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Abstract

Event sequence models have been found to be
highly effective in the analysis and prediction
of events. Building such models requires avail-
ability of abundant high-quality event sequence
data. In certain applications, however, clean
structured event sequences are not available,
and automated sequence extraction results in
data that is too noisy and incomplete. In this
work, we explore the use of Large Language
Models (LLMs) to generate event sequences
that can effectively be used for probabilistic
event model construction. This can be viewed
as a mechanism of distilling event sequence
knowledge from LLMs. Our approach relies
on a Knowledge Graph (KG) of event concepts
with partial causal relations to guide the gener-
ative language model for causal event sequence
generation. We show that our approach can
generate high-quality event sequences, filling a
knowledge gap in the input KG. Furthermore,
we explore how the generated sequences can
be leveraged to discover useful and more com-
plex structured knowledge from pattern mining
and probabilistic event models. We release our
sequence generation code and evaluation frame-
work, as well as corpus of event sequence data.

1 Introduction

Building probabilistic models from event sequence
data has numerous practical applications across dif-
ferent domains when plentiful high-quality event
data is available. For example, in Finance, event
models can be used to predict stock market trends
and make informed investment decisions. In
Healthcare, event models can help identify pat-
terns and correlations in patient data to improve
diagnoses and treatment plans. In the field of Cy-
bersecurity, these models can be used to detect and
prevent potential cyber attacks by analyzing the
sequence of events leading up to a breach. A com-
mon characteristic of the data in these domains is
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that sequences are clearly associated with an entity
(e.g., a company, a person, or a device). There are
however other domains where such a clean associ-
ation between events and entities may not be pos-
sible. One such application is news event analysis
(Cekinel and Karagoz, 2022; Du et al., 2022; Has-
sanzadeh et al., 2022; Radinsky et al., 2012). While
various news sources record and describe newswor-
thy events, it is often not possible to automatically
put together coherent sequences of events, because
each event may involve multiple topics and actors,
and many correlated and unrelated events may be
occurring simultaneously or in close proximity

Prior work has addressed this challenge by de-
vising automated mechanisms for extracting nar-
ratives (Norambuena et al., 2023; Santana et al.,
2023), topic detection and tracking (Allan, 2012),
and timeline summarization (Gholipour Ghalandari
and Ifrim, 2020). While these different categories
of solutions have been successful in a range of ap-
plications, the outcome is inherently noisy and not
in the form of structured event sequences useful for
the construction of event models.

Large Language Models (Brown et al., 2020;
Raffel et al., 2020; Wei et al., 2022) have recently
become the dominant paradigm in a range of natu-
ral language processing (NLP) tasks (Chung et al.,
2022) and often beat traditional approaches on a
number of challenging tasks, including complex
arithmetic reasoning (Imani et al., 2023) and open-
domain question answering (Kamalloo et al., 2023).
In this paper, our goal is to examine the capa-
bility of LLMs to generate structured event se-
quences useful for event analysis. Our hypoth-
esis is that LLMs trained on large corpora have
already gathered the required knowledge of plausi-
ble event sequences and therefore can be suitably
guided to produce diverse and high-quality event
sequences. To effectively distill this knowledge, we
use event-related concepts in Wikidata (Vrandečić
and Krötzsch, 2014), a comprehensive general-



domain knowledge graph, to guide the sequence
generation. This can be viewed as a novel mecha-
nism for knowledge-guided text generation (Yu
et al., 2022) and symbolic knowledge distilla-
tion (West et al., 2022). We then use these gen-
erated sequences for pattern mining and learning
probabilistic event models, as a way of further
structuring the underlying knowledge. Figure 1
shows our overall framework along with exam-
ples from our experiments of patterns mined from
an LLM-generated event sequence collection, as a
well as a simple model learned from the collection.

In summary, we make the following contribu-
tions:

1. We devise a new iterative in-context prompt-
ing strategy for generating high-quality event
sequences using LLMs. To the best of our
knowledge, we are the first to use LLMs to
generate structured event sequences for the
purpose of analyzing various event models.

