’s
REACT performance on ScienceWorld. However,
GPT-4 exhibits strong performance across vari-
ous datasets. Nevertheless, our approach, through
LoRA training alone, surpasses GPT-4 on ALF-
World and WebShop. For fine-tuning-based base-
lines, both NAT and ETO fall behind our method,
implying that just integrating world knowledge for
agent models is worth more than further fussy SFT
or DPO on negative examples. Our method also
performs better than KNOWAGENT which brings
human-designed fixed action knowledge and long
action paths into trajectories. This suggests the
effectiveness of our WKM which is responsible
for generating instance-level task knowledge and
maintaining implicit action constraints.

Approach Ablations. As shown in Figure 3, tak-
ing Mistral-7B as an example, we decompose the
key components of WKM to examine the roles of
the task and state knowledge separately. In a macro
view, removing each module results in a clear drop
in the agent’s performance, which validates the
power of our world knowledge. Furthermore, the
improvement through task knowledge (w/ task) is
more pronounced than that through state knowl-
edge (w/ state), suggesting the necessity of global
prior knowledge for agent planning. A more micro
observation reveals that the impact of state knowl-
edge is more significant on seen tasks compared
to unseen tasks, while the influence of task knowl-
edge is sustainable across seen and unseen tasks.
This may be attributed that although our real-time
state knowledge is generated by WKM, the state
knowledge base is built on the training set, which
may weaken generalization to some extent.

4.3 Analysis

World knowledge can mitigate blind trial-and-
error and reduce hallucinatory actions. We
compare the number of planning steps for each
dataset and calculate the average steps of each
method. As depicted in Figure 10 (in Appendix),
WKM demonstrates the ability to complete a sig-
nificant proportion of tasks using the shortest tra-
jectory, indicating that guidance from world knowl-
edge can effectively reduce the agent’s blind trial-
and-error. Taking a further perspective from an
average standpoint in Table 2, it can be observed
that WKM exhibits lower average planning steps
compared to other baselines. As ALFWorld can
respond to invalid actions, in Table 3, we count the
percentage of hallucinatory actions that occurred
in trajectories from ALFWorld for each method.
The results confirm the effectiveness of our world
knowledge model to decrease hallucinatory actions.
Furthermore, it is worth noting that most baselines



Method ALFWorld WebShop ScienceWorld

Seen Unseen Seen Unseen

NAT 23.27 23.42 4.08 20.18 21.21
ETO 19.82 22.29 3.99 24.13 26.35
KNOWAGENT 18.51 24.56 4.01 21.06 24.74

WKM 17.66 17.92 3.97 18.74 19.59

Table 2: Average Steps. The maximum number of steps in ALFWorld
and WebShop is 40 and 10. In ScienceWorld, the number of steps ranges
from 10 to 120 depending on the task type, with an average of around 40.

Method ALFWorld

Seen Unseen

NAT 45.71% 50.00%
ETO 34.29% 36.57%
KNOWAGENT 33.57% 44.78%

WKM 32.86% 29.85%

Table 3: Hallucinatory Action Rates on ALF-
World. We count the rates of trajectories containing
invalid actions regardless of their correctness.
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Figure 4: Performance of human-designed dataset-level
knowledge vs. WKM generated instance-level knowledge.

show a prominent increase in the average number
of steps and percentage of invalid actions when
transitioning from seen tasks to unseen tasks, but
WKM can still maintain a relatively low level. This
reflects laterally that our world knowledge can still
effectively guide the agent model on unseen tasks,
highlighting the knowledge generalization brought
by the world knowledge model. To see how our
world knowledge works, please refer to our case
study in Appendix F.

