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Abstract

Recent advances in retrieval-augmented gen-
eration (RAG) have initiated a new era in
repository-level code completion. However, the
invariable use of retrieval in existing methods
exposes issues in both efficiency and robust-
ness, with a large proportion of the retrieved
contexts proving unhelpful or harmful to code
language models (code LMs). In this paper, we
propose a selective RAG framework to avoid re-
trieval when unnecessary. To power this frame-
work, we design a self-supervised learning ap-
proach to enable a code LM to accurately self-
evaluate whether retrieval can improve its out-
put quality and robustly leverage the potentially
noisy retrieved contexts. Using this LM as both
the selective RAG policy and the generation
model, our framework achieves state-of-the-art
repository-level code completion performance
on diverse benchmarks including RepoEval,
CrossCodeEval, and CrossCodeLongEval, a
new long-form code completion benchmark.
Meanwhile, our analyses show that selectively
retrieving brings as much as 70% inference
speedup in the online serving setting without
harming the performance. We further demon-
strate that our framework is able to accommo-
date different generation models, retrievers, and
programming languages. These advancements
position our framework as an important step
towards more accurate and efficient repository-
level code completion.

1 Introduction

Automatic code completion has attracted long-
lasting research efforts due to its high practical
value in improving programmer productivity (Ye
and Fischer, 2002; Hill and Rideout, 2004; Hel-
lendoorn and Devanbu, 2017). One particularly
challenging scenario is repository-level code com-
pletion, where a system is required to complete
lines, API invocations, or functions in a file from

*This work was done during an internship at AWS AI Labs.

user repositories. For this task, language models for
code (code LMs) have emerged as a promising solu-
tion due to their ability to leverage the current file’s
context to generate coherent code of flexible gran-
ularity (Tu et al., 2014; Svyatkovskiy et al., 2020;
Chen et al., 2021). However, these approaches fail
to capture the holistic repository knowledge span-
ning beyond the current file, such as user-defined
APIs and inter-module dependencies (Zan et al.,
2022; Zhang et al., 2023; Ding et al., 2023). Re-
cently, the retrieval-augmented generation (RAG)
paradigm was proposed to bridge the gap: cross-file
contexts such as relevant code snippets or documen-
tations are retrieved and provided to code LMs as
augmentations to the current file. This approach
has shown strong empirical performance and was
further advanced by recent literature through de-
signing better retrieval mechanisms for prompting
black-box code LMs (Lu et al., 2022; Shrivastava
et al., 2023b; Zhang et al., 2023) and adapting the
LM to better leverage structured retrieved contexts
such as classes, functions, or APIs (Ding et al.,
2022; Zan et al., 2022).

Despite their encouraging performance, existing
RAG-based approaches largely ignore to address a
critical question:

Should we always perform retrieval augmentation?

Our findings suggest that the answer is predom-
inantly negative. First, on various code comple-
tion tasks, we discover that up to 80% of retrievals
made by a standard RAG method do not enhance
the performance of common code LMs such as
CodeGen (Nijkamp et al., 2022) and StarCoder
(Li et al., 2023b), with many degrading the perfor-
mance by introducing irrelevant information (§5.1).
Second, always retrieving introduces notable ineffi-
ciencies. For moderately sized repositories, we find
that sparse retrieval is already as time consuming as
code completion with a 3B code LM (§5.3 and 6).
This inefficiency is more pronounced with dense
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import pandas as pd 
class TableManager: 
 def __init__(self, data)
  self.data = pd.DataFrame(data)
 … 
 def normalize_col(self, col): 
  """Normalize the values in col 
  to the range [0, 1]."""

<No Retrieval> <Retrieval Needed> 

return super().extract(
  ["calib_params“, "calib_mutable"], checkpoint_path, prefix, 
 **kwargs) 

Repoformer

Repoformer

Repoformer

from training.train_state_repository import TrainStateRepository 
from prob_model.posterior.posterior_mixin import CheckpointingMixin 
from typing import Path, Dict, Optional

class PosteriorStateRepository(TrainStateRepository, CheckpointingMixin):
 …
 def extract_calib_keys(self, checkpoint_path, prefix, **kwargs ) -> Dict: 

if col in self.data.columns: 
 min_val = self.data[col].min() 
 max_val = self.data[col].max() 
 if min_val != max_val: # avoid division by zero

 self.data[col] = (self.data[col] - min_val) 
       / (max_val - min_val) 

else: 
 raise ValueError(f"Column '{col}' does not exist") 

// prob_model/posterior/deep_ensemble/
// deep_ensemble_repositories.py
def extract_calib_keys(..) -> Dict: 
 return self.extract(
  ["calib_params", "calib_mutable"],
  0, checkpoint_path, prefix, 
  **kwargs) 

Model has low 
confidence

Model has high 
confidence

Figure 1: (a) An overview of the proposed selective RAG framework. Given the current file context, a policy first
assesses whether retrieval is required and triggers the retriever selectively. Then, the code LM makes a hypothesis
with the optional retrieved context. With REPOFORMER, the two stages are streamlined via self-assessment. (b)
With REPOFORMER acting as both the selective retrieval policy and the generator LM, our framework achieves
better accuracy and better latency than performing retrieval invariably.

retrieval, enterprise-scale repositories, and iterative
retrieval methods such as Zhang et al. (2023).

In this paper, we challenge this invariable re-
trieval assumption by proposing a novel repository-
level code completion framework underpinned by
a selective retrieval mechanism: the system proac-
tively abstains from performing unnecessary or po-
tentially detrimental retrievals (fig. 1 (a)). At the
core of our framework is REPOFORMER, an intel-
ligent code LM fine-tuned for robust code com-
pletion with self-triggered retrieval augmentation.
REPOFORMER reflects three core principles:

1. Performance-oriented self-evaluation. Af-
ter observing the current file, REPOFORMER

explicitly expresses the likelihood that its pre-
diction quality would be improved by addi-
tional retrieval. Our training strategy enables
the model to combine two factors for absten-
tion: the LM already knowing the answer with-
out retrieval (Kadavath et al., 2022) and the
code completion question not depending on
cross-file information to answer and thus re-
trieval is likely uninformative.

2. Robustness to retrieved contexts. REPO-
FORMER learns to use the retrieved contexts
to improve the quality of its output and avoid
performance drops caused by potentially noisy
retrieved information.

3. Generalizability. The aforementioned two
abilities must generalize to any completion
granularity, language, and retriever. In addi-

tion, REPOFORMER should be able to function
as a plug-and-play selective retrieval policy.

We posit that these abilities can be faithfully
obtained by observing training data created from
simulations of RAG. Specifically, we sample di-
verse code chunks and function bodies and pair
them with the retrieved repository-level cross-file
contexts. Then, the ground-truth label for selec-
tive retrieval can be obtained by contrasting the
quality of a code LM’s outputs with and without re-
trieval augmentation. With this dataset, we design
a self-supervised objective to jointly teach the code
LM accurately self-evaluating the need for retrieval
and robustly completing the code with the optional
retrieval augmentation (§3.3).