2. We compile high-quality event sequences us-
ing our generation mechanism, based on a cu-
rated set of high-level event concepts (classes)
from Wikidata that represent newsworthy
events.

3. We develop an evaluation framework and
conduct experiments to show the value of
LLM-powered event sequence generation on
replicating and augmenting knowledge in
structured representations such as knowledge
graphs.

4. We further demonstrate the practical useful-
ness of our approach by leveraging down-
stream pattern mining and probabilistic event
models.

Our code and generated sequence data are in-
cluded in the supplementary material, and will be
made publicly available for future research.

2 Knowledge-Guided Event Sequence
Generation

Through utilizing LLMs, we model event predic-
tion as a conditional generation task under zero
and iterative few-shot settings. Our targets are lin-
earized sequences of event concepts. We begin by
prompting a large language model (with in-context
exemplars) with an event trigger y1 to generate
the next concept from a defined set of labels, and

repeat this process until we get a sequence of de-
sired length. Formally, given an event trigger T ,
we model the probability of generating linearized
string y of length T containing N unique event
concepts that follow T in sequence:

pLM(y|T ) =
T∏

t=2

p(yt|T , y<t−1) (1)

This is the standard conditional language mod-
eling objective. We try multiple prompting tech-
niques and qualitatively observe optimal results
with an iterative in-context few-shot prompting
strategy (Figure 2). Specifically, we start with a
set of six randomly selected examples of the form
– “What usually follows event X?”. This approach
follows the incremental prompting procedure from
(Li et al., 2023). Based on the model output (Y )
from a pre-specified vocabulary, we append this
same example to the original prompt in conjunc-
tion (i.e. “What usually follows event X and Y ?”)
with ICL examples of the same form. As shown
in Figure 2, our iterative technique serves dual pur-
poses: (i) it leverages in-context learning; and (ii)
eliminates the need for implementing complex re-
solvers to post-process model outputs. We repeat
this process until a sequence of a desired minimum
length m is achieved (in our experiments, m = 3)
or we’ve exhausted a maximum number of tries
(k = 10 in our experiments) to generate an in-
domain event type.

Identifying Event Concepts With incremental
prompting we curate a new dataset of high-level
event concepts (classes) from Wikidata that repre-
sent newsworthy events. To do so, we query Wiki-
data for event concepts that have links to Wikinews
articles and are instances of classes that are a sub-
class of the occurrence class, i.e., indicating they
are newsworthy event classes. We gathered 50
top-level classes for these event concepts, each hav-
ing multiple labels (e.g. conflict → conflict
(psychological), dispute, disagreement,
etc.). This yielded a total of 202 unique event
labels for the 50 top-level classes. Most of these
event concepts have some causal relations (i.e.
has_cause or has_effect). We use these relation
pairs as in-context exemplars to create our prompts.
We then generate event sequences through itera-
tive in-context prompting (Figure 2). Full length
prompts used in all our experiments are provided
in the Appendix.

To generate new event sequences in a zero-shot
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Figure 1: An overview of our framework for distilling event sequence knowledge from LLMs, along with examples
portraying potential use cases. We show that by (1) starting with a sparse knowledge graph such as Wikidata,
we can generate targeted event sequences. Owing to the inherent sparsity in the underlying KG, we can (2) use
LLMs to carry out a portion of the evaluation (i.e. precision) to select an optimal model. On this new generated
sequence dataset, we then (3) apply classical pattern-mining algorithms (e.g., GSP) to identify potentially interesting
has_cause and has_effect event sequence chains, and (4) learn summary Markov models (SuMMs) to identify
potential influencing events for particular event types of interest; these are both illustrations of extracting complex
structured knowledge from the generated sequences.

setting, we start with an event trigger (e.g. a con-
cept like workplace accident), create a prompt
with instructions describing desired relationships
and a few in-context exemplars (ICL prompt), and
constrained the model output to the original 50
event concept labels to generate the next event in
the sequence (full text of the prompt is provided
in the supplementary material). We append the
model output to another ICL prompt with conjunc-
tive event examples (i.e. questions of the form
“What happens after X, Y, and Z”). We repeat this
process until we reach a pre-defined maximum se-
quence length (in this case, 10) or until the model
fails to generate an in-vocabulary response in k
maximum attempts (in this case, k = 3). In this
process, we test the following two ablations –

