
R3-NL2GQL: A Model Coordination and Knowledge Graph Alignment
Approach for NL2GQL

Yuhang Zhou*1,2 Yu He1,2 Siyu Tian1,2 Guangnan Ye†1,2

1School of Computer Science, Fudan University
2Institute of Fintech, Fudan University

Abstract

While current tasks of converting natural
language to SQL (NL2SQL) using Founda-
tion Models have shown impressive achieve-
ments, adapting these approaches for convert-
ing natural language to Graph Query Language
(NL2GQL) encounters hurdles due to the dis-
tinct nature of GQL compared to SQL, along-
side the diverse forms of GQL. Moving away
from traditional rule-based and slot-filling
methodologies, we introduce a novel approach,
R3-NL2GQL, integrating both small and large
Foundation Models for ranking, rewriting, and
refining tasks. This method leverages the inter-
pretative strengths of smaller models for initial
ranking and rewriting stages, while capitaliz-
ing on the superior generalization and query
generation prowess of larger models for the fi-
nal transformation of natural language queries
into GQL formats. Addressing the scarcity of
datasets in this emerging field, we have devel-
oped a bilingual dataset, sourced from graph
database manuals and selected open-source
Knowledge Graphs (KGs). Our evaluation of
this methodology on this dataset demonstrates
its promising efficacy and robustness.

1 Introduction

Graph-based data structures are central to diverse
areas such as financial risk management, social
networking, and healthcare(Yu et al., 2022; Zhang
et al., 2023). To manage this data efficiently,
graph databases are widely used, offering an ef-
fective means to represent and store complex, in-
terconnected information (Qiu et al., 2023). De-
spite their utility, the intricacy of GQL poses a
challenge for those not specialized in the field,
making it hard to leverage graph databases for
data analysis and application development. Mean-
while, although numerous NL2SQL approaches
have shown promise (Pourreza and Rafiei, 2023)

*Email: yuhangzhou22@m.fudan.edu.cn
†Corresponding Author. Email: yegn@fudan.edu.cn

Table 1: Some keywords of SQL and GQL (using the
nGQL language as an example) showcasing the

differences between SQL and GQL.

GQL SQL

C INSERT VERTEX,
INSERT EDGE

INSERT

R DELETE, DROP DELETE

U ALTER, UPDATE,
UPSERT

UPDATE

D
MATCH, LOOKUP,

OPTIONAL MATCH,
GO,FETCH, SHOW,

GET, SUBGRAPH, FIND

SELECT

Keywords WHERE, LIMIT,
SKIP, ORDER BY,

YIELD, WITH

WHERE, HAVING,
ORDER BY, JOIN

Expression
count(), max(),
strcasecmp(),

timestamp(), properties()

sum(), ceil(), abs(),
lower(), data()

(Dong et al., 2023) (Tai et al., 2023), their direct
application to NL2GQL is hindered by the differ-
ences in focus and syntactic complexity between
SQL and GQL, as shown in Table 1.

Regarding information retrieval in KGs, al-
though triplet vector-based retrieval methods (Baek
et al., 2023) offer efficiency and accuracy, they
compromise the graph’s structural integrity, lim-
iting their utility in complex queries. In contrast,
GQL-based methods maintain rich data and logical
pathways, bridging the conversational and data-
structured worlds, and enhancing the model’s inter-
activity and interpretability, as shown in Figure 1.

Therefore, implementing a system for the
NL2GQL task has become particularly important,
but the progress in NL2GQL has been modest, with
efforts predominantly concentrating on the Cypher
(one type of the GQL). Many solutions, such as
Text2Cypher, a Python library, use template-based
methods to transform natural language into Cypher,

Sony Panasonic

Apple Samsung

Tim
Cook Apple

Hold_stock

related_comp
any_industry

Upstream

…

Graph DB

GQL

APPLE INC

Apple Inc.

company_
introduction

Apple Inc. is
a globally
technology…

listing_date December 12,
1976

company_
name Apple Inc.

amount $10 billion

company_id AAPL

Query
I want to see the equity chain of Apple.

Figure 1: Retrieval algorithm based on triplet vector v.s.
GQL-based method.

ensuring syntactic correctness but requiring exten-
sive customization for specific data schemas. More
recently, SpCQL (Guo et al., 2022) introduced the
Text to Cypher task and developed the first dedi-
cated dataset, using seq2seq models as a baseline.
However, this approach has only achieved a 2%
success rate in generating accurate Cypher queries,
indicating significant potential for improvement,
while the lack of schemas makes this dataset diffi-
cult to apply in real-world environments.

The challenges in NL2GQL stem from several
key factors: 1) Multiple Model Requirements:
Graph databases complicate GQL formulation with
their intricate node-edge structures. Our experi-
ments have shown that a single small model can-
not learn GQL syntax through Few-Shot or Fine-
tuning. Larger models, although better at gen-
eralizing across schemas, often struggle to align
with the specific schemas or data elements within
graph databases, leading to errors or hallucina-
tions, making it difficult to solve the NL2GQL
task with a single model. 2)Limited Resources:
The nascent stage of NL2GQL, contrasted with the
well-resourced NL2SQL field, leads to a scarcity
of datasets (Yu et al., 2018; Zelle and Mooney,
1996; Ma and Wang, 2021) and tools, hampering
research and development efforts in this area.

To address these issues, we developed R3-
NL2GQL, combining the specialized insights of
fine-tuned smaller models with the broad adapt-
ability of larger ones. The smaller model acts as a
ranker and rewriter, while the larger model refines
the GQL generation. We also integrated original
KG data to optimize alignment, aiming to improve
the larger model’s zero-shot performance. Facing
a lack of NL2GQL datasets, we created a bilin-
gual dataset with thousands of high-quality entries,
marking a novel application of Foundation Models
in NL2GQL.