Our instance-level knowledge can generalize
better to unseen tasks. To further explore the
benefit of using a knowledge model to generate
instance-level task knowledge, we carefully survey
the task knowledge generated by our WKM and
abstract it into dataset-level knowledge for each
dataset. Then we retrain the agent model to adapt
to new dataset-level knowledge3. As illustrated in
Figure 4, we compare the performance of dataset-
level knowledge with our instance-level task knowl-
edge (WKM w/o state) on ALFWorld and Sci-
enceWorld. It can be observed that our model-
generated instance-level knowledge not only sur-
passes human-designed knowledge on seen tasks
but also exhibits even more remarkable perfor-
mance on unseen tasks, with the improvement in
performance on unseen tasks significantly greater
than that on seen tasks. This phenomenon straightly
reflects the strong generalization ability of our

3Detailed manually designed dataset-level knowledge
prompt can be found in Appendix H.3

Backbone Method ALFWorld

Seen Unseen

GPT-3.5-Turbo
REACT 8.57 5.97
WKM w/o state 12.86 8.96

GPT-4
REACT 44.29 38.05
WKM w/o state 50.71 47.01

Table 4: Weak-guide-strong. The knowledge model here is
based on Mistral-7B.

knowledge model compared to rigidly designed
knowledge by humans.

Weak knowledge model guides strong agent
model planning. In our main experiments, the
knowledge model and agent model are based on
the same backbone. Here, we explore on ALF-
World what will happen if we use a weak knowl-
edge model to guide a strong agent model. We
choose Mistral-7B as the backbone of the knowl-
edge model and ChatGPT and GPT-4 as the agent
model. Since we cannot get the token distribu-
tion from OpenAI API, we only apply task knowl-
edge to the agent model. As exhibited in Table 4,
the results of both ChatGPT and GPT-4 show dis-
tinct advances after being guided by the Mistral-7B
world knowledge model, indicating the weak world
knowledge model also contains knowledge that the
strong model may lack. This inspires us with a
new agent learning paradigm: weak-guide-strong.
Due to its lightweight nature, the weak knowledge
model can flexibly adjust its parameters based on
the needs of the agent model, which can address
the difficulty of large agent models in adapting to
new environments through fine-tuning.

Unified World Knowledge Model Training. We
mix the world knowledge collected from all three
datasets and jointly train one single world knowl-
edge model to investigate the effect of multi-task
world knowledge learning. Figure 5 illustrates the
relative performance comparison between multi-
task WKM and various baselines, from which we
can observe that multi-task WKM not only does
not lead to performance degradation but also ex-
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Figure 5: Relative performance of multi-task WKM com-
pared to various baselines.

hibits visible improvements compared to single-
task WKM, especially on WebShop and Science-
World. Similar to (Zeng et al., 2023; Zhang et al.,
2024; Chen et al., 2024) which endeavor to train
a unified agent model and achieve strong general-
ization ability to held-out tasks, this observation
inspires us with the potential of training a unified
world knowledge model that can be applied to help
various held-in agent models and also generalize
to guide held-out agent models. A more daring
idea is whether a unified agent model combined
with a unified world knowledge model is the key to
Artificial General Intelligence (AGI).

Explicit state knowledge will hurt the planning
performance. To demonstrate the rationality of
constructing a state knowledge base, we explore
the effect of incorporating state knowledge into the
context of the agent model (we retrain the agent
model to follow both the task and state knowledge),
as shown in Figure 6. The performance of explicit
state knowledge is far inferior to our approach of re-
trieving from a state knowledge base and utilizing
probabilistic constraints. It even performs worse
than when we remove state knowledge and only
include task knowledge. This clearly indicates that
blindly extending prompts with a large amount of
explicit natural language feedback is lose-more-
than-gain for agent planning, and implicit knowl-
edge constraints may be sometimes more prudent.

5 Related Work

LLM Agents. LLMs have emerged as a promis-
ing avenue towards unlocking the potential of Ar-
tificial General Intelligence, offering robust sup-
port for the development of agent systems (Wang
et al., 2024a; Xi et al., 2023; Guo et al., 2024;
Zhou et al., 2023). Existing research in this do-
main primarily focuses on agent planning (Huang
et al., 2022; Logeswaran et al., 2022; Yao et al.,
2023; Song et al., 2023a), external tools harness-
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Figure 6: Performance of explicit state knowledge.

ing (Shen et al., 2023; Lu et al., 2023; Song et al.,
2023b; Patil et al., 2023; Qiao et al., 2023a; Qin
et al., 2023; Tang et al., 2023), code generation
(Sun et al., 2023; Logeswaran et al., 2022; Qian
et al., 2023; Hong et al., 2023), etc. Recently,
there has been a growing focus on endowing open-
source LLMs with agent functionalities through
fine-tuning (Chen et al., 2023; Zeng et al., 2023;
Yin et al., 2023; Shen et al., 2024; Song et al., 2024;
Wang et al., 2024b). However, these approaches
rely on blindly fitting the probabilities of tokens to
learn planning, without having an intimate cogni-
tion of the environment. The lack of knowledge can
lead to the agent blindly attempting trial-and-error
and generating hallucinatory actions.