We perform comprehensive evaluations on a
range of repository-level code completion tasks
from RepoEval (Zhang et al., 2023), CrossCodeE-
val (Ding et al., 2023), and a new large-scale bench-
mark, CrossCodeLongEval, that focus on code
chunk and function completion. Results show that
REPOFORMER achieves strong performance, out-
performing invariable retrieval with the same-sized
StarCoderBase by more than 3 absolute points for
edit similarity across multiple tasks. The 3B RE-
POFORMER even performs on par with invariable
retrieval using the 16B StarCoder (§5.2). Further-
more, our framework allows for up to 70% infer-
ence speedup without harming accuracy. We also
establish that REPOFORMER can accelerate RAG
with larger black-box code LMs as a plug-and-play



selective RAG policy, improving the performance
while reducing the latency of line and API com-
pletion to 75% (§5.3). Finally, we analyze REPO-
FORMER’s threshold sensitivity, the precision of
its retrieval decisions, its robustness to retrieved
contexts, and its generalization to other languages
or retrievers (§6). We will release our code and
benchmark to facilitate future research.

2 Related Work

Repository-level Code Completion Accurately
completing the code in repositories has been a
challenging research problem due to cross-file de-
pendency patterns caused by modular design (Par-
nas, 1972; Tu et al., 2014). Early works propose
application-specific training methods for n-gram
LMs (Tu et al., 2014), RNNs (Hellendoorn and De-
vanbu, 2017; Wang et al., 2021), and Transformers
(Svyatkovskiy et al., 2020) to leverage structured
knowledge beyond current file’s context. Recent
studies investigate fine-tuning powerful pre-trained
code LMs (Chen et al., 2021; Nijkamp et al., 2022;
Li et al., 2023b) to better leverage retrieved knowl-
edge provided in context such as code and docu-
mentation snippets (Zan et al., 2022; Ding et al.,
2022; Shrivastava et al., 2023a). Concurrently,
other studies show that black-box code LMs can
already take advantage of in-context knowledge,
depending on how well the knowledge is retrieved
and formatted (Lu et al., 2022; Zhou et al., 2023;
Shrivastava et al., 2023b; Zhang et al., 2023). This
approach does not require one to train the LM and
thus promises better generalization. Orthogonal to
these studies, this paper identifies and addresses the
robustness and efficiency issues caused by invari-
ably performing the retrieval augmentation. Our
solution takes the form of selective retrieval aug-
mentation through self-assessment.

Adaptive RAG This paper is consistent with the
recent trend of making the RAG paradigm active
and adaptive. A core question is finding an effective
policy to decide when to retrieve. He et al. (2021)
propose to learn to adjust the importance weight of
retrieval based on language modeling performance.
Li et al. (2023a) and Jiang et al. (2023) suggest that
retrieval should be performed only when LMs have
a high predictive uncertainty. Mallen et al. (2023)
discover that retrieval can be avoided for popular
facts. Concurrent to this work, two new studies
approach adaptive RAG from a learning perspec-
tive. SKR (Wang et al., 2023) collects instances

where retrieval is not helpful for black-box LMs
and proposes several methods to predict these in-
stances. Self-RAG (Asai et al., 2024) utilizes GPT-
4 (OpenAI, 2023) as a knowledge engine to distill a
smaller LM to evaluate whether answering a ques-
tion can be benefited from retrieval. In comparison,
this paper highlights the importance of understand-
ing whether an LM knows the answer (Kadavath
et al., 2022) in forming the retrieval policy. We in-
troduce a simple yet effective scheme to fine-tune a
code LM for faithful self-evaluation without extra
modules (SKR), knowledge store (SKR), or labels
generated by an oracle LM (Self-RAG). We show
that our approach leads to no performance harms
(§5.2), substantial speedup (§5.3), and a good ab-
stention accuracy (§6).

3 Approach

3.1 Background

Problem Formulation We denote each
repository-level code completion task as
(Xl, Xr, Y, F ). Y is the ground truth com-
pletion that needs to be generated. In this paper, Y
always contains one or more consecutive lines of
code. Xl and Xr are the code to the left/right of Y
in the same file. We will use the left/right context
to refer to them. F is the set of other files in the
repository. A code completion system utilizes Xl,
Xr, and F to generate a hypothesis Ŷ .

Retrieval-Augmented Generation We follow
the RG-1 formulation in Zhang et al. (2023) to
execute RAG for code completion in four stages:
indexing, query formation, retrieval, and genera-
tion. We consider two components:

• An in-repository retrieverR that queries F
with information from Xl and Xr and returns
relevant cross-file contexts CC. CC con-
sists of k code chunks cc1, cc2, ..., cck, each
of which contains consecutive lines of code
extracted from a file in F .

• A code LM M that leverages Xl, Xr, and
CC to output Ŷ . The inclusion of Xr and
CC is optional. It is worth noting that for
generation, we always directly provide Xr in
the prompt in addition to Xl (Shrivastava et al.,
2023b; Pei et al., 2023). We provide empirical
support for this design in appendix C.

We present full documentations of the RAG
stages and their hyperparameters in appendix A.



3.2 Self-selective RAG for Code Completion

Central to our framework is the idea of selective
RAG, where the system decides whether the LM’s
generation could benefit from retrieved contexts
and abstains from retrieval augmentation when it
is deemed unnecessary (fig. 1 (a)).

For this selective decision, two traditional heuris-
tics are relevant: (1) performing a trial retrieval
and only augmenting the high-relevance contexts
or (2) performing a trial generation and conducting
RAG only when the model’s uncertainty is high.
We find that these two strategies are informative to
some extent, yet incur a high latency cost and do
not generalize well to all tasks (appendix D).

Instead, our framework adopts a self-selective
RAG formulation. After observing Xl and Xr, the
LM directly self-triggers cross-file retrieval by gen-
erating a special token <cc> or abstains from re-
trieval via an empty token ϕ1. This crucial formu-
lation enables us to train a strong classifier that
considers both the question’s characteristics (i.e.,
whether it requires cross-file information or not)
and the LM’s self-knowledge (i.e., whether the LM
can already correctly answer without retrieval, as
explored by Kadavath et al. (2022)). After this
optional retrieval step, the LM proceeds with the
code completion with Xl, Xr, combined with CC
if retrieval is triggered.

As shown in fig. 2, the inference procedure
of self-selective RAG is conveniently modeled as
an extension to fill-in-the-middle (Bavarian et al.,
2022). One advantage of this design is the flexi-
bility. The LM possesses the ability for RAG and
fill-in-the-middle, and can seamlessly self-switch
between the two when encountering different ques-
tions. Users can also easily adjust the ratio between
the two through the retrieval threshold. Another
advantage is its efficiency. The selective decision
overhead is only a single forward pass, a significant
save compared to trial generation (such as Jiang
et al. (2023)) or trial retrieval. When the LM ab-
stains from retrieval, it proceeds with generation
with the retrieval overhead completely avoided.

3.3 Self-supervised Multi-task Learning

To power self-selective RAG, the LM needs two
crucial abilities: accurate self-assessment and ro-
bustness to the retrieved context. We design a
contrastive data labeling scheme to mine self-

1In practice, instead of greedily decoding <cc>, we check
whether its probability exceeds a certain threshold.

(a) Fill-in-the-middle

(b) Self-selective RAG
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Figure 2: A comparison between fill-in-the-middle and
self-selective RAG. We mark the end of the current file
with a new token <eof>, which triggers the LM’s self-
evaluation. → denotes the invocation of the LM. LM-
generated parts are colored in red. fim_p, fim_s, and
fim_m refer to the special tokens for fill-in-the-middle:
fim_prefix, fim_suffix, and fim_middle. These to-
kens are already learned during the pre-training.

supervision from public repositories, followed by
fine-tuning with a novel multi-task objective.