We summarize our contributions as follows:

• Model Coordination Approach: We de-
vised a strategy that harnesses both smaller
and larger Foundation Models to overcome
NL2GQL obstacles. Our method involves
translating schemas into code structures and
outlining the basic skeleton for GQL types. In
this setup, smaller models function as rankers
and rewriters, with a larger model refining the
process to enhance GQL generation.

• Bilingual Dataset: We create a bilingual
dataset and set evaluation standards. To the
best of our knowledge, this represents the first
multi-schema dataset for the NL2GQL task.

• Retrieval and Alignment: By leveraging
node and edge-based representations inherent
to database storage mechanics, we address
alignment issues between user queries and
database schema and elements. Employing
a multi-level retrieval mechanism, we con-
nect the relevant data elements to enhance the
model’s logical reasoning, thereby improving
the accuracy of GQL generation.

2 Task Formulation

To address the challenge of information loss in nat-
ural language schema representations, we devised
a novel approach for schema and query formulation
in the context.

2.1 Code-Structured Graph Schema
Description

Transitioning from natural language descriptions to
a structured, code-based representation for graph
schemas ensures semantic integrity for entities, re-
lationships, and attributes. This involves encapsu-
lating the schema within a Python code structure
to reflect the graph’s architecture.

The code structure schema defines various
schema structures, consisting of Tag and Edge.
Subclasses represent each graph’s schema, utiliz-
ing Python features for detailed and precise de-
scriptions: 1) Concept names as Python classes;
2) Class annotations for in-depth explanations; 3)
Class inheritance for hierarchical relationships; 4)
Init functions for attributes of tags or edges.

The code structured schema, depicted in Fig-
ure 2, enhances the model’s interpretability by
maintaining semantic consistency and leveraging
the alignment between graph data and object-
oriented paradigms (Bi et al., 2023).

Nodes
class player(Tag):

def __init__(self,vid,name:str,age:int):
self.vid=vid
self.name=name
self.age=age

Edge

class follow(Edge):
def __init__(self,src_vid,dst_vid,degree:int):

self.src_vid=src_vid
self.dst_vid=dst_vid
self.degree=degree

Code Structure Schema

the request CRUD function
class CRUD():

def QUERY(self):
"""
FETCH PROP ON {<tag_name>[, tag_name ...] | *}
<vid> [, vid ...]
YIELD <return_list> [AS <alias>];
"""
Example:FETCH PROP ON player "player100" YIELD properties(vertex);

the request clause
class Clause():

def LIMIT(self):
"""
YIELD <var> [| LIMIT [<offset_value>,] <number_rows>]
"""
Example:GO FROM "player100" OVER follow REVERSELY YIELD $$.player.name AS Friend,

$$.player.age AS Age | ORDER BY $-.Age, $-.Friend | LIMIT 1, 3

Code Structure Skeleton

Skeleton of ‘FETCH’

In-Context Learning

Plain text Schema

the node type:[{'player':[name,age],'team':[name],}]
the edge type:[{'like':[likeness],'teammate':[start_year]}]

Figure 2: The examples of plain-text schema, code-structure schema, and code-structure skeleton: The plain-text
schema serves as the vanilla schema prompt and is written in natural language. The code-structure schema leverages
the Python language to re-represent the schema of graphs, with the aim of enhancing the model’s inference
capabilities. The code-structure skeleton extracts essential keywords and clause information, focusing on GQL.

2.2 Code-Structured Skeleton for GQL

To facilitate the handling of diverse GQL queries,
the keywords of GQL are abstracted into a struc-
tured framework, aligning them with CRUD opera-
tions such as "MATCH" and "FIND" and supple-
mentary clauses such as “LIMIT” and “GROUP.”
This framework is also expressed through Python’s
class and function constructs, augmented with com-
ments and illustrative examples to demystify the
application of each keyword. The design, as shown
in right of Figure 2, promotes a more clear com-
prehension and generation of GQLs by delivering
a tangible, example-centric context for every oper-
ation within the graph database ecosystem.

2.3 NL2GQL Task

A task can be formally represented as:

q = f(n,G,S), (1)

where G is the data of the given Graph
database, including the data format G =
{(s, r, o) |s, o ∈ N , r ∈ E}, where N represents
node set and E represents edge set. S represents
the schema of the graph database, n represents
the natural language requirements input by the
user, and can be segmented according to the to-
ken n = {n1, n2, n3, ..., ni}, q represents the final
generated GQL.

3 R3-NL2GQL Framework

The R3-NL2GQL framework pioneers a coordina-
tion strategy, merging several models to mitigate
the limitations of relying on a single model, as il-
lustrated in Figure 3. The process initializes with a

finely tuned smaller model serving as a ranker, ex-
cel at identifying key components like CRUD oper-
ations, clauses, and schema classes from the input.
To tackle the alignment challenge, another smaller
model leverages Few-Shot learning to fetch and
validate information against the graph database,
functioning as a rewriter to guarantee data preci-
sion. The outputs of these models are then further
honed by a larger model, tapping into its sophisti-
cated generalization and synthesis capabilities to
ultimately generate accurate GQLs.

3.1 Smaller Foundation Model as Ranker

The transformation from natural language queries
to GQL involves distinct phases, each presenting
unique challenges:

• CRUD Keyword Selection: Identifying the
correct CRUD keywords is foundational, set-
ting the stage for the query structure.

• Clause Determination: Following CRUD
keyword selection, the next step involves
choosing the necessary clauses to construct
a coherent query, considering filters, sorting,
and other elements aligned with user intent.

• Node and Edge Identification: The final
phase entails pinpointing the specific nodes
and edges to interact with within the GQL
schema, ensuring the query fetches the in-
tended data.