Knowledge Augmented Agent Planning. Plan-
ning (Huang et al., 2024) is a crucial capability for
intelligent agents to accomplish real-world tasks,
often requiring agents to possess rich knowledge
and environmental commonsense. Few works have
explored the field of knowledge-augmented agent
planning. (Huang et al., 2022; Zhao et al., 2023b;
Ding et al., 2023) utilize the rich parametric knowl-
edge stored in pre-trained language models to assist
agent planners. (Guan et al., 2024; Li et al., 2024;
Zhao et al., 2024; Zhu et al., 2024) design struc-
tured or natural language knowledge to regulate
the actions. However, the above studies require the
manual design of fixed prompt templates or task
procedures, making it challenging to transfer across
different task environments. (Zhou et al., 2023; Ye
et al., 2023; Fu et al., 2024) propose the automation
of knowledge generation using language models.
However, their knowledge either consists of only
global workflow or only local action principles. In
contrast, we train our world knowledge model both
on global task knowledge and local state knowl-
edge to assist agent planning, and these knowledge
sources are derived from the model’s self-summary
rather than hand-curated.

6 Conclusion

In this paper, we strive to develop a parametric
world knowledge model (WKM) to augment lan-
guage agent model planning. Our WKM can gener-



ate prior task knowledge to guide global planning
as well as dynamic state knowledge to regulate
local planning. Our extensive results show that
our world knowledge can work on both GPT-4 and
state-of-the-art open-source models and achieve
superior performance compared to various strong
baselines. Analytical experiments validate that our
WKM can 1) reduce brainless trial-and-error and
invalid actions, 2) generalize better to unseen tasks,
3) achieve weak-guide-strong, and 4) be effectively
extended to unified world knowledge training.

Limitations

Despite our best efforts, this paper may still have
some limitations: 1) Our primary intention behind
designing the WKM is to compensate for the lack
of world knowledge in the agent model. How-
ever, determining what a language model knows
and doesn’t know has been an ongoing challenge
that remains unresolved. 2) It is widely acknowl-
edged that world knowledge extends beyond tex-
tual representations. While our world knowledge is
currently limited to textual information, exploring
multi-modal world knowledge models is indeed
one of our important future tasks. 3) Our world
knowledge model cannot dynamically update with
the changes of the world and feedback from the
agent. 4) Generating world knowledge can intro-
duce additional inference overhead.

Ethics Statement

This research was conducted with the highest eth-
ical standards and best practices in research. All
our experiments use publicly available datasets (as
detailed in Appendix B), avoiding ethical concerns
related to privacy, confidentiality, or misuse of per-
sonal biological information. However, despite our
best efforts, it is not avoidable if someone mali-
ciously modifies the world knowledge model to
contradict the world’s knowledge and leads the
agent to engage in unethical behavior.
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A Expert Trajectories Collection

We mainly use the expert trajectories with a REACT-style (Yao et al., 2023) collected from (Song et al.,
2024):

1. ALFWorld (Shridhar et al., 2021). The dataset provides human-annotated trajectories.

2. WebSahop (Yao et al., 2022). Except for human-annotated trajectories, GPT-4 is also applied to
explore in the environment and trajectories with a reward greater than 0.7 are reserved.

3. ScienceWorld (Wang et al., 2022). The dataset provides heuristic searching algorithms to generate
golden trajectories for each sub-task.

Since the original golden trajectories do not contain rationales, GPT-4 is further leveraged to generate the
corresponding information.

B Dataset Information

We evaluate our method on three real-world simulated agent planning datasets: ALFWorld (Shridhar et al.,
2021), WebShop (Yao et al., 2022), and ScienceWorld (Wang et al., 2022).