Data construction We leverage large-scale per-
missively licensed repositories from the Stack (Ko-
cetkov et al., 2022) and create the fine-tuning data
via a three-step procedure:

1. Sample target lines Y that are either (1) ran-
dom code chunks or (2) function bodies.

2. Retrieve CC from the repository using the
current file, optionally with Y .

3. Label whether extending the current file with
CC can improve a code LMM’s code com-
pletion quality by more than a threshold T ,
measured by Edit Similarity (ES, definition in
appendix B) against Y .

After this procedure, we obtain the fine-tuning
instances in the form (Xl, Xr, Y, CC, label). The
detailed algorithm is presented in appendix E.

Verbalization For training, each instance is ver-
balized into a sequence. If label is false, only Xl

and Xr are provided preceding Y . Otherwise, we
additionally provide CC after the special token
<cc>. These two verbalizations correspond to the
branches in fig. 2 (b).

Training Objective We introduce Leval for self-
assessment and Lgen for code generation.

1. Leval: a cross-entropy loss on predicting <cc>
immediately following <eof>.

Leval = − log pM(<cc>|Xl, Xr) (1)
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Figure 3: The performance gain on RepoEval API completion from retrieved cross-file contexts. Each bucket
contains values ranging from label-10 to label+10 except for the central bucket, which corresponds to exactly 0.
The retrieved contexts only improve the performance in about 20% of instances. The trend is consistent across all
the evaluated LM families and sizes.

2. Lgen: a cross-entropy loss on the tokens
following <fim_middle>. Depending on
label, Lgen represents either code comple-
tion with only in-file information or retrieval-
augmented code completion.

Lgen =

{
− log pM(Y |Xl, Xr, CC), if label
− log pM(Y |Xl, Xr), otherwise

(2)

The final training objective is λLeval + Lgen, a
weighted combination of the two losses. We do not
supervise the model on predicting the other tokens
in Xl, Xr, CC, or the special tokens for fill-in-the-
middle. Teacher forcing is used just as in normal
causal language model training.

4 Experimental Setup

4.1 REPOFORMER Implementation Details

Training Data We sample Python repositories
from the Stack (Kocetkov et al., 2022). Basic fil-
tering are applied to retain 18k repositories that
have (1) at least five Python files, (2) at least three
imports per file, and (3) at least two local imports
per file. These criteria ensure the existence of local
dependencies where RAG could be helpful. We use
M = StarCoderBase-1B and T = 0 to label 240k
chunk and 120k function completion instances. We
reserve 500 repositories for validation and use the
rest for training.

Training We fine-tune the 1B, 3B, 7B, and 16B
variants of StarCoderBase with λ = 1.0, maximum
sequence length 2048, learning rate 2e-5, batch size
512, 50 warmup steps, and a linear learning rate
decay. The models are trained for 2 epochs, which
approximately takes 8, 12, 20, and 50 hours for the
1B/3B/7B/16B models respectively with 8 Nvidia
A100 GPUs (40G memory). Our implementation
is based on Jain et al. (2023)2. We will call our

2https://github.com/amazon-science/ContraCLM

models REPOFORMER-1B/3B/7B/16B. We have
also applied the same method to train a multilingual
version of REPOFORMER on a mixture of Python,
Java, C#, and Typescript repositories. As we focus
on the methodological discussion in the main text,
we refer interested readers to appendix F.2 for the
detailed experiment setup and results.

Hyperparameter optimization We conduct a
grid search with StarCoderBase-1B on the follow-
ing search space: learning rate {1e-5, 2e-5, 5e-5},
λ {0.2, 1.0, 2.0, 5.0}, training epochs {1, 2, 5},
and warmup steps {50, 100}. The best hyperpa-
rameters are selected based on the code completion
performance on the validation dataset.

4.2 Evaluation Setup

Evaluation Datasets We evaluate on RepoEval
(Zhang et al., 2023), which consists of line, API,
and function completion tasks created from 32
Python repositories. To investigate the general-
ization to other languages, we also evaluated the
original CrossCodeEval (Ding et al., 2023), which
features line completion instances covering four
languages: Python, Java, C#, and TypeScript (ap-
pendix F.2). Observing that RepoEval has a limited
repositrory coverage and that CrossCodeEval has
a limited task coverage, we additionally leverage
1500 raw Python repositories from CrossCodeE-
val to create a new chunk and function completion
benchmark, which we call CrossCodeLongEval.
We detail the dataset creation process and basic
statistics in appendix E. For the rest of this paper,
we will use CCEval to refer to both CrossCodeE-
val and CrossCodeLongEval interchangeably, and
use the specific language and task (line, chunk, or
function completion) to differentiate them.

5 Results

In this section, we first show that retrieval augmen-
tation is often unhelpful for RAG with black-box

https://github.com/amazon-science/ContraCLM


Model Size
Performance (UT) UT Change

Xl + Xr Xl + Xr + CC ↓ = ↑
CodeGen-Mono 16B 23.74 24.18 23 407 25
CodeGen-Mono 2B 30.55 32.51 18 400 37

StarCoder 16B 34.73 42.86 16 386 53
StarCoderBase 1B 22.20 25.71 16 407 32

Table 1: The performance change on RepoEval func-
tion completion exhibited by four models from retrieved
cross-file contexts. For the majority of the instances,
RAG does not improve the performance. "↑", "=", "↓"
denote the counts for performance increase, no perfor-
mance change, and performance drop.

code LMs. Then we demonstrate that our frame-
work allows the model to avoid unnecessary re-
trievals and be more robust to the retrieved contexts,
resulting in better accuracy and latency.

5.1 Is retrieval always helpful?

As a proof of concept, we first show that on a range
of repository-level code completion tasks, the re-
trieved contexts often fail to improve code LMs’
generation quality.

In fig. 3 and table 1, we evaluate four code LMs
on API completion and function completion from
RepoEval. For each model, we report the instance-
level performance change from code completion
only using Xl and Xr to retrieval-augmented code
completion with Xl, Xr, and CC (detailed prompts
in appendix A). The results reveal an intriguing pat-
tern: retrieval improves LMs’ performance on only
20% or fewer instances. For the rest 80%, retrieval
augmentation mostly does not affect the perfor-
mance, but also actually harms the performance
almost as often as it helps.

5.2 REPOFORMER achieves strong code
completion performance via selective RAG

Next, we evaluate the code completion perfor-
mance of REPOFORMER. We compare the fol-
lowing three settings3. For the first two baselines,
we use the state-of-the-art single-iteration prompt-
ing pipeline (Zhang et al. (2023), detailed in ap-
pendix A). We use StarCoder models due to their
strong performance among the open-source code
LMs.

1. No Retrieval. This baseline only provides Xl

and Xr to the model in the prompt.
2. Always Retrieving. This baseline always aug-

ments Xl and Xr with the retrieved CC.

3We do not consider iterative retrieval because we find
that single-iteration RAG already achieves the majority of the
performance gains from multi-iteration RAG.

3. Selective Retrieval. We provide REPO-
FORMER with Xl and Xr in the prompt, op-
tionally augmented with CC based on two
selective RAG policies:

• Greedy Selection. Retrieval is per-
formed if <cc> is the most likely token
following <eof>.

• Threshold Selection. If the probability
of <cc> following <eof> is greater than
a threshold T , retrieval augmentation is
performed4.