To address these steps efficiently, we introduce
a smaller foundation model as a ranker. Draw-
ing on the benefits of code pre-training, which is
considered by some studies to enhance a model’s

Node Embedding Edge Embedding

Type VertexID TagID Properties

Type PartID VertexID EdgeType PropertiesRank

Node

Relationship

‘Fred Weasley’: {‘name’: ‘Fred Weasley’,
‘birth’: ‘1978.4.1, England’,…,‘eye_color’: ‘brown’, …}

Query: What is Weasley's eye color?

Graph DataBase

Smaller Ranker

Smaller Rewriter

Larger Refiner

Nodes
class Character():

def __init__(self,vid,name,born,…):
self.vid = vid
self.name = name
self.born = born
…

class College():
def __init__(self,vid,name):

self.vid=vid
self.name=name

…
Edges
class Belong_to():

def __init__(self,scr_id,tag_id):
self.scr_id = scr_id
self.tag_id = tag_id

…

Code Structure Schema Code Structure Skeleton

the CRUD function
class CRUD():

def QUERY(self):
"""
FETCH PROP ON {… | *} <vid> [, vid ...] YIELD <return_list> [AS <alias>];
"""
Example: …

the clause function
class Clause():

def LIMIT(self):
"""
YIELD <var> [| LIMIT …]
"""
Example: …

Nodes
class Character():

def __init__(self,vid,name,born,…):
self.vid = vid
self.name = name
self.born = born
…

Edges

the CRUD function
class CRUD():

def QUERY(self):
"""
FETCH PROP ON {… | *} <vid> [, vid ...] YIELD <return_list> [AS <alias>];
"""
Example: …

the clause function

FETCH PROP ON character "Fred Weasley"
YIELD character.eye;

Final GQL

Query: What is Weasley's eye color?

‘Fred Weasley’: {‘name’: ‘Fred Weasley’,
‘birth’: ‘1978.4.1,

England’,…,‘eye_color’: ‘brown’, …}

Double-Level retrieval

Aligning
Information:

New Query: What is Fred Weasley's eye color?

Figure 3: An Overview of R3-NL2GQL: Employing a smaller white-box model as a ranker, it selects required
CRUD functions, clauses, and schema from the input. Another smaller white-box model serves as a rewriter,
aligning the query with the intrinsic database k-v storage to mitigate the hallucinations. Lastly, a larger model is
harnessed for the purpose of generating GQL, capitalizing on its ability in generalization and generation.

reasoning capabilities(Yang et al., 2024), we utilize
code-structured schemas and skeletons to assist the
ranker in its task:

SCHsub, SKECRUD&clause = ranker(SCH, SKE, n) (2)

Here, "SCH" and "SKE" represent the code-
structured schema and skeleton, while "n" is the
natural language query. The output includes a
schema subset (SCHsub) and the necessary key-
words and clauses (SKECRUD&clause), both in code
structure, ensuring alignment with the query’s in-
tent.

A specialized dataset, detailed in Section 4,
was developed for training and evaluating the
ranker, ensuring its effectiveness in facilitating the
NL2GQL conversion process.

3.2 Smaller Foundation Model as Rewriter
To guarantee the accurate linkage of corresponding
nodes, edges, and schema within the graph data by
the generated GQL, we employ a smaller model to
serve as the rewriter for precise alignment.

3.2.1 Aligning Data in Graph Databases
Figure 4 illustrates the challenge of aligning user
queries with the actual graph data, such as mis-
matches between queried entities and their repre-
sentations in the database. For example, a query

about ‘Harry Potter’s mother’ may not directly cor-
respond to the existing graph structure, necessitat-
ing adjustments to fit the schema. At the same time,
the model may also create node or edge types that
are not included in the schema, and this hallucina-
tion phenomenon will lead to errors.

Query1:
Who is Harry Potter's mother?

The correct GQL1:
MATCH (v1:character{name:’Harry Potter’})-[:kindred{rel_type:’mother’}]->[v2]
RETURN v2

The model’s GQL1:
MATCH (v1:character{name:’Harry Potter’})-[:mother]->[v2]
RETUEN v2

Query2:
What is the birth date of Potter?

The correct GQL2:
MATCH (v1:character{name:’Harry Potter’})
RETURN v1.character.born

The model’s GQL2:
MATCH (v1:character{name:’Potter’})
RETURN v1.character.born

Figure 4: The challenge of aligning user queries with
the actual graph data: the error has been marked in red.

3.2.2 Graph Database Storage Principles
Graph databases, such as Neo4j, NebulaGraph, and
JanusGraph, store data as nodes and edges using
distinct storage engines. These systems organize
graph data into array-like files, translating them
into a “node: attributes, edge: attributes” format, as
shown in Appendix C. This storage method aligns

Pair (nl, query) Daily dialogue format data

Select Graph SchemaAdd Chain of Thought

#the request function : ['OTHER()’]
#the request clause : []
#the request class : []

Fine-tune Data

Knowledge
Graph

GQL documents / cases
Extract GQL

Generate
questions

Manual data
review

{"prompt": "Show all
the space.",
"content": "SHOW
SPACES”}

{"prompt": "Can you
show us all the space?",
"content": "SHOW
SPACES"}

{"prompt": "Can you show us all the space?",
"content": "SHOW SPACES",
"reason": "#the request function : ['OTHER()’]\n
#the request clause : []\n
#the request class : []\n"}

Code Structure Schema

Code Structure Skeleton

LLM
generate
questions

LLM

Ernie-Bot

GPT

LLM

GLM-130B

LLM Manually
generate
GQLs

Figure 5: Data construction pipeline

with our retrieval methods, minimizing continuous
query requests and reducing memory usage during
the alignment process.