1. ALFWorld is a household dataset requiring the agent to navigate through the room and manipulate
objects. Except for seen tasks, AlFWorld also includes unseen tasks to evaluate the agent’s general-
ization ability. The reward of ALFWorld is binary 0 or 1, indicating whether the agent has completed
the task or not.

2. WebShop is an online shopping dataset in a website environment. It provides dense final rewards
from 0 to 1 to measure the completion level of the task.

3. ScienceWorld is a scientific reasoning dataset at the level of a standard elementary school science
curriculum. It also possesses both seen and unseen parts and a dense reward function from 0 to 1.

For all the datasets, we apply average reward as the final metrics. Table 5 illustrates the statistics of each
dataset.

Table 5: Dataset statistics.

Dataset Train Text-Seen Text-Unseen

ALFWorld 3,119 140 134
WebShop 1,824 200 -
ScienceWorld 1,483 194 211

C Compared Baselines

Here we detailedly introduce the baselines we compare with and our re-produce details.

1. REACT (Yao et al., 2023). The first approach incorporates Chain-of-Thought (COT) prompting in
agent planning tasks with a format of Thought-Action-Observation loop. In our paper, we apply
one-shot prompting for REACT4.

2. Reflexion (Shinn et al., 2023). A strong prompt-based baseline reinforces agent planning with
verbal feedback. Manually designed prompts are used to enable the agent to reflect on the historical
trajectory and re-plan based on the feedback. In our paper, we utilize one-shot prompting for
reflection and select the first reflect iteration as our result due to limited context5.

4https://github.com/ysymyth/ReAct
5https://github.com/noahshinn/reflexion

https://github.com/ysymyth/ReAct
https://github.com/noahshinn/reflexion


3. NAT (Wang et al., 2024b). NAT includes negative trajectories by employing different prompts during
agent fine-tuning. When evaluating, only positive prompts are used to encourage the language agent
to generate correct trajectories. As it also follows the REACT-style format, we directly use the default
positive and negative prompts and train with LoRA in our paper6.

4. ETO (Song et al., 2024). Another baseline includes negative trajectories during agent training. The
method contains two training phases, of which the first phase is behavior cloning which fine-tunes the
agent on expert trajectories, and the second phase is learning from failures which further fine-tunes
the agent through Direct Preference Optimization (DPO) (Rafailov et al., 2023). In our paper, we
remove the one-shot prompt for fairness and retain all the default hyperparameters proposed in ETO
except for LoRA training7.

5. KNOWAGENT (Zhu et al., 2024). KNOWAGENT is a knowledge-augmented agent planning baseline
that applies action knowledge in the prompt and maintains an action path in the context during plan-
ning to constrain the agent’s action. We directly use the default prompt mentioned in KNOWAGENT

for ALFWorld and carefully extend it to WebShop and ScienceWorld by following a similar format8.

All the prompt-based baselines are tested under one-shot and all the fine-tuning-based baselines are trained
with LoRA (Hu et al., 2022).

D Hyperparameters

The detailed hyperparameters we use during training and inference are shown in Table 6. We employ
identical hyperparameters for different models and datasets.

Table 6: Detailed hyperparameters used in our paper.

Name Value

lora r 8
lora alpha 16

lora dropout 0.05
lora target modules q_proj, v_proj

cutoff len 2048
epochs 3

batch size 32
batch size per device 4

gradient accumulation steps 2
learning rate 1e-4
warmup ratio 0.03
temperature 0.0, 0.5

retrieved state knowledge N 3000
Pagent(Au) weight γ 0.4, 0.5, 0.7

E Training Data Example

We show the training data example for agent model and world knowledge model in Figure 7 and Figure 8.
During training, transparent tokens do not contribute to the calculation of the loss. Only the parts of the
model responsible for output (agent model: purple, knowledge world model: green), participate in the
loss calculation.