The results are summarized in table 2. Com-
pared to no retrieval and always retrieving with
StarCoderBase of the same size, REPOFORMER’s
selective retrieval strategy exhibits strong perfor-
mance improvements across all the tasks and both
lexical-based and execution-based metrics. Via
the threshold selection strategy, REPOFORMER-
3B can outperform StarCoderBase-7B on most of
the tasks and metrics except EM for API comple-
tion, even outperforming the 5x larger StarCoder
in terms of ES for API and chunk completion. Fi-
nally, The REPOFORMER-16B model outperforms
the strongest StarCoder baseline by 3%, averaged
across all tasks, setting up the new start-of-the-art
for repository-level code completion. We also ex-
perimentally confirm that the performance improve-
ment from our framework can generalize to three
languages beyond Python (appendix F.2) as well
as dense retrieval instead of Jaccard similarity (ap-
pendix F.3). In later sections, we demonstrate that
the observed success is due to both the ability to
accurately abstain from retrieval and the improved
robustness to retrieval.

In terms of code completion accuracy, the thresh-
old selection strategy outperforms the greedy selec-
tion strategy on all the tasks. In the next section,
we show that the two strategies represent different
ways to achieve a good balance between accuracy
and inference budget.

5.3 REPOFORMER improves inference
efficiency

We investigate REPOFORMER for saving the infer-
ence latency in a realistic “online serving" scenario.

Latency Model We assume that indexing has al-
ready been done for the working repository. Given
a code completion request containing the current

4We find that T = 0.15 for function completion and
T = 0.2 for the other tasks generally work well. These
two thresholds are always used unless otherwise stated.



RepoEval CrossCodeLongEval
(Line) (API) (Function) (Chunk) (Function)Size Model RAG Policy

EM ES EM ES UT ES EM ES ES

1B
STARCODERBASE

No 43.44 67.77 37.81 66.54 22.20 47.65 31.08 60.09 47.49
Always 51.19 72.30 43.94 69.17 25.71 55.64 37.22 63.73 50.50

REPOFORMER
SelectiveG 51.90 74.50 43.50 71.00 24.00 53.10 38.52 68.08 52.09
SelectiveT 54.40 76.00 46.10 72.70 28.79 57.30 41.92 69.97 53.71

3B
STARCODERBASE

No 49.00 72.12 40.44 69.02 24.84 51.22 36.14 64.65 49.88
Always 56.69 76.68 47.00 72.62 29.67 57.68 42.26 67.74 53.39

REPOFORMER
SelectiveG 56.30 77.60 46.10 73.60 28.57 54.70 42.06 70.70 54.47
SelectiveT 59.63 79.02 49.31 74.96 32.96 60.56 46.66 72.23 56.24

7B
STARCODERBASE

No 51.88 74.03 43.31 70.79 25.49 52.28 38.88 66.61 52.45
Always 59.44 78.15 49.56 73.65 31.43 58.51 44.44 69.53 55.41

REPOFORMER
SelectiveG 56.00 76.63 48.06 75.03 30.77 55.27 43.80 72.46 56.14
SelectiveT 59.63 78.63 50.87 76.89 35.16 60.64 46.88 74.20 57.18

16B
STARCODER

No 55.25 76.07 44.50 71.00 34.73 53.60 42.58 69.40 54.20
Always 61.25 79.24 51.12 74.50 42.86 60.96 47.90 71.90 58.06

REPOFORMER
SelectiveG 58.13 78.81 48.69 76.23 42.42 58.42 45.00 73.36 57.71
SelectiveT 61.75 80.34 51.88 77.93 44.18 62.58 49.18 75.50 58.93

Table 2: Experiment results on RepoEval and CrossCodeLongEval. The best performance among each model size is
boldfaced. We use SelectiveG and SelectiveT to denote the greedy selection and the threshold selection strategy
for selective retrieval. REPOFORMER greatly outperforms STARCODERBASE of the same size while consuming a
smaller retrieval budget. Among the two selective policies, threshold selection enables the best performance.

file (Xl, Xr), the system issues three processes at
the same time:

• P1: make a retrieval decision using REPO-
FORMER.

• P2: use a code LMM to generate Ŷ without
CC.

• P3: retrieve CC and generate Ŷ with CC
usingM.

Depending on the result of P1, the system waits
for either P2 or P3 and ignores the other process. If
M is REPOFORMER, P1 can be merged with P2 by
forcingM to generate a hypothesis without CC
after collecting the retrieval decision. We consider
three latency terms: (1) Td, time required for the
retrieval decision, (2) Tr, the retrieval latency, and
(3) Tg, the generation latency. Then, the latency
for P1, P2, and P3 are Td, Tg, and Tr + Tg. When
M is REPOFORMER or a model larger than REPO-
FORMER, we have Td < Tg < Tr + Tg. Therefore,
the latency of the entire system is Tg or Tr + Tg

depending on P1. Using this latency model, we
benchmark the latency of various selective retrieval
settings on RepoEval with the vllm library (Kwon
et al., 2023) on a single Nvidia A100 GPU (80G).

First, we consider M = REPOFORMER and
present the results in table 3. Line and API com-
pletion are presented to cover short and moderate
target lengths5. Both selective strategies signifi-

5We skip the function completion results as RepoEval uses
very small repositories for function completion for easier unit

RAG Policy API Completion Line Completion
ES %RAG SU ES %RAG SU

Always 72.02 100% 0% 75.91 100% 0%
SelectiveG 71.04 18% 69% 74.50 19% 61%1B
SelectiveT 72.72 61% 28% 76.00 62% 27%

Always 74.66 100% 0% 78.68 100% 0%
SelectiveG 73.60 19% 46% 77.60 20% 43%3B
SelectiveT 74.96 78% 17% 79.02 74% 16%

Table 3: RAG latency of REPOFORMER with two self-
selective RAG paradigms. %RAG = ratio of instances
where RAG is performed. SU = Speedup compared to
always retrieving (the higher, the better). Compared to
the always retrieving baseline, the threshold selection
strategy consistently demonstrates gains in both accu-
racy and latency. The greedy selection strategy shows
much larger latency gains with a small performance
degradation.

cantly improve the latency, with a different trade-
off: using a fixed threshold for P (<cc>) results
in improvements for both accuracy and latency
compared to invariable retrieval, while using self-
selection results in a larger latency gain with mi-
nor performance degradation (around 1.0 ES). It’s
worth mentioning that the speed improvement from
selective RAG could be further enhanced with a
more advanced retrieval setup. For instance, dense
retrieval on large repositories often consumes more
than 80% of the entire RAG pipeline’s latency. In
that case, a 20% RAG policy translates into more
than 70% speedup. We empirically verify this state-
ment in appendix F.3.

testing.



Model RAG Policy API Completion Line Completion
ES SU ES SU

Always Retrieving 73.65 0% 78.15 0%
SCB-7B

REPOFORMER-1B 74.10 24% 78.31 25%

Always Retrieving 74.50 0% 79.24 0%
SCB-16B

REPOFORMER-1B 74.84 24% 79.48 24%

Always Retrieving 63.07 0% 68.42 0%
CG25-7B

REPOFORMER-1B 63.37 20% 68.86 29%
Always Retrieving 58.75 0% 59.99 0%

CL-7B
REPOFORMER-1B 58.91 25% 60.47 28%
Always Retrieving 61.08 0% 61.58 0%

CL-16B
REPOFORMER-1B 62.10 32% 62.45 30%
Always Retrieving 63.38 0% 61.76 0%

CHATGPT
REPOFORMER-1B 64.01 28% 61.92 18%

Table 4: Accuracy and latency of larger code LMs as
the generation model and with REPOFORMER-1B as
the policy model for selective RAG. SCB = StarCoder-
Base, CG25 = CodeGen25, CL = Code Llama. SU =
Speedup compared to Always Retrieving (the higher,
the better). Compared to the Always Retrieving base-
line, REPOFORMER’s selective decisions improve both
the accuracy and latency of these larger LMs.