3.2.3 Data Retrieval
The goal of data retrieval is to accurately match
the user’s query with the corresponding data in the
DB, addressing alignment issues. This involves a
two-level retrieval and alignment process:

Character-Level Alignment: Utilizing Leven-
shtein Distance(Yujian and Bo, 2007) (Minimum
Edit Distance) to calculate the similarity between
the query and database entities, defined as Equa-
tion 3.

U1 =
min[len(Q), len(I)]
Levenshtein(Q, I)

(3)

where "Q" is the user’s input NL query, and "I"
represents the data within the graph.

Semantic Vector-Based Alignment: Embed-
ding both the user query and graph data in a dense
vector space to facilitate deeper semantic matching,
defined as Equation 4.

U2 =
Emb(Q) · Emb(I)
∥Emb(Q)∥∥Emb(I)∥

(4)

This step focuses on rectifying discrepancies be-
tween the query and the actual graph data, ensuring
the query’s alignment with the database’s structure.

3.3 Larger Foundation Model as Refiner
Positioned as the culminating element in our
methodology, the larger model integrates inputs
from the preceding smaller models, enhancing
GQLs generation. It consolidates code-structured

schemas and skeletons identified by the ranker,
along with the rewriter’s adjusted queries and per-
tinent retrieval outcomes. This amalgamation, en-
riched by the larger model’s advanced Zero-Shot
capabilities, facilitates the creation of refined GQL
queries. This synergy between the models ampli-
fies the system’s ability to interpret and respond to
complex queries with heightened accuracy.

4 Data Design

In contrast to the numerous open-source datasets
for NL2SQL tasks, such as Spider and KaggleD-
BQA (Lee et al., 2021), GQL is deficient in large-
scale, diverse-schema datasets that meet real-world
industrial requirements. Most existing datasets pre-
dominantly focus on Cypher, making it challenging
to create a dataset for GQLs.

To address this gap, we developed a multi-
schema dataset for NL2GQL. Leveraging Foun-
dation Models’ proficiency in generating Cypher,
we choose nGQL for our research to evaluate our
approach. This section outlines our methodology
for defining GQL generation tasks and synthetic
data generation, as shown in Figure 5.

4.1 Pair Design

In constructing the dataset, we avoided directly
extracting NL-GQL pairs from GQL documents
due to their inability to capture complex human-
database interactions. Instead, we used two meth-
ods. 1) We manually crafted sample pairs, prior-
itizing code interpretability over generation, and
employed a GQL2NL strategy, using Foundation
Models to generate multiple natural language inter-

pretations for each GQL query, followed by man-
ual refinement to closely mimic real-world queries.
2) To include diverse graph schemas, we adapted
open-source graph datasets, using their schema
and entity information to generate KBQA-style
questions with Foundation Models, and then metic-
ulously annotated the GQLs manually to create
accurate pairs. These methods resulted in a high-
fidelity dataset with numerous NL-GQL pairs, as
shown in Equation 5.

D = Pair(NLi, GQLi). (5)

4.2 Data Refinement

The initial dataset may contain inaccuracies and
lack linguistic variety, necessitating a phase of data
filtering and restructuring. Significant human and
computational efforts correct any NL or GQL dis-
crepancies. To enhance naturalness and diversity,
we expanded and refined the data. For example,
"Find node a" was rephrased to "Hello, I want to
find node a, could you assist me by returning its
information?" This approach, applied across lan-
guages, resulted in a polished and versatile founda-
tional dataset.

4.3 Incorporating Schema, Skeleton, and
Reasoning

To train the ranker model, we supplemented the
training dataset with relevant data. We propose
a refined tripartite reasoning framework for GQL
formulation, which includes: 1) selecting suitable
CRUD operations based on user-input natural lan-
guage queries, 2) choosing appropriate conditional
clauses like LIMIT and WHERE to meet result con-
straints, and 3) identifying specific node or edge
types from the schema for precise GQL construc-
tion. This approach results in the final training
dataset, as shown in Equation 6, with ’SCH’ for
’SCHEMA,’ ’SKE’ for ’SKELETON,’ and ’REA’
for ’REASONING’.

Dtrain = {NLi, GQLi, SCHi, SKEi, REAi}. (6)

4.4 Data Setting

Through a structured data engineering approach,
we constructed a diverse dataset encompassing
nine different sectors such as finance, healthcare,
sports, and literature, selecting samples from var-
ious schemas to enhance the model’s generaliza-
tion capabilities. In each category, we employed

the K-Center Greedy (Kleindessner et al., 2019)
method to identify the most diverse samples. This
approach maintained the original schema distribu-
tion, ultimately generating a bilingual dataset of
5000 samples, which was split into training and
testing sets at a 4:1 ratio. The test set included
schema types absent from the training set to evalu-
ate the model’s generalization capabilities.

5 Experiment

We introduced a multi-tiered evaluation system for
NL2GQL tasks, covering aspects from syntax to
semantics, detail in Appendix D. Utilizing the
dataset, we test the performance of our framework
against GPT family counterparts.

5.1 Settings

In the absence of established NL2GQL models, we
benchmarked against three prominent Foundation
Models: text-davinci-003, gpt-3.5-turbo-0613, and
GPT-4. These models, extensively trained on di-
verse textual and code data, served as our baseline
using a Vanilla Prompt of natural language-GQL
pairs with serialized text schemas. Experiments
were conducted in Zero-Shot, One-Shot, and Few-
Shot settings, with the latter two involving random
selection of examples from training data.

We also evaluated four smaller Foundation Mod-
els as ranker and rewriter: LLaMA3-7B(Touvron
et al., 2023), InternLM (Team, 2023), ChatGLM2
(Zeng et al., 2022), Flan-T5 (Chung et al., 2024),
and BLOOM (Le Scao et al., 2023), each signifi-
cantly smaller than GPT family models. To address
sampling variability, experiments were repeated
thrice for each model, and results were averaged.
For the larger Foundation Models, we used Ope-
nAI’s API with specific settings (temperature 0.2,
top_p 0.7) to generate nGQLs. The BGE model
facilitated embedding during retrieval, with experi-
ments conducted on an NVIDIA A800 GPU using
Pytorch 2.0 and Deepspeed. The ranker model
was fine-tuned using LoRA (lora_rank of 8) and
optimized with the AdamW optimizer.