6https://github.com/Reason-Wang/NAT
7https://github.com/Yifan-Song793/ETO
8https://github.com/zjunlp/KnowAgent

https://github.com/Reason-Wang/NAT
https://github.com/Yifan-Song793/ETO
https://github.com/zjunlp/KnowAgent


Training Data Example for Agent Model

Task Instruction: You are in the middle of a room. Looking quickly around you, you see a bed 1,
a desk 1, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a dresser 1, a garbagecan 1, a
laundryhamper 1, and a shelf 1. Your task is to: examine the book with the desklamp.
Task Knowledge: When you cannot find the object required for the task under the desklamp, first
check all the drawers and shelves in the room, then revisit the previous locations and double-check
before giving up and looking in the garbage can or laundry hamper. The action workflows are
as follows: 1. For each drawer and shelf, go to the location and open it to check if the object is
inside. 2. If the object is not found, close the drawer or shelf and move on to the next one. 3. After
checking all the drawers and shelves, revisit the previous locations and double-check if the object
might have been overlooked. 4. If the object is still not found, look in the garbage can or laundry
hamper as a last resort.
Thought: The task requires me to examine a book with the desklamp. First, I need to locate the
book.
Action: go to bed 1
Observation: On the bed 1, you see a book 1, a laptop 1, and a pillow 1.
Thought: I see a book on the bed. I should pick it up to examine it with the desklamp.
Action: take book 1 from bed 1
Observation: You pick up the book 1 from the bed 1.
Thought: Now that I have the book, I need to find the desklamp to examine the book under its
light.
Action: go to desk 1
Observation: On the desk 1, you see an alarm clock 1, a bowl 1, a CD 2, a mug 3, a mug 2, a mug
1, a pen 1, and a pencil 2.
Thought: The desklamp isn’t on the desk. I need to look around the room to find where the
desklamp is located.
Action: go to dresser 1
Observation: On the dresser 1, you see a cellphone 1, a desklamp 1, and a keychain 2.
Thought: I’ve found the desklamp on the dresser. I should use it to examine the book.
Action: use desklamp 1

Figure 7: Training Data Example for Agent Model.

Training Data Example for Agent Model

Task Instruction: You are in the middle of a room. Looking quickly around you, you see a bed 1,
a desk 1, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a dresser 1, a garbagecan 1, a
laundryhamper 1, and a shelf 1. Your task is to: examine the book with the desklamp.
Task Knowledge: When you cannot find the object required for the task under the desklamp, first
check all the drawers and shelves in the room, then revisit the previous locations and double-check
before giving up and looking in the garbage can or laundry hamper. The action workflows are
as follows: 1. For each drawer and shelf, go to the location and open it to check if the object is
inside. 2. If the object is not found, close the drawer or shelf and move on to the next one. 3. After
checking all the drawers and shelves, revisit the previous locations and double-check if the object
might have been overlooked. 4. If the object is still not found, look in the garbage can or laundry
hamper as a last resort.
Thought: The task requires me to examine a book with the desklamp. First, I need to locate the
book.
Action: go to bed 1



Observation: On the bed 1, you see a book 1, a laptop 1, and a pillow 1.
State Knowledge: Your task is to examine a book with the desklamp. You have not found the
desklamp yet, and have only checked the bed 1.
Thought: I see a book on the bed. I should pick it up to examine it with the desklamp.
Action: take book 1 from bed 1
Observation: You pick up the book 1 from the bed 1.
State Knowledge: Your task is to examine a book using the desklamp. Your have located the book
on bed 1 and picked it up.
Thought: Now that I have the book, I need to find the desklamp to examine the book under its
light.
Action: go to desk 1
Observation: On the desk 1, you see an alarm clock 1, a bowl 1, a CD 2, a mug 3, a mug 2, a mug
1, a pen 1, and a pencil 2.
State Knowledge: Your task is to examine a book with the desklamp. You have located the book
on bed 1 and picked it up. Next, You need to find the desklamp to examine the book under its light.
Thought: The desklamp isn’t on the desk. I need to look around the room to find where the
desklamp is located.
Action: go to dresser 1
Observation: On the dresser 1, you see a cellphone 1, a desklamp 1, and a keychain 2.
State Knowledge: Your task is to examine a book with the desklamp. You have located the book
on the bed and picked it up, now you find a desklamp on a dresser.

Figure 8: Training Data Example for World Knowledge Model.