Number of exemplars We varied the number of
in-context exemplars between 1-12. We evaluated
recall (i.e. proportion of references captured by
the resulting output sequences) for all generated
outputs in an automated way through matching
lexical alignment with Wikidata references. We
observed none to marginal improvements by vary-

ing the number of exemplars beyond 3 in the initial
trigger prompt, and beyond 5 in the second iterative
prompt.

Selection of specific exemplars Selecting in-
context examples is an incredibly noisy process
(Zhang et al., 2022). We started with a static set
of randomly selected examples, however owing to
Wikidata’s inherent label imbalance (political and
economic events dominate newsworthy concepts),
this led to erratic results, i.e. high recall on similar
concepts but not otherwise.

We then tested a dynamic selection method
where every instance of the prompt would contain
examples similar to target_label. To achieve
this, we used BERT embeddings (Devlin et al.,
2019) to retrieve (using cosine distance) examples
from the reference set. This approach however
led to a lower macro-recall and, upon manual in-
spection of outputs, we observed a high degree of
redundancy, i.e. generated outputs were copied
from the ICL exemplars.

To solve for these issues, we reverted to the static
prompt examples but manually selected a mix of
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Figure 2: Illustration of our approach to elicit event
sequence knowledge given a label of interest. Use of
instructional in-context exemplars substantially reduces
the need for post-processing LLM output in addition to
constraining the output label space.

event topics to be included in the prompt. Our cur-
rent selection of the prompt yields higher macro-
recall than both of the aforementioned techniques
tested. While we believe there may be better tech-
niques to select ideal candidates for ICL exemplars
(An et al., 2023; Agrawal et al., 2023) and under-
stand how their compositionality affects specific
outputs, we consider such an analysis to be beyond
the scope of our work.

We repeat this sequence generation procedure
on all 202 event concepts, generating 2, 276 event
sequences with an average length of 5.7 labels per
sequence.

3 Assessing the Quality of
LLM-Generated Event Sequences

Open-ended text generation in a task like event
sequencing, with extremely sparse reference data,
poses unique challenges to the evaluation of model
outputs (Wadhwa et al., 2023). The traditional
scheme to evaluate discrete model outputs has
been to calculate precision and recall for the gen-
erated outputs against a predefined reference test
set. However, under open-world settings and par-
ticularly when a sparse KG like Wikidata is used as
reference data, a missing causal relation between
two event classes in a sequence may very well be a

valid relation. Therefore, it is not possible to auto-
matically derive an accurate measure of precision
and recall purely using Wikidata as reference data.
We take a multi-pronged evaluation approach to
assess the quality and usefulness of the generated
event sequences across multiple tasks. This section
presents our approach in evaluating the quality of
generated event sequences, along with the results
of this evaluation. An evaluation of the usefulness
of the generated event sequences is presented in
Section 4.

3.1 Human Evaluation of Cause-Effect
Prediction Accuracy of LLMs

To quantify how well model outputs correlate
with human assessments, we first conduct a small-
scale human evaluation on a different, independent
event-commonsense reasoning dataset: ATOMIC
(Hwang et al., 2021). ATOMIC consists of event-
centered pairs of instances of the form IsAfter
(Y comes after X) and Causes (X causes Y). We
use these instances as input prompts to the model
and then ask human annotators to evaluate model
outputs. Specifically, we show human annotators
anonymized model outputs and true references and
elicit their preferences given a trigger event.

To generate outputs, we follow the same strat-
egy as above for a set of 200 randomly selected
event-centered input instances (100 each of the
type ‘X Causes Y ’ and ‘Y IsAfter X’)1. We
then present the model output and the true refer-
ence from ATOMIC to three human annotators.
For example, a typical instance presented to human
evaluators was of the form:

Input Instance: PersonX drops out of
high school
Response 1: PersonX gets a job
Response 2: PersonX turns PersonX’s life
around
Type: IsAfter

One of the responses above is the LLM output,
while the other is the true reference. The human
evaluators are then asked to answer the following
questions–

• Are both responses functionally similar?