Next, we consider using larger LMs asM in the
framework and using P (<cc>) with REPOFORMER-
1B as a plug-and-play selective RAG policy.
Specifically, we consider StarCoderBase, Code
Llama (Roziere et al., 2023), CodeGen25 (Nijkamp
et al., 2023), and ChatGPT6. As shown in table 4,
the selective predictions from REPOFORMER suc-
cessfully reduce the latency of RAG with a range of
different larger LMs by approximately 25% while
improving their accuracy. The findings collectively
indicate that REPOFORMER has acquired robust se-
lective retrieval capabilities, which could partially
transfer to other larger code LMs.

6 Analysis

In this section, we present further analyses and
ablation studies on REPOFORMER-1B.

Does REPOFORMER make accurate and cali-
brated selective retrieval decisions? In fig. 4,
we evaluate the precision of retrieval abstention de-
cisions made by REPOFORMER’s P (<cc>) strategy.
We find that the abstentions are accurate for over
80% instances across all the tasks. We also evaluate
the calibration of the selective decisions and find
REPOFORMER generally making near-calibrated
predictions for line and API completion while the
calibration is suboptimal for function completion
with UT employed as the metric (appendix F.1).
We hypothesize that this could be caused by using
ES to create the training signal and encourage fu-
ture work to devise methods for labeling the quality

6We use gpt-3.5-0613 via the OpenAI API.

Figure 4: An analysis of the instances where
REPOFORMER-1B abstains from retrieval. We divide
the instances into (1) the model answering correctly
without retrieval (blue), the model making a mistake
that cannot be improved by retrieval (yellow), and the
model achieving better performance when retrieval is
performed (red). The precision of abstention is over 0.8
on all tasks except for Function (RepoEval), which has
a precision of 0.78.
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Figure 5: The performance change on RepoEval from
retrieved cross-file context for the instances where RE-
POFORMER self-selects retrieval. Compared to Star-
CoderBase, REPOFORMER is better at leveraging CC
to improve the generation quality.

of function completion more effectively.

Is REPOFORMER robust to retrieval? In Figure
5, we show the performance change caused by CC
on the instances where REPOFORMER requests for
retrieval. Compared to STARCODERBASE, REPO-
FORMER exhibits more and greater performance
gains upon observing CC. The number of per-
formance decreases is also significantly reduced,
indicating an improved robustness.

Is REPOFORMER sensitive to threshold settings?
In fig. 1 (b), we present the code completion ac-



Model RAG Policy Chunk Completion Function Completion
T %RAG ES T %RAG ES

SC No - 0% 60.09 - 0% 47.49
Always - 100% 63.73 - 100% 50.50

RF
No - 0% 66.22 - 0% 49.77

SelectiveT 0.20 75% 69.97 0.15 76% 53.71
Always - 100% 69.95 - 100% 53.56

A1
No - 0% 66.14 - 0% 49.25

SelectiveT 0.99 100% 70.21 0.99 100% 53.93
Always - 100% 70.21 - 100% 53.93

A2 No - 0% 66.49 - 0% 49.02
Always - 100% 70.45 - 100% 53.90

A3 No - 0% 66.25 - 0% 49.01
Always - 100% 68.85 - 100% 52.12

A4
No - 0% 64.96 - 0% 25.44

SelectiveT 0.10 86% 69.35 0.10 83% 26.50
Always - 100% 69.19 - 100% 26.35

Table 5: Ablation study results. We report the per-
formance on two tasks from the CCEval dataset. SC
= StarCoderBase-1B. RF = REPOFORMER-1B. T =
threshold for the SelectiveT policy. We found T = 0.10
works better for A4 and thus applied it to all the A4
results. %RAG = ratio of instances where RAG is per-
formed.

curacy and latency of REPOFORMER as a func-
tion of the threshold. As the threshold increases,
the model’s code completion performance first in-
creases due to avoiding potentially harmful re-
trievals. At threshold 0.4, the model still main-
tains similar performance compared to invariable
retrieval, with latency reduced by 50%. This result
demonstrates that REPOFORMER can accommo-
date various threshold settings and provide a good
accuracy-latency trade-off. We provide the visual-
ization for other tasks in appendix F.4.

Ablation Study We study several alternative ob-
jective designs:

• (A1) Combining Leval and Lgen as a single
cross-entropy loss. In general, this down-
weights Leval.

• (A2) Removing the self-evaluation loss Leval.
• (A3) Further removing all the CC from A2.

This amounts to only training on the fill-in-
the-middle objective.

• (A4) Placing <cc> and CC after
<fim_middle> and marking its end with a
new token <cc_end>. A4 mainly studies
whether it is more beneficial to train the
LM to treat CC as context fetched during
fill-in-middle generation instead of part of the
input context.

We fine-tune StarCoderBase-1B with the same
setup as REPOFORMER and present the results on
CCEval in table 5. Although A1 has slightly better
RAG performance, it fails to make meaningful se-
lective decisions due to Leval being outweighed by

Lgen in long sequences: the probability of <cc> is
almost always 1. For A2, we find it only slightly
outperforms REPOFORMER, suggesting learning
Leval does not harm the RAG ability a lot while
bringing in the strong selective retrieval ability,
which in turn boosts both accuracy and latency.
A3 has the same performance for in-file comple-
tion as REPOFORMER, but exhibits worse RAG
performance, indicating the necessity of training
with CC. Finally, A4 achieves reasonable chunk
completion performance but performs much worse
in function completion. We hypothesize that plac-
ing CC within the infilling part is detrimental due
to breaking the fill-in-the-middle semantics learned
in StarCoder pre-training.

7 Conclusion

In this paper, we challenge the common assump-
tion of always performing retrieval for RAG-based
repository-level code completion. In response, we
propose a selective retrieval augmentation frame-
work powered by REPOFORMER, a code LM that
identifies whether cross-file context is necessary,
and self-triggers retrieval. Extensive evaluations
demonstrate our approach’s effectiveness in en-
hancing accuracy while significantly reducing la-
tency, showcasing its potential in practical coding
environments.

Discussion Building upon REPOFORMER, future
research may consider several important directions:

1. Further speeding up large LMs. Beyond
as a selective retrieval policy, REPOFORMER

has the potential to serve as an effective plug-
in draft model in settings such as speculative
decoding (Chen et al., 2023).

2. More effective function completion. To en-
able a good scalability, we used lexical similar-
ity as the signal for training label creation. Al-
though this heuristics enables improvements
in function completion evaluation, designing a
more accurate and scalable labeling approach
is an important future direction.

3. Personalized retrieval. We apply a uniform
selective policy across repositories. However,
certain repositories could be inherently more
RAG-friendly by exhibiting a higher level of
duplication (Zhang et al., 2023). Adapting the
selective RAG paradigm towards accurate per-
sonalized policies is an important direction.
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Supplementary Material: Appendices

A Detailed RAG Execution Setup

Below, we describe the four steps we follow for
executing RAG as well as the related hyperparame-
ters.

1. Indexing. All files in F are divided into fix-
sized code chunks with a sliding window. We
set the chunk size to 20 for line, API, and
chunk completion and set 50 for function com-
pletion. We use half of the chunk size as the
stride size. Despite the duplication caused
by the overlap between adjacent chunks, this
design improves retrieval accuracy with toler-
able cost, as the number of files is limited in
a repository compared to large open-domain
code corpora.