F Case Study

In Figure 9, we list the trajectories of ETO and our WKM within the same task in ALFWorld to illustrate
how world knowledge functions. The rationales before each action have been omitted to guarantee a
clear illustration. The task is to clean some soapbar and put it in cabinet. Initially, ETO
blindly searches for the soapbar in the countertop and cabinet, introducing a lot of irrelevant
information and unnecessary context. In the later stages of planning, ETO experiences the hallucination
and executes the put action after close the cabinet, causing the environment to become unrecognizable
and resulting in a collapse. On the contrary, guided by task knowledge, WKM directly identified the
possible locations of the soapbar and successfully found it in the first attempt. Subsequently, WKM
efficiently completed the task with precision, adhering to the constraints of state knowledge.



Case Study of WKM

ETO
Task Instruction: You are in the middle of a
room. Looking quickly around you, you see
a cabinet 4, a cabinet 3, a cabinet 2, a cabinet
1, a countertop 1, a garbagecan 1, a handtow-
elholder 2, a handtowelholder 1, a sinkbasin
2, a sinkbasin 1, a toilet 1, a toiletpaperhanger
1, and a towelholder 1. Your task is to: clean
some soapbar and put it in cabinet.
# Blind trial-and-error begins.
Agent: go to countertop 1
Observation: On the countertop 1, you see a
candle 3, a candle 1, a soapbottle 1, a spraybot-
tle 2, and a toiletpaper 2.
Agent: go to cabinet 1
Observation: The cabinet 1 is closed.
Agent: open cabinet 1
Observation: You open the cabinet 1. The cab-
inet 1 is open. In it, you see a soapbottle 2.
Agent: close cabinet 1
Observation: You close the cabinet 1.
# Blind trial-and-error ends.
Agent: go to toilet 1
Observation: On the toilet 1, you see a soapbar
1, and a spraybottle 3.
Agent: take soapbar 1 from toilet 1
Observation: You pick up the soapbar 1 from
the toilet 1.
Agent: go to sinkbasin 1
Observation: On the sinkbasin 1, you see noth-
ing.
Agent: clean soapbar 1 with sinkbasin 1
Observation: You clean the soapbar 1 using
the sinkbasin 1.
Agent: go to cabinet 1
Observation: The cabinet 1 is closed.
Agent: open cabinet 1
Observation: You open the cabinet 1. The cab-
inet 1 is open. In it, you see a soapbottle 2.
Agent: close cabinet 1
Observation: You close the cabinet 1.
# Hallucinatory action.
Agent: put soapbar 1 in/on cabinet 1
Observation: Nothing happens.
Agent: check cabinet 1
Observation: Nothing happens.
Agent: go to exit
Observation: Nothing happens.
Agent: exit
Observation: Nothing happens.
......
Reward: 0.0

WKM

Task Instruction: ...
Task Knowledge: When the task is to clean
and place an object, you should first locate the
object. The possible locations of the soapbar
are: toilet, sinbasin. Once the object is found,
you should clean it using the sinkbasin, then
put it in the cabinet. The action workflows are
as follows: 1. Go to the place where the object
is located. 2. Take the object from the place. 3.
Clean the object using the sinkbasin. 4. Go to
the cabinet. 5. Put the object in/on the cabinet.
Agent: go to toilet 1
Observation: On the toilet 1, you see a soapbar
1, and a spraybottle 3.
State Knowledge: Your task is to clean some
soapbar and put it in cabinet. Now you are
checking toilet 1 and there is a soapbar 1.
Agent: take soapbar 1 from toilet 1
Observation: You pick up the soapbar 1 from
the toilet 1.
State Knowledge: Your task is to clean some
soapbar and put it in cabinet. You have checked
the toilet 1 and found the soapbar 1.
Agent: go to sinkbasin 1
Observation: On the sinkbasin 1, you see noth-
ing.
State Knowledge: Your task is to clean some
soapbar and put it in cabinet. You have checked
the toilet 1 and found the soapbar 1. Now you
are at the sinkbasin.
Agent: clean soapbar 1 with sinkbasin 1
Observation: You clean the soapbar 1 using
the sinkbasin 1.
State Knowledge: Your task is to clean some
soapbar and put it in cabinet. You have cleaned
the soapbar 1 using the sinkbasin 1.
Agent: go to cabinet 1
Observation: The cabinet 1 is closed.
State Knowledge: Your task is to clean some
soapbar and put it in cabinet. You have cleaned
the soapbar 1 using the sinkbasin 1. Now you
are checking cabinet 1.
Agent: open cabinet 1
Observation: You open the cabinet 1. In it,
you see a soapbottle 2.
State Knowledge: Your task is to clean some
soapbar and put it in cabinet. You have cleaned
the soapbar 1 and opened the cabinet 1.
Agent: put soapbar 1 in/on cabinet 1
Reward: 1.0



Figure 9: Case study for our WKM.