• Which response do you prefer?

• Which response, if any, is completely irrele-
vant?

1Complete details about ATOMIC are available in Table 1
in (Hwang et al., 2021).



We find that in an overwhelming majority of the
cases, the models generate output that is semanti-
cally equivalent to the reference (even though there
is no direct lexical alignment), or output that the
humans prefer over the true reference. Based on the
responses from human evaluators2, we observe that
humans found 65.82% of response pairs function-
ally equivalent. That is, even though not lexically
aligned, they meant the same thing. In 27.64%
of the instances the humans preferred the model-
generated event instance over the true reference. In
only 6.55% of instances did the humans prefer the
true reference over the model-generated output.3

These results reinforce our underlying assertion
that LLMs are capable of event-centered reason-
ing, and therefore could produce high-quality event
sequence collections.

3.2 Evaluation of Recall

Despite the sparsity of causal relations in Wikidata,
one can still reasonably estimate recall through
pairwise comparisons of generated event classes
to the existing causal relations in Wikidata. We
build a reference set of causal relations in Wiki-
data by curating a list of all the pairs of event
concepts that have any of the several causal re-
lations4 in Wikidata in any direction, includ-
ing has_cause (P828), has_immediate_cause
(P1478), has_contributing_factor (P1479),
and has_effect(P1542).

3.3 Evaluation of Precision

To overcome sparsity in reference data, prior work
has generally relied on human evaluations (Chi-
ang and Lee, 2023) for estimating precision, which
entails looking at pairs of events and asking anno-
tators whether or not the events in question have a
causal relationship. Such a process for potentially
thousands of event pairs (like in our case) can be
very cost prohibitive. Furthermore, recent research
(Zhao et al., 2022; He et al., 2023; ?) indicates that
pre-trained language models themselves might out-
perform lay human annotators such as those found
on Amazon Mechanical Turk. For instance, (He
et al., 2023) demonstrated that labeling data under
a few-shot chain-of-thought prompt (“explain-then-

2We observe strong inter-rater agreement with a Fleiss
kappa, κ = 0.81; conflicting response labels were aggregated
through majority vote.

3Additional details on these experiments are available in
the supplementary material (Appendix).

4www.wikidata.org/wiki/Wikidata:List_of_
properties/causality

annotate” setting) surpasses crowdworker annota-
tions on relevance assessments. Following these
results, we use LLMs for evaluating precision and
for selecting the most optimal model. We propose
evaluating precision for model selection as a bi-
nary classification task. Given two events e1, e2, an
evaluator model must evaluate whether e1 reason-
ably leads to e2 under a has_cause or has_effect
relationship. To do this, we start with a large
instruction-tuned model (in our case, Flan-T5-XXL
(11B) (Chung et al., 2022)) and adopt instructional
in-context few shot prompting to classify whether
or not e1 reasonably leads to e2, and for the model
to provide a justification for its results. While we
hypothesize that such an approach may yield noisy
results, a small manual assessment as well as our
results comparing different models with different
evaluator models indicate that this approach yields
reliable results for comparing different models, and
a reasonable estimate of the overall precision of the
model.

3.4 Results
Table 1 summarizes our results from these experi-
ments. While prior work as proven the concept of
LLM-as-a-judge (?) when much larger LLMs like
GPT-4 are used, here we use less resource-intensive
LLMs not for evaluation of the absolute quality of
the generated sequences, but for comparison of the
relative performance of models

Since we use our models for dual purposes – for
generating and evaluating event sequences, owing
to this inherent conflict we find it prudent to inde-
pendently assess these evaluator models. To ensure
robustness of our results, we use multiple evaluator
models and find no significant difference between
evaluated precision across different models used
as evaluators with the largest model performing
marginally better as a precision evaluator.