2. Query Formation. A query is constructed
based on Xl. We always use a fixed number
of lines at the end of Xl (i.e., immediately
preceding Y ) as the query. The query contains
the same number of lines as the chunks in the
index.

3. Retrieval. A similarity function f is used
to compare the query with every chunk and
identify k most similar code chunks. We use
k = 10 and Jaccard similarity (Jaccard, 1912)
for f for the main results. Fragment alignment
(Lu et al., 2022) is then applied: for each of
the k most similar code chunks, the chunk
immediately following is included in CC in-
stead of the original chunk. We explored other
choices mentioned in fig. 7 such as cosine sim-
ilarity with UniXCoder (Guo et al., 2022) or
CodeBLEU (Ren et al., 2020), but find them
failing to outperform Jaccard similarity.

4. Generation. CC is concatenated with the in-
file context as a prompt forM. The prompt
is provided below.

Prompt Recent literature demonstrates the effec-
tiveness of directly providing the retrieved infor-
mation as part of the context of LMs (Ram et al.,
2023; Shi et al., 2023). Following these studies,
we directly concatenate the in-file context with
CC to provide it to the model (fig. 1). To prompt
CodeGen-Mono, we use the following input order-
ing:

[Right Context] [Cross-file Context]
[Left Context]

To prompt StarCoder, we use the following fill-
in-the-middle-prompt:

<fim_prefix> [Left Context] <fim_suffix>
[Right Context] [Cross-file Context]

<fim_middle>

For the cross-file contexts, we add a # symbol to
present them as comments and add the following
line before each cci:

# the below code fragment can be found
in: [file path]

After concatenating the verbalized cci together,
we add another line to the start of the CC:

# Here are some relevant code fragments
from other files of the repo:

For the in-file completion baselines such as
in §5.1 and appendix C, our prompts are ex-
actly the previous prompts with the [Cross-file
Context] part removed.

Decoding and Post-processing For all the exper-
iments, we follow previous work and use greedy
search (Zhang et al., 2023; Ding et al., 2023). We
left-truncate the left context to 1024 tokens, right-
truncate the right context to 512 tokens, and right-
truncate the cross-file context to 512 tokens. The
max generation length is set to 50 tokens for line,
API, and chunk completion, and 256 tokens for
function completion. We perform task-specific
post-processing on the model’s raw predictions.
For line, API, and chunk completion, we truncate
the prediction to having the same number of lines
as in Y . For function completion, we first add a
placeholder pass function body and use tree-sitter7

to determine the position of the function in the
file. Then, we concatenate the Xl and Ŷ , parse the
string again with tree-sitter, and extract the func-
tion body as the final Ŷ if the string can be parsed.
Otherwise, we directly return the raw Ŷ without
post-processing.

B Repoformer Training Details

Training Data We sample 18k Python reposito-
ries from the Stack8 (Kocetkov et al., 2022) that

7https://tree-sitter.github.io/tree-sitter/
8We have also trained a version of REPOFORMER on a

multilingual dataset. The results are reported in appendix F.2.

https://tree-sitter.github.io/tree-sitter/


have (1) at least three imports per file, (2) at least
two local imports per file, and (3) at least five
Python files. These criteria ensure the existence of
local dependencies where RAG could be meaning-
ful. We useM = StarCoderBase-1B and T = 0 to
label 240k chunk and 120k function completion in-
stances. We reserve 500 repositories for validation
and use the rest for training.

Training We fine-tune the 1B, 3B, 7B, and 16B
variants of StarCoderBase with λ = 1.0, maximum
sequence length 2048, learning rate 2e-5, batch size
512, 50 warmup steps, and a linear learning rate
decay. The models are trained for 2 epochs, which
takes 8 hours for the 1B model and 12 hours for the
3B model with 8 Nvidia A100 GPUs (40G mem-
ory). Our implementation is based on Jain et al.
(2023)9. We will call our models REPOFORMER-
1B/3B. We have also applied the same method
to train a multilingual version of the Repoformer
on Python, Java, C#, and Typescript. We focus
on the methodological discussion in the main text
and refer interested readers to appendix F.2 for the
results.

Hyperparameter optimization We conduct a
grid search with StarCoderBase-1B on the follow-
ing search space: learning rate {1e-5, 2e-5, 5e-5},
λ {0.2, 1.0, 2.0, 5.0}, training epochs {1, 2, 5},
and warmup steps {50, 100}. The best hyperpa-
rameters are selected based on the code completion
performance on the validation dataset.

C Why infilling?

As part of the in-file context, Xr contains rich in-
formation about how the future execution relies
on the code to complete. Right contexts are also
shown useful for tasks such as function call ar-
gument completion (Pei et al., 2023). However,
previous literature such as Zhang et al. (2023) sug-
gests splitting Xr and retrieving code chunks from
it. With code LMs trained on fill-in-the-middle
such as StarCoder, we argue that directly providing
Xr in the prompt is more preferable.

To illustrate, we investigate the effect of directly
providing Xr in the prompt for CodeGen-Mono
16B and StarCoder on current-file code completion
and retrieval-augmented code completion. Figure
6 presents the performance on RepoEval with dif-
ferent types of contexts provided in the prompt.

9https://github.com/amazon-science/ContraCLM

Whether cross-file contexts are present or not, pro-
viding right contexts can greatly improve the code
completion performance. The gain is consistent for
both API and function completion. Compared to
CodeGen, StarCoder can better leverage the right
context to generate more accurate code. Overall,
we observe that leveraging the entire right con-
text to perform infilling represents a much stronger
baseline. Therefore, in this paper we have exclu-
sively focused on the infilling setting with Star-
Coder.

D Trial Retrieval and Trial Generation

In this section, we present a detailed evaluation of
two selective RAG strategies: trial retrieval and
trial generation.

D.1 Trial Retrieval
To gauge the relevance of retrieved context, using
the similarity scores from the retrievers is a natural
option. In this section, we investigate trial retrieval
as a baseline for informing the decisions for selec-
tive RAG. We apply three off-the-shelf retrievers
on RepoEval. For each retriever, we score each of
the instances with the similarity between the top-1
retrieved code chunk and the query. The score is
compared to a threshold decide whether the prompt
should feature CC or not. If score is higher than
the threshold, we use top-10 code chunks retrieved
by the same retriever as the cross-file context. We
consider the following three retrievers:

• jaccard: the Jaccard index (Jaccard, 1912).

• weighted_ngram: the weighted n-gram
matching term introduced in the CodeBLEU
metric (Ren et al., 2020).

• unixcoder: the cosine similarity of UniX-
coder embedding (Guo et al., 2022).

Figure 7 presents the selective RAG performance
of StarCoder under different budgets.We observe
that the retrievers’ similarity scores serve as a
promising signal for deciding whether the retrieved
information can improve the RAG performance.
For most retrievers and tasks, the performance of
full retrieval could be reached with at most 60%
retrieval budget. This trend also aligns with the
remark in Zhang et al. (2023) on the correlation be-
tween in-repository duplication and the gain from
CC. However, it is worth noting that this strat-
egy brings no latency gain as it still implements

https://github.com/amazon-science/ContraCLM
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Figure 6: A comparison between four prompting strategies for RepoEval by combining left context (L), right context
(R), and cross-file contexts (CC). Leveraging right contexts to build infilling-style prompt generally improves the
performance regardless whether CC is present or not. StarCoder exhibits larger gains from right contexts, potentially
due to its fill-in-the-middle pre-training.

invariable retrieval. In addition, the knowledge of
whether the LM could be benefited by the retrieved
context is not leveraged.