5.2 Main Results

Table 2 showcases the comparative performance
between our R3-NL2GQL framework and leading
GPT series models across Zero-Shot, One-Shot,
and Few-Shot scenarios. Our results indicate that
our proposed approach with Zero-Shot excels in
the Vanilla Few-Shot setting, underscoring that its

Table 2: Comparison of the four metrics (%) among R3-NL2GQL and the GPT family models. The bold numbers
denote the best results and the underlined ones are the second-best performance.

Model Syntax Comprehension Execution Intra Execution
Accuracy Accuracy Accuracy Accuracy

Zero-Shot
Vanilla Prompt (text-davinci-003) 8.59 88.17 5.44 63.28
Vanilla Prompt (GPT-3.5-turbo-0613) 6.42 88.35 4.39 68.36
Vanilla Prompt (GPT-4) 13.77 89.72 9.83 71.83

One-Shot
Vanilla Prompt (text-davinci-003) 18.67 89.53 12.45 66.71
Vanilla Prompt (GPT-3.5-turbo-0613) 20.45 89.15 14.45 70.65
Vanilla Prompt (GPT-4) 25.33 90.32 19.39 76.53

Few-Shot
Vanilla Prompt (text-davinci-003) 41.16 90.01 29.79 72.37
Vanilla Prompt (GPT-3.5-turbo-0613) 28.70 90.67 21.56 75.12
Vanilla Prompt (GPT-4) 48.23 91.13 42.08 87.25

Our
R3-NL2GQL (GPT-3.5-turbo-0613) 36.82 90.15 30.53 82.92
R3-NL2GQL (GPT-4) 57.04 91.57 51.09 89.56

performance is not solely reliant on the inherent
capabilities of the GPT series models but rather
on the reasoning and enhancements integrated into
this method. Further examination of the CA metric
and outputs from the validation dataset indicates
that models with larger parameters demonstrate
better understanding and adaptability, particularly
in handling intricate schema environments. By
harnessing the capabilities of larger models and
integrating insights from smaller models, our ap-
proach enhances entity linking and generalization,
leading to improved performance.

5.3 Ablation experiment

We conducted ablation studies to evaluate the con-
tributions of various components within the R3-
NL2GQL framework, focusing on the impact of
different inputs on the large model’s final out-
put. These findings, detailed in Figure 7, explored
the role of code-structured skeletons as syntax-
constrained context prompts, effectively transition-
ing the Few-Shot methodology to a Zero-Shot
paradigm. For a comprehensive analysis, we also
included the second-best Few-Shot performance
with a Vanilla Prompt (GPT-4) from Table 2. Our
proposed Code Prompt showed improvements over
the Vanilla Prompt’s Few-Shot format across all
four metrics, with a 6% increase in performance
on SA and EA.

The results underscored the significant enhance-

Figure 6: Ablation experiments on smaller models such
as LLaMA3-7B, InternLM, ChatGLM2, Flan-T5, and
BLOOM.

ment brought about by incorporating a code-
structured schema and skeleton prompt across all
models. Replacing the Few-Shot approach with a
code-structured skeleton not only refined grammat-
ical accuracy but also enriched the models with a
broader spectrum of GQL keywords, diversifying
the models’ output styles and altering the GQL
generation style closer to the standard GQL for-
mat. Simultaneously, to validate the capabilities
of smaller models, we conducted Few-Shot and
fine-tuning experiments on these models, as shown
in Figure 6. The results revealed extremely low
SA for these methods. Even after fine-tuning, the
SA was only about 10%, and the IEA metric was
below 70%. This indicates the low generalization

Figure 7: The ablation experiment of GPT-4 and GPT3.5, focus on designing the ablation of each key component.

and GQL syntax learning abilities of these smaller
models, affirming the necessity of collaboration
between large and small models.Ultimately, the
synergistic use of both larger and smaller mod-
els within our framework proved most effective,
adeptly synthesizing crucial information and reduc-
ing hallucinations to deliver superior results.

6 Discussions

6.1 Error Analysis
Based on Table 2 , the EA indicator for R3-
NL2GQL is 51.09%, while the IEA indicators for
almost all methods have reached levels above 70%,
with R3-NL2GQL nearly reaching 90%. This indi-
cates that the vast majority of errors are caused by
syntax errors in the generated GQL. We categorize
the error types into three major categories and six
minor categories, with specific details and exam-
ples provided in Appendix E. Figure 8 presents a
statistical analysis of the error information, show-
ing that the majority of errors are caused by Larger
Refiner, and in-context learning style struggles to
incorporate new GQL syntax into the Foundation
Model. Additionally, 13.87% of errors are caused
by misunderstandings of the query. Among the
errors in the Ranker, schema selection errors are
more likely to affect the final outcome, while the
Rewriter demonstrates better performance.

6.2 Optimal Schema and Skeleton Format for
GQL Generation

The format in which language types, such as code
or natural language, are presented plays a pivotal
role in a model’s ability to grasp the NL2GQL
task and comprehend the underlying graph schema.
This, in turn, affects its capability to apply these in-
sights to new, unseen scenarios or schemas. Unlike
the ambiguous nature of natural language, code

Figure 8: Error Statistical Analysis.

language, with its structured syntax and clear ex-
ecution paradigms, offers a more precise medium
for representing instructions and programming con-
structs. This structured approach, especially in
object-oriented languages with features like class
inheritance and method definitions, aligns well
with graph schema representation, enhancing a
model’s reasoning capacity for complex tasks, as
suggested by recent studies (Bi et al., 2023).