4 Knowledge Distillation Through Event
Sequence Analysis

Given a high-quality collection of event sequences
generated by utilizing LLMs, we use pattern min-
ing to discover high-support sequence patterns not
directly derivable from the knowledge graph, and
learn probabilistic models to discover complex
event sequence rules.

4.1 Mining New Patterns
In order to derive new, unseen relationships
(has_cause or has_effect) between the ex-

www.wikidata.org/wiki/Wikidata:List_of_properties/causality
www.wikidata.org/wiki/Wikidata:List_of_properties/causality


Precision Evaluator Model (P) R F-1

Flan-T5-Large Flan-T5-XL Flan-T5-XXL

Flan-T5-Large (783M) (Chung et al., 2022) 0.73 0.72 0.72 0.47 0.57
Flan-T5-XL (3B) 0.75 0.75 0.78 0.49 0.60
Open-Research LLaMA (3B) (Touvron et al., 2023) 0.70 0.69 0.72 0.45 0.55
Flan-T5-XXL (11B) 0.79 0.79 0.81 0.54 0.65

Table 1: Evaluation of LLM-generated sequences. For the purpose of evaluating recall (R), we count event pairs
(e1, e2) if such a pair exists in Wikidata. For evaluating precision (P), we treat correctness of all generated event
pairs (e1, e2) as a standard classification task. Best-performing model scores are in bold.

Algorithm 1 Generalized Sequential Pattern (GSP)
Mining Algorithm
1: Input: Database of sequences D, minimum support

threshold min_sup
2: Output: Set of all sequential patterns SP
3: SP ← ∅
4: C1 ← set of all individual items in D that meet min_sup
5: L1 ← filter candidates in C1 by min_sup
6: k ← 2
7: while Lk−1 ̸= ∅ do
8: Ck ← generate_candidates(Lk−1)
9: for each sequence s ∈ D do

10: for each candidate c ∈ Ck do
11: if c is contained in s then
12: increment support count of c
13: end if
14: end for
15: end for
16: Lk ← filter candidates in Ck by min_sup
17: SP ← SP ∪ Lk

18: k ← k + 1
19: end while
20: return SP

tracted event classes, we use the generated event
sequence collection followed by classical frequent
itemset mining algorithms like GSP (Srikant and
Agrawal, 1996) and SPADE (Zaki, 2004) to derive
new high support patterns.

The classical pattern mining algorithms we use
to mine for new event patterns are both Apriori-
based approaches. Under both methods, given two
sequences of the same event concept class

α =< a1, a2, .., an > and β =< b1, b2, .., bn >
(2)

α is a subsequence of β denoted as α ⊆ β iff there
exists a set of values 1 ≤ j1 < j2 < ... < jn ≤ m
such that a1 ⊆ bj1, a2 ⊆ bj2, ..., an ⊆ bjn,; then
β is a supersequence of α. Given multiple such
sequences and a support threshold, the task here is
to find a set of frequent event subsequences. GSP is
depicted in Algorithm 1). SPADE uses a "vertical
database format", which stores sequences as lists
of itemsets associated with their IDs (referred to as
“id-lists"), which allows faster support counting.

4.1.1 Examples of Mined Patterns
Following are example outputs from application of
GSP on LLM outputs.

Mined Pattern Example 1
Pattern: Civil Disorder (Q686984) →
Democratization (Q1064441) → Energy
Crises (Q8413663) Support: 5

The pattern above occurs with a support value of 5
i.e. at least supported by 5 super-sequences. Em-
pirically, we can find support for such a pattern
in history.5 In 1994, the country of South Africa
democratized post civil disorder. This led to an in-
creased energy demand over the following decade,
eventually culminating in a full blown energy crises
starting 2003.

Mined Pattern Example 2
Pattern: Famine (Q168247) → Refugee
Crises (Q20898283) → Post Traumatic
Stress Disorder(Q202387)
Support: 5

The pattern above again occurs with a support value
of 5 i.e. at least supported by 5 super-sequences.
Similar to the previous example, evidence support-
ing such an event tranisiton can be found in real
life.6 During the Great Irish Famine people were
forced to relocate and flee Ireland causing a refugee
crises. A great number of these individuals suffered
from mental health crises (e.g. PTSD) due to the
events directly associated with the famine.