D.2 Trial Generation

Next, we evaluate two uncertainty-based selective
RAG strategies that have been explored by previous
works.

• entropy: the sequence-level entropy as used
in Li et al. (2023a). We estimate the entropy
by performing vanilla sampling for 20 times.

• token uncertainty: the probability of the
most unlikely token in the sequence decoded
with greedy search, as used in Jiang et al.
(2023). This metric can be seen as the lower
bound of the per-token maximum probability.

Figure 8 presents the selective RAG performance
of StarCoder under different budgets, similar to the
previous evaluation setting. We find that the selec-
tive RAG performance of uncertainty-based met-
rics is inconsistent across sequence lengths. As the
length of Ŷ increases (from line to API, and form
API to function), the effectiveness of uncertainty-
based metrics drops significantly. In addition, the
selective performance cannot outperform the meth-
ods based on trial retrieval.

E Data Creation for REPOFORMER
Training and CrossCodeLongEval

We present the full self-supervised data creation
algorithm in algorithm 1 (for chunk completion
data) and algorithm 2 (for function completion

data). Rfiltered stands for the remaining reposi-
tories after applying the filtering criteria in §3.3. In
the next section, we present further analyses on the
training data distribution.

Training Data Analysis For the 240k chunk
completion and 120k function completion in-
stances, we plot the performance change after pro-
viding CC in fig. 9. In total, 30.18% chunk com-
pletion instances and 35.16% function completion
instances are labeled with positive. The average
length of Y is 3.53 lines for chunk completion and
11.77 lines for function completion.

CrossCodeLongEval Construction One draw-
back of RepoEval is its limited repository coverage.
To verify the performance on diverse repositories,
we collect and curate a new evaluation dataset for
repository-level code completion.

• Repository collection. We first solicited 1744
raw Python repositories from the authors of
CrossCodeEval (Ding et al., 2023). These
repositories were created between 2023-03-05
to 2023-06-15 and collected on 2023-09-01.
They have been ensured to not overlap with
the Stack (Kocetkov et al., 2022).

• Target line sampling. We avoided using
the CrossCodeEval benchmark as the origi-
nal benchmark explicit removed the instances
where StarCoderBase-1B can correctly an-
swer without the retrieved context. To sim-
ulate a more natural distribution of code com-
pletion, we sample new blanks from the raw
repositories. Specifically, we run algorithm 1



Algorithm 1 REPOFORMER Training Data Creation (Chunk Completion)

Input: Filtered set of repositories Rfiltered, language modelM, label threshold T
Output: chunk completion training dataset D
D ← ∅
for each r ∈ Rfiltered do
Dr ← ∅
Craw ← Break r into non-overlapping chunks of 10 lines each
Cr ← Cluster Craw with KMeans using TF-IDF features, with the constraint |Cr| = 0.2|Craw|
for each c ∈ Cr do

k ∼ Poisson(λ = 3)
s← Randomly sample a chunk from c
Y ← Cut a sub-chunk from s that spans k consecutive lines
Xl, Xr ← Recover the in-file left context and right context corresponding to Y
if rand(0, 1) > 0.5 then
Q ← Concatenate(last 5k lines of Xl, Y , first 5k lines of Xr)

else
Q ← Concatenate(last 5k lines of Xl, first 5k lines of Xr)

end if
CC ← Retrieve top-3 cross-file contexts from r using Q via jaccard similarity, each of length

10k
Ŷbase ←M(Xl, Xr)
ŶRAG ←M(Xl, Xr, CC)
label← ES(ŶRAG, Y )− ES(Ŷbase, Y ) > T // boolean value
Append (Xl, Xr, Y, CC, label) to Dr

end for
D ← D ∪Dr

end for



Algorithm 2 REPOFORMER Training Data Creation (Function Completion)

Input: Filtered set of repositories Rfiltered, language modelM, label threshold T
Output: function completion training dataset D
D ← ∅
for each r ∈ Rfiltered do
Dr ← ∅
Craw ← Gather all the functions between 3 and 30 lines
Cr ← Cluster Craw with KMeans using TF-IDF features, with the constraint |Cr| = 0.2|Craw|
for each c ∈ Cr do

s← Randomly sample a function from c
Y ← Cut only the body part of the function
Xl, Xr ← Recover the in-file left context and right context corresponding to Y
if rand(0, 1) > 0.5 then
Q ← Concatenate(last 20 lines of Xl, Y , first 20 lines of Xr)

else
Q ← Concatenate(last 20 lines of Xl, first 20 lines of Xr)

end if
CC ← Retrieve top-3 cross-file contexts from r using Q via jaccard similarity, each of length

10k
Ŷbase ←M(Xl, Xr)
ŶRAG ←M(Xl, Xr, CC)
label← ES(ŶRAG, Y )− ES(Ŷbase, Y ) > T // boolean value
Append (Xl, Xr, Y, CC, label) to Dr

end for
D ← D ∪Dr

end for
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Figure 7: A comparison of the effectiveness of different similarity functions for selective RAG with StarCoder 16B.
We plot the retrieval budget in the x-axis, which is the percentage of instances to perform retrieval. We report score
on the entire testing dataset for each budget. Specifically, the retriever’s similarity score is used select a subset to
perform retrieval, and for the other instances in-file completion is performed without retrieval. In most of the cases,
40% retrieval can be saved without sacrificing the code completion performance.
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Figure 8: A comparison of the effectiveness of two uncertainty metrics for selective RAG with StarCoder 16B. We
plot the retrieval budget in the x-axis and report score on the entire testing dataset for each budget. We observe that
the uncertainty-based metrics fail for long sequence generation such as function completion. Token uncertainty
outperforms entropy for line completion while entropy is slightly better for API completion. Overall, we find that
uncertainty-based selective RAG is not as effective as retriever-based (fig. 7).

and algorithm 2 to gather chunk completion
and function completion instances.

• Data analysis In table 6, we present the ba-
sic statistics of RepoEval and CrossCode-
LongEval.

RepoEval CrossCodeLongEval
Line API Function Chunk Function

# repositories 16 16 16 944 1460
# instances 1600 1600 455 5000 5000
|Xl|line 30.7 30.8 31.1 24.7 31.7
|Xl|token 796.3 890.7 761.1 661.9 672.1
|Xr|line 15.1 13.9 16.2 12.9 14.4
|Xr|token 449.9 430.4 412.4 404.2 371.3
|Y |line 1.0 2.1 7.8 1.47 9.5
|Y |token 12.0 25.4 97.8 19.2 111.2

Table 6: Descriptive statistics of RepoEval and Cross-
CodeLongEval. For |Y |, |Xl|, and |Xr|, we report both
the number of lines as well as the number of tokens
(using the StarCoder tokenizer) in the groundtruth, left
context, and the right context.

F Extended Analyses

F.1 Calibration of REPOFORMER’s Selective
Retrieval Prediction

We evaluate the calibration of REPOFORMER-1B’s
selective decisions. fig. 10 plots the probability of
<cc> against the probability of the model’s per-
formance could be improved by the CC, mea-
sured by comparing the prediction with and with-
out CC. When ES is used as the evaluation
metric, REPOFORMER-1B generally makes near-
calibrated predictions for Line and API Completion.
However, when it comes to longer-formed function
completion, especially when UT is employed as
the metric, REPOFORMER-1B’s predictions are not
calibrated. One possible reason is the use of ES
as the training signal. We encourage future work
to devise methods for effectively labeling the cor-
rectness of function completion. In addition, future
work should consider training REPOFORMER to



Figure 9: The performance gain on REPOFORMER training data exhibited by StarCoderBase-1B from retrieved
cross-file context. The sign of the performance change is used to generate the label for REPOFORMER training.
Each (start, end) bucket contains values ranging from start to end except for the central bucket, which corresponds
to exactly 0.

perform multiple self-assessments for long-form
generations.