7 Conclusion

Our study presents a novel model coordination
framework designed for the NL2GQL task, lever-
aging the complementary strengths of larger and
smaller Foundation Models. By delineating clear
roles for each model, we markedly improve the
NL2GQL conversion. Additionally, the develop-
ment of a GQL-specific bilingual dataset under-
scores the superior performance of our framework.
These results pave the way for future advancements
in the field of NL2GQL, offering a robust founda-
tion for further exploration and development.

Limitation and Ethics Statement

Our study centers on the nGQL query syntax.
While analogous languages exist, we have not ex-
tended our experimentation to include them. Fur-
thermore, the absence of prior assessment stan-
dards for NL2GQL tasks means the evaluation cri-
teria we have devised might not be exhaustive.

The dataset used in the paper does not contain
any private information. All annotators have re-
ceived enough labor fees corresponding to their
amount of annotated instances.

Acknowledgements

This study was supported by the National Key
R&D Program (2023YFC3304800), the Strate-
gic Research Consulting Project of the Chinese
Academy of Engineering on Financial Risk Moni-
toring and Early Warning System under the Back-
ground of Digital Transformation (2023-XY-43),
and the Shanghai Natural Science Foundation
(23ZR1404900).

References
Jinheon Baek, Alham Fikri Aji, Jens Lehmann, and

Sung Ju Hwang. 2023. Direct fact retrieval from
knowledge graphs without entity linking. arXiv
preprint arXiv:2305.12416.

Zhen Bi, Ningyu Zhang, Yinuo Jiang, Shumin Deng,
Guozhou Zheng, and Huajun Chen. 2023. When
do program-of-thoughts work for reasoning? arXiv
preprint arXiv:2308.15452.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1–53.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, lu Chen, Jinshu Lin, and Dongfang Lou.
2023. C3: Zero-shot text-to-sql with chatgpt.

Aibo Guo, Xinyi Li, Guanchen Xiao, Zhen Tan, and Xi-
ang Zhao. 2022. Spcql: A semantic parsing dataset
for converting natural language into cypher. In Pro-
ceedings of the 31st ACM International Conference
on Information & Knowledge Management, pages
3973–3977.

Matthäus Kleindessner, Pranjal Awasthi, and Jamie
Morgenstern. 2019. Fair k-center clustering for data
summarization. In International Conference on Ma-
chine Learning, pages 3448–3457. PMLR.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman

Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2023. Bloom: A 176b-
parameter open-access multilingual language model.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew
Richardson. 2021. Kaggledbqa: Realistic eval-
uation of text-to-sql parsers. arXiv preprint
arXiv:2106.11455.

Pingchuan Ma and Shuai Wang. 2021. Mt-teql: eval-
uating and augmenting neural nlidb on real-world
linguistic and schema variations. Proceedings of the
VLDB Endowment, 15(3):569–582.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-
to-sql with self-correction.

Rui Qiu, Yi Ming, Yisen Hong, Haoyu Li, and Tong
Yang. 2023. Wind-bell index: Towards ultra-fast
edge query for graph databases. In 2023 IEEE
39th International Conference on Data Engineering
(ICDE), pages 2090–2098. IEEE.

Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang
Deng, and Huan Sun. 2023. Exploring chain-of-
thought style prompting for text-to-sql.

InternLM Team. 2023. Internlm: A multilingual lan-
guage model with progressively enhanced capabili-
ties.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi R.
Fung, Sha Li, Zixuan Huang, Xu Cao, Xingyao
Wang, Yiquan Wang, Heng Ji, and Chengxiang Zhai.
2024. If llm is the wizard, then code is the wand: A
survey on how code empowers large language mod-
els to serve as intelligent agents.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

Wenhao Yu, Chenguang Zhu, Lianhui Qin, Zhihan
Zhang, Tong Zhao, and Meng Jiang. 2022. Diversi-
fying content generation for commonsense reason-
ing with mixture of knowledge graph experts. In
Proceedings of the 2nd Workshop on Deep Learn-
ing on Graphs for Natural Language Processing
(DLG4NLP 2022), pages 1–11, Seattle, Washington.
Association for Computational Linguistics.

Li Yujian and Liu Bo. 2007. A normalized levenshtein
distance metric. IEEE transactions on pattern analy-
sis and machine intelligence, 29(6):1091–1095.

http://arxiv.org/abs/2307.07306
http://arxiv.org/abs/2304.11015
http://arxiv.org/abs/2304.11015
http://arxiv.org/abs/2305.14215
http://arxiv.org/abs/2305.14215
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2401.00812
http://arxiv.org/abs/2401.00812
http://arxiv.org/abs/2401.00812
https://doi.org/10.18653/v1/2022.dlg4nlp-1.1
https://doi.org/10.18653/v1/2022.dlg4nlp-1.1
https://doi.org/10.18653/v1/2022.dlg4nlp-1.1

John M Zelle and Raymond J Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the national confer-
ence on artificial intelligence, pages 1050–1055.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b:
An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414.

Ningyu Zhang, Lei Li, Xiang Chen, Xiaozhuan Liang,
Shumin Deng, and Huajun Chen. 2023. Multimodal
analogical reasoning over knowledge graphs.

http://arxiv.org/abs/2210.00312
http://arxiv.org/abs/2210.00312

A Difference Between SQL and GQL

Structured Query Language (SQL) and Graph Query Language (GQL) are fundamentally different in their
approach to data querying, SQL being tailored for relational databases with its tabular data structure and
GQL designed for graph databases which utilize nodes, edges, and properties. SQL provides a declarative
approach for users to specify desired data, allowing for complex multi-table join operations and fine-
grained control over data retrieval. In contrast, GQL is intuitive for expressing complex relationships and
patterns, enabling users to specify the depth and breadth of queries while retrieving granular data, making
it particularly suitable for applications with highly interconnected data.