4.2 Identifying Influencing Sets through
Summary Markov Models

Learning about potential influencing events that
lead to a given event type in a large set of event
sequences is an important aspect of analyzing mul-
tivariate event sequences, i.e. events without time

5wikipedia.org/wiki/South_African_energy_
crisis

6wikipedia.org/wiki/Great_Famine_(Ireland)

wikipedia.org/wiki/South_African_energy_crisis
wikipedia.org/wiki/South_African_energy_crisis
wikipedia.org/wiki/Great_Famine_(Ireland)


stamps, like the ones generated by our models.
Classic kth order Markov chains capture these
dynamics by modeling the probability of observ-
ing a particular event type given the preceding k
events in-sequence. The recent family of summary
Markov models (SuMMs) (Bhattacharjya et al.,
2022) generalize other well known Markov mod-
els for event sequences by leveraging a function
that summarizes historical event occurrences, and
identifying the subset of event types that affect the
probability of occurrence of event types of interest;
this forms the influencing set.

We use the LLM-generated sequences to learn
two types of SuMMs: binary SuMMs (BSuMMs)
and ordinal SuMMs (OSuMMs). In BSuMMs, it
is only the presence or absence of an event in the
relevant history that has an effect on the occurrence
of other events, while in OSuMMs the order of
the events is also taken into account. We refer
the reader to Sections 3.3 and 3.4 in (Bhattachar-
jya et al., 2022) for complete formal definitions
and methods for learning SuMMs over event se-
quence collections. Briefly, given a subset of event
labels of interest X ∈ L and a set of parameters
ΘX = {θx|h}, where θx|h is the probability of a
given event label x ∈ X occurring at any position
in the sequence given the historical event occur-
rences h, influencing and non-influencing event
sets can be formally defined as label sets U = L\
U are influencing sets for event labels X such that
they minimally determine the probability of observ-
ing any particular label of interest xi for a given
position i in the sequence.

4.2.1 Evaluation: SuMMs vs LSTMs

Following the evaluation strategy implemented in
(Bhattacharjya et al., 2022), we focus on individ-
ual labels of interest and conduct an evaluation
around probabilistic prediction. Consequently, we
select negative log loss as the evaluation metric.
Table 2 summarizes our results on the test set for
both BSuMMs and OSuMMs, along with a simple
LSTM baseline. We observe that models trained
on event sequences generated from larger models
(e.g. Flan-T5-XXL) fare better than the ones gen-
erated from their smaller counterparts (e.g. Flan-
T5-Large). We treat this observation as a proxy for
generated event sequence quality. That is, better
quality sequences lead to better predictive models.

4.2.2 Qualitative Assessment
Figure 1 shows examples of learned influencing
sets using BSuMMs for refugee crisis and mass
migration events. Two events mass migration
and famine are identified as influencing events
for refugee crisis. The model indicates that
the occurrence of both mass migration and
famine together has a 0.91 probability of result-
ing in refugee crisis as a part of a sequence
of events. On the other hand the occurrence of
mass migration in the absence of famine has a
0.31 probability of resulting in refugee crisis.
BSuMMs and OSuMMs deploy a greedy score-
based forward and backward search strategy to effi-
ciently discover the minimal influencing sets. Over-
all, the discovery of influencing sets from LLM-
generated data provides a mechanism of distilling
complex symbolic knowledge from the output of
LLMs.

We provide two more examples below of influ-
encing sets derived from the application of SuMMs.
For each example, we show evidence supporting
the accuracy of the extracted knowledge.

Influencing Set Example 1 The following exam-
ple identifies “Hate Crimes” as a predecessor to the
occurrence of “Civil Disorder” related events.
X: Civil Disorder (Q686984)
Parent: Hate Crime (Q459409)

• P (Civil Disorder|NO Hate Crime) = 0.12

• P (Civil Disorder|Hate Crime) = 0.55

In the example above, we see that the likelihood
of a civil disorder is greatly influenced by the oc-
currence of a hate crime.