F.2 Results on CrossCodeEval:
REPOFORMER-7B and Multilingual
REPOFORMER

This section provides additional results on the 4-
language original CrossCodeEval test set (Ding
et al., 2023). We choose to not present the results
in the main text as the data creation process of
CrossCodeEval explicitly selected the instances
where cross-file information is generally required,
thus making the contributions from selective re-
trieval incomplete. On this dataset, we evaluate
StarCoder, REPOFORMER-1B/3B/7B trained on
Python and REPOFORMER-M trained on multilin-
gual repository-level code completion. Despite the
setup difference, we are still able to observe sub-
stantial performance gains.

REPOFORMER-7B We apply the REPOFORMER

training scheme on REPOFORMER-7B with the
dataset created for REPOFORMER-1B/3B. We
keep the training infrastructure and hyperparam-
eters the same.

Multilingual REPOFORMER We experimented
with applying the REPOFORMER training scheme
to multiple languages. Specifically, we collect pub-
lic Python, Java, C#, and TypeScript repositories
from the Stack (Kocetkov et al., 2022) that contain
at least 20 files and 20,000 lines of code. We do
not apply the local import criteria due to implemen-
tation difficulties. Then, we follow the algorithm
described in appendix E to create 90k chunk com-
pletion and 30k function completion instances per
language. Using this dataset, we fine-tune Star-
CoderBase following the setup described in ap-

pendix B (same infrastructure and hyperparame-
ters). We call this model REPOFORMER-M.

Evaluation Results We present the results on
CrossCodeEval in table 7 and summarize the ob-
servations below:

• Strong cross-lingual transfer. REPO-
FORMER trained on Python data achieves
strong performance across multiple languages,
including three languages it is not fine-tuned
on. The result highlights the generalizability
of the learned self-evaluation and robust code
completion abilities.

• Multi-lingual REPOFORMER.
REPOFORMER-M outperforms the same-
sized STARCODERBASE by a large margin.
For the 1B, 7B, REPOFORMER-M outper-
forms REPOFORMER by a small margin. For
3B, the two models give similar performance.
This is reasonable as the two models are
learned on similar sized training data.

• REPOFORMER-7B. We observe the same
trends as we have observed on the 1B and 3B
model. Selective retrieval with REPOFORMER

is able to outperform invariable retrieval with
the original StarCoder model.

F.3 REPOFORMER’s Robustness to the
Retriever Choice

In this section, we investigate the performance of
REPOFORMER with the cosine similarity of UniX-
coder embedding (Guo et al., 2022) as the retriever
instead of Jaccard similarity. As shown in table 8,
we are able to observe similar patterns compared to
table 3: selective retrieval is able to improve both
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Figure 10: The calibration of selective retrieval predictions. REPOFORMER makes generally calibrated predictions
when ES is used as the metric and the generation is of moderate lengths. The prediction is not calibrated for function
completion when the metric is UT.

Model RAG Policy Python Java C# TypeScript
Code ES ID F1 Code ES ID F1 Code ES ID F1 Code ES ID F1

STARCODERBASE-1B
No 68.83 58.18 73.60 63.69 79.30 66.40 67.09 60.15

Always 71.57 62.42 74.54 65.83 79.04 66.82 67.66 60.60
REPOFORMER-1B SelectiveT 71.29 62.81 75.12 67.16 83.08 74.24 69.90 64.07

REPOFORMER-M-1B SelectiveT 71.55 62.89 75.92 67.86 84.44 76.00 70.07 64.41

STARCODERBASE-3B
No 71.07 61.63 76.10 67.56 81.46 69.95 70.56 64.83

Always 73.65 65.93 77.52 70.15 81.75 71.26 70.91 65.09
REPOFORMER-3B SelectiveT 74.57 66.86 78.40 71.26 85.92 78.62 73.70 68.66

REPOFORMER-M-3B SelectiveT 73.80 66.72 77.68 71.01 85.31 77.70 72.51 67.06

STARCODERBASE-7B
No 72.47 63.76 77.21 68.97 83.06 72.06 72.34 67.06

Always 75.02 67.69 77.70 70.57 83.64 74.39 73.01 67.56
REPOFORMER-7B SelectiveT 75.34 68.27 78.90 72.35 83.80 76.88 73.59 69.10

REPOFORMER-M-7B SelectiveT 75.35 67.88 79.11 72.82 86.53 79.77 74.60 70.01

Table 7: Evaluation results on CrossCodeEval. We
report edit similarity for code matching as well as the
F1 score for identifier matching. The best scores across
all models are boldfaced.

the accuracy and the latency of the entire RAG
system. In addition, as retrieval consumes a larger
proportion of latency than when sparse retriever
is used, selective retrieval brings more substantial
performance gains, with P (<cc>) bringing more
than 70% speedup.

Model RAG Policy API Completion Line Completion
ES %RAG SU ES %RAG SU

Always 71.69 100% 0% 75.25 100% 0%
SelectiveG 70.82 18% 71% 73.70 19% 71%REPOFORMER-1B
SelectiveT 72.39 61% 33% 75.65 62% 33%

Always 74.48 100% 0% 78.24 100% 0%
SelectiveG 73.26 19% 65% 76.74 20% 66%REPOFORMER-3B
SelectiveT 74.69 78% 21% 78.63 74% 31%

Table 8: RAG performance of REPOFORMER with two
self-selective RAG paradigms and dense retrieval used
instead of Jaccard similarity. %RAG = ratio of in-
stances where RAG is performed. SU = Speedup com-
pared to always retrieving. Compared to the always
retrieving baseline, the SelectiveT strategy consistently
demonstrates gains in both accuracy and latency. The
SelectiveG strategy shows much larger latency gains
with a small performance degradation. Compared to
sparse retrieval, we observe more substantial latency
gains.

F.4 Full Latency-Accuracy Visualizations

In this section, we present the latency-
accuracy trade-off plots for REPOFORMER-1B,
REPOFORMER-3B, STARCODERBASE-7B,

and STARCODER on the three tasks from Re-
poEval. We use self-selective RAG for the
REPOFORMER models and for STARCODER, we
use REPOFORMER-1B to make the selective RAG
decisions. The results are presented in fig. 11 to
fig. 14. Overall, we observe that no matter for
self-selective RAG or making selective predictions
for a larger model, REPOFORMER is able to
improve the accuracy and latency at the same time.
The improvement is more apparent in the line and
API completion tasks. For function completion,
as discussed in the main text, RepoEval uses very
small repositories to enable easy unit testing. As a
result, the retrieval overhead is low in general and
thus does not significantly affect the latency of the
entire RAG system.
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Figure 11: Latency-accuracy trade-off of self-selective RAG for REPOFORMER-1B.
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Figure 12: Latency-accuracy trade-off of self-selective RAG for REPOFORMER-3B.
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Figure 13: Latency-accuracy trade-off of selective RAG for STARCODERBASE-7B. REPOFORMER-1B is used for
the selective decisions.
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Figure 14: Latency-accuracy trade-off of selective RAG for STARCODER. REPOFORMER-1B is used for the
selective decisions.
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