B Details of GQL Skeleton

GQL incorporates a set of essential keywords within its skeleton, which can be categorized into CRUD
operations and clauses. The CRUD operations, such as INSERT, MATCH, UPDATE, and DELETE,
facilitate the creation, retrieval, modification, and deletion of data within a graph database. These
operations enable users to interact with the database by specifying actions to be performed on the nodes
and edges. On the other hand, the clauses in GQL, such as LIMIT, GROUP BY, and WHERE, provide a
means to refine and constrain the query results. These clauses allow users to specify conditions, control
the number of results returned, and group the data based on certain attributes. The combination of CRUD
operations and clauses in GQL empowers users to effectively manipulate and retrieve data from graph
databases, catering to a wide range of querying needs.

Table 3: Some CRUD Keywords in GQL Skeleton

Keyword Keyword Meaning Keyword Example

CREATE
SPACE

Create a new graph database
space

CREATE SPACE my_graph(space_id: int, ...);

CREATE
TAG

Create a vertex label, defining
vertex properties

CREATE TAG person(name: string, age: int);

CREATE
EDGE

Create an edge type, defining
edge properties

CREATE EDGE knows(since: int);

INSERT Insert new vertices or edges into
the database

INSERT VERTEX person(name, age) VALUES "al-
ice":("Alice", 30);

GO Traverse the database based on
specified conditions

GO FROM "alice" OVER knows YIELD $$.per-
son.name;

FETCH Retrieve properties of vertices
or edges

FETCH PROP ON person "alice" YIELD per-
son.name, person.age;

LOOKUP Index-based query operation LOOKUP ON person WHERE person.age > 25
YIELD person.name;

MATCH Match graph patterns, used for
complex queries

MATCH (p:person)-[:knows]->(f:person) RETURN
p.person.name, f.person.name;

UPDATE Update properties of vertices or
edges in the database

UPDATE VERTEX "alice" SET person.age = 31;

UPSERT Insert or update operation; in-
sert if it does not exist

UPSERT VERTEX "bob" SET person.name = "Bob",
person.age = 28;

DELETE Delete vertices or edges from
the database

DELETE VERTEX "bob";

Table 3: Some CRUD Keywords in GQL Skeleton

Keyword Keyword Meaning Keyword Example

GET
SUB-
GRAPH

Obtain a subgraph of the graph GET SUBGRAPH 2 STEPS FROM "alice" YIELD
VERTICES AS friends, EDGES AS relationships;

FIND
PATH

Find a path between two ver-
tices

FIND SHORTEST PATH FROM "alice" TO "bob"
OVER * YIELD path as p;

Table 4: Some Clauses Keywords in GQL Skeleton

Keyword Keyword Meaning Keyword Example

GROUP
BY

Group results by a variable and
apply aggregation functions

GO FROM "player100" OVER follow BIDIRECT
YIELD $$.player.name as Name | GROUP BY $-
.Name YIELD $-.Name as Player, count(*) AS
Name_Count

LIMIT Limit the number of rows re-
turned by a query

GO FROM "player100" OVER follow REVERSELY
YIELD $$.player.name AS Friend, $$.player.age AS
Age | ORDER BY $-.Age, $-.Friend | LIMIT 1, 3

SKIP Skip a number of rows before
starting to return rows from a
query

MATCH (v:playername:"Tim Duncan") –> (v2) RE-
TURN v2.player.name AS Name, v2.player.age AS
Age ORDER BY Age DESC SKIP 1

SAMPLE Sample a specified list of steps
in a traversal

GO 3 STEPS FROM "player100" OVER * YIELD
properties($$).name AS NAME, properties($$).age
AS Age SAMPLE [1,2,3]

ORDER
BY

Sort the results of a query by
one or more expressions

FETCH PROP ON player "player100", "player101",
"player102", "player103" YIELD player.age AS age,
player.name AS name | ORDER BY $-.age ASC,
$-.name DESC

WHERE Filter the results of a query
based on specified conditions

MATCH (v:player) WHERE v.player.name
== "Tim Duncan" XOR (v.player.age < 30
AND v.player.name == "Yao Ming") OR NOT
(v.player.name == "Yao Ming" OR v.player.name
== "Tim Duncan") RETURN v.player.name,
v.player.age

WITH Use the results of a match ex-
pression for further processing

MATCH p=(v:playername:"Tim Duncan")–() WITH
nodes(p) AS n UNWIND n AS n1 RETURN DIS-
TINCT n1

UNWIND Expand a list and return each
element as a separate row

UNWIND [1,2,3] AS n RETURN n

C Core Storage of Graph Databases

Graph databases, such as Neo4j, NebulaGraph, and JanusGraph, utilize nodes and edges to store data,
each employing their own unique storage mechanisms. They organize graph data within files, often in the
form of arrays, which can be readily converted to a “{node: attributes}, {edge: attributes}” structure,
as illustrated in Figure 9. This array-based storage approach is particularly well-suited to the retrieval
techniques employed in our alignment method, preventing the need for repeated queries to the graph
database during alignment and consequently reducing memory consumption.

NebulaGraph

Type PartID VertexID TagID SerializedValue

Type PartID
Vertex

ID
Edge
Type

Serialized
Value

Vertex
ID

Rank
Place
Holder

Node

Edge

Neo4j

inUse nextRelld nextPropld

inUse
first
Node

second
Node

relationship
Type

first
PrevRelld

Node

Relationship
first

NextRelld
second

PrevRelld

JanusGraph

label id +
direction

sort key
adjacent
vertex id

edge id
signature

key

key id
property

id
property

value

Edge

Property

labels Extra

second
NextRelld

nextPropld firstInChainMarker

Property inUse type keyIndexId propBlock nextPropId

Vertex

other
properties

vertex id

Figure 9: The storage formats of the three graph databases

D Evaluation Metrics Definition

Given the complexity of graph databases, where multiple natural languages can describe a single GQL and
vice versa, traditional NL2SQL evaluation metrics like Logical and Execution Accuracy are insufficient.
GQL’s intricate structure, capable of yielding diverse query results, and the variability in functional
keywords for identical natural language queries necessitate a tailored evaluation approach. We address
this by proposing three key questions, each leading to specific evaluation metrics:

• Q1: Evaluation of the syntax of generated GQLs.