G Win Rate of Planning Steps

See Figure 10.

0 25 50 75 100

ALFWorld seen

ALFWorld unseen

WebShop test

SciWorld seen

SciWorld unseen

Win Rate (%)

WKM ETO KnowAgent NAT

37.1 12.8 31.4 18.7

38.8 14.2 20.9 26.1

65.5 11.0 15.0 8.5

47.4 17.1 17.5 18.0

50.5 14.4 17.0 18.1

Figure 10: Win Rate of Planning Steps. We choose the method with the shortest steps for each task and calculate the
proportion.

H Prompts

In this section, we illustrate all the prompts used in our paper.

H.1 Task Knowledge Synthesis Prompt

Prompt for Task Knowledge Synthesis

Task Knowledge

Prompt for Synthesis: I will provide you with an analysis of both a successful trajectory and an
explored trajectory for the same task. By comparing the two, we can identify the key factors that
contribute to success. Based on this analysis, you need to generate task-related task knowledge to
help increase the success rate of future endeavors.
Success Trajectory: Success_T
Explored Trajectory: Explored_T
The task knowledge should specify what to do in what task. Here is a task knowledge example:
Task Knowledge Example
You should make your answer concise. Put your answer in this format: Task Knowledge: When ...
you should (or should not) ... The action workflows are: ...

Figure 11: Prompt for Task Knowledge Synthesis.

H.2 State Knowledge Summarization Prompt

Prompt for State Knowledge Synthesis

State Knowledge
Prompt for Synthesis: You’ll get a segment of a trajectory of a text-based task task. Your task is
to generate a brief and general state knowledge of the now task state following "State Knowledge:
". Keep it wise and general for the same task. Here is an example:
State Knowledge Example



Now it’s your turn. Here is the trajectory :
Trajectory
Make sure your output is within 128 tokens.
Put your answer in this format: State Knowledge: . . .

Figure 12: Prompt for State Knowledge Summarization.

H.3 Dataset-Level Knowledge Prompt

Task Knowledge example

Alfworld Task Knowledge example

When picking an object, heat it, and place it, you should first go to the possible locations of the
object, then take the object, heat it with microwave, and put it in place.
The action workflows are as follows:
1) go to receptacle
2) take object from receptacle
3) heat object with receptacle
4) go to the place to put the object
5) put object in/on receptacle

Webshop Task Knowledge example

When looking for an object you want to buy, you should first search with relevant keywords tailored
to the product you are looking for, and then click the relevant tag to view the product details, if the
description matches the characteristics of the target item, click[buy now].
The action workflows are as follows:
1) search with keywords or examples, if you are searching for a laptop, you might search[laptop,
14-inch, Intel Core i7]
2) click the most relevant tag to view the detailed product page.
3) check the product details one by one, like color, size, type, and price, and make sure the price is
within budget.
4) if find the right items, click[buy now] to buy it.

Sciworld Task Knowledge example

When tasked with boiling apple juice, focus on locating the kitchen first. Then, locate the apple
juice in the fridge. Activate the stove, pour the apple juice into a metal pot, and move the metal pot
to the stove. Monitor the stove until the apple juice reaches a boiling point. Once boiled, remove
the pot from the stove.
The action workflows are:
1) teleport to the kitchen.
2) look around to find the apple juice in the fridge.
3) activate the stove.
4) pour apple juice into a metal pot.
5) move the metal pot to the stove.
6) look at stove.
7) examine apple juice to confirm boiling.
8) repeat step 6,7 until apple juice is boiled.

Figure 13: Dataset-Level Task Knowledge Examples.
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