• Q2: Assessment of the model’s semantic understanding.

• Q3: Determination of query information accuracy.

For Q1, we introduce the Syntax Accuracy (SA) metric, assessing if the generated GQL can be
executed without syntax errors by the graph database:

SA =
Number of error-free GQLs
Total number of test dataset

(7)

To tackle Q2, the Comprehension Accuracy (CA) metric measures the similarity between model-
generated and gold standard GQLs, employing the text-embedding-ada-002 model for code similarity
comparisons via cosine similarity.

Algorithm 1: Combined Similarity
Input: gold_result, gql_result, alpha, beta
Output: Combined similarity combinedSim

1 (tokens1, tokens2)← tokenize(gold_result, gql_result); jaccardSim← |tokens1∩tokens2|
|tokens1| ;

2 tfidfV ectors← computeTFIDF ([sentence1, sentence2]);
3 bm25Sim← computeBM25(tfidfV ectors);
4 jaccardSim← jaccardSim/1.0;
5 bm25Sim← (bm25Sim+ 1)/2.0;
6 bert_score← cal_bert_score(gold_result, gql_result);
7 combinedSim←

beta ∗ [(alpha ∗ jaccardSim) + ((1− alpha) ∗ bm25Sim)] + (1− beta) ∗ bert_score;
8 return combinedSim;

For Q3, we propose Execution Accuracy (EA) and Intra Execution Accuracy (IEA) metrics. EA
evaluates global execution accuracy, while IEA assesses accuracy among syntactically correct GQLs.
Considering GQL’s diverse result formats, we adopt an enhanced Jaccard algorithm and BM25 for content
completeness, and BertScore for semantic similarity, averaging the scores for a comprehensive evaluation.
IEA, detailed in algorithm 1, focuses on the accuracy of query results from correctly generated GQLs.

E Examples of Generation ERROR

We have categorized the errors into three major categories and six minor categories. The major categories
are: Ranker Error, Rewriter Error, and Refiner Error. These are further subdivided into Schema Selection
Error, Skeleton Selection Error, No Related Information, Syntax Error, Query Misunderstanding, and
Other. Specific details can be found in Table 5, and an analysis of the error statistics is provided in the
main text of the paper.

Table 5: Error Types and Examples

Error Type Detail Type Query Gold GQL Result GQL

Ranker Error Schema Selection Error Who is Theseus Scamander’s fi-
ancee?

MATCH (n: character {name:
’Theseus Scamander’}) -
[e: kindred rel_type: ’fiancee’]

- (n1) return n1

MATCH (v: character {name:
"Theseus Scamander"}) –
(v2: character) WHERE
v2.marital=="fiancee" RE-

TURN v2.name;

Skeleton Selection Error Find the first entity that Tim
Duncan likes

GO FROM "Tim Duncan"
OVER like LIMIT 1

FETCH PROP ON player "Tim
Duncan" -> var1 return var1

Rewriter Error No Related Information May I ask if you can help
me find all the entities that
Porzingis likes and give me
their IDs

GO FROM
"Kristaps Porzingis" OVER

like YIELD id($$) AS vid |
RETURN -.vid AS dst

GO FROM "Porzingis"
OVER like YIELD dst(edge)
AS id

Refiner Error Syntax Error May I ask if you can help me
find players who are 29.5 years
old or older? I need their ID
and age information

LOOKUP ON player WHERE
player.age >= 29.5 YIELD

id(vertex) as name, player.age
AS Age

LOOKUP ON player WHERE
age >= 29.5 YIELD id(vertex)

as ID, player.age as Age

Query Misunderstanding Which department should I go
to if I have hepatitis C virus in-
fection and glomerulonephritis?

GO FROM
"hepatitis C virus infection

and glomerulonephritis"
OVER cure_department
YIELD dst(edge)

MATCH (v1:disease{name:
"hepatitis C virus infection" })-

[:cure_department]-
>(v2:department),
(v3:disease {name:
"glomerulonephritis" })-

[:cure_department]-
>(v4:department) RETURN
v2.name, v4.name

Other Identify the entities that indi-
rectly like Kobe Bryant com-
munication, and then return the
names of these entities

GO 2 STEPS FROM
’Kobe Bryant’ OVER
like REVERSELY YIELD

$$.player.name

GO 2 STEPS FROM "Kobe
Bryant" OVER like YIELD
$$.player.name AS Name

	Introduction
	Task Formulation
	Code-Structured Graph Schema Description
	Code-Structured Skeleton for GQL
	NL2GQL Task

	R3-NL2GQL Framework
	Smaller Foundation Model as Ranker
	Smaller Foundation Model as Rewriter
	Aligning Data in Graph Databases
	Graph Database Storage Principles
	Data Retrieval

	Larger Foundation Model as Refiner

	Data Design
	Pair Design
	Data Refinement
	Incorporating Schema, Skeleton, and Reasoning
	Data Setting

	Experiment
	Settings
	Main Results
	Ablation experiment

	Discussions
	Error Analysis
	Optimal Schema and Skeleton Format for GQL Generation

	Conclusion
	Difference Between SQL and GQL
	Details of GQL Skeleton
	Core Storage of Graph Databases
	Evaluation Metrics Definition
	Examples of Generation ERROR