Influencing Set Example 2 The following ex-
ample identifies “Disease Outbreaks” and “Lock-
downs” as precursors to the institution of “Travel
Restrictions”.
X:Travel Restriction (Q87745167)
Parents: Disease Outbreak (Q3241045),
Lockdown (Q6665312)

• P (TR|NO Outbreak, NO Lockdown) = 0.0.0001

• P (TR|Lockdown, NO Outbreak) = 0.0.29

• P (TR|NO Lockdown, Outbreak) = 0.26

Quite intuitively, we see here the likelihood of
Travel Restrictions directly correlate with the insti-
tution of Disease Outbreaks and Lockdowns (since
the latter have been lately associated with the for-
mer).



(↓) Data Generator Model BSuMMs OSuMMs LSTM

Flan-T5-Large (783M) (Chung et al., 2022) -63.49 -84.29 -109.28
Flan-T5-XL (3B) -63.20 -92.65 -121.23
Open-Research LLaMA (3B) (Touvron et al., 2023) -110.57 -101.29 -190.68
Flan-T5-XXL (11B) -57.99 -78.64 -108.89

Table 2: Negative log likelihood (lower magnitude is better) averaged over interest labels from LLM-generated
(Flan-T5-XXL) event sequences. Lookback window (k) for LSTM was fixed to 5. Best-performing data generator
model scores are in bold.

5 Related Work

News Event Analysis The primary applications
of our work are around news event analysis and
forecasting. Liang (Zhao, 2021) presents a taxon-
omy of different flavors of event prediction in the
literature. Our target event prediction applications
fall under the “Semantic Prediction" category, with
time and location details not being of interest, and
the primary goal being the prediction of “event pro-
files" such as event types. Seminal work in this
area is the work of Radinsky et al. (Radinsky et al.,
2012) where causal relations between past events
are extracted from text and then a knowledge graph
is utilized to generalize the extracted relations in
order to make predictions. More recent work has
explored the use of graph sequence mining over a
graph structure representation of events extracted
from text (Cekinel and Karagoz, 2022), with graph
mining used as a mechanism of extracting useful
relations from large and noisy outputs of extraction.

Event Sequence Extraction from Text There
is a wealth of literature on different methods of
extracting sequences from textual corpora. Noram-
buena et al. (Norambuena et al., 2023) present a
comprehensive survey of automated methods of
narrative extraction. Narratives contain several ele-
ments including events, participants (actors/protag-
onists), time, and space. The task of event detection
is highly challenging and the topic of extensive re-
search (Chen et al., 2021; Xiang and Wang, 2019;
Li et al., 2020), which has its root in the Topic
Detection and Tracking (TDT) task (Santana et al.,
2023). This line of work started out as a DARPA-
sponsored initiative with the same name (Allan
et al., 1998). Another closely related task is news
timeline summarization (Gholipour Ghalandari and
Ifrim, 2020). While pattern mining algorithms have
been applied to the output of such extractions, e.g.
for creation of “domain templates" (Filatova et al.,
2006), we are not aware of any attempts to use the
extractions to construct event models for analysis

or prediction.

Sequential Pattern Mining and Event Sequence
Models Sequential pattern mining and related
approaches have been the subject of exten-
sive research (Mannila et al., 1997; Mabroukeh
and Ezeife, 2010; Mooney and Roddick, 2013;
Fournier-Viger et al., 2017). These algorithms
take in a set of sequences (or “sequential records")
with a set of unique events (or “items") and of-
ten a “minimum support" threshold, and return as
output a ranked set of all frequent sequences in a
given sequence collection (or database) meeting
the minimum support threshold. Our focus in this
paper is on multivariate event sequences, i.e., se-
quences of various event types without timestamps.
Markov models for sequences (Raftery, 1985; Be-
gleiter et al., 2004) and long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) mod-
els are examples of prediction models. We leverage
a more recent family of models – SUMMs (Bhat-
tacharjya et al., 2022) – for some of the experiments
in this paper that involve analyzing generated se-
quences.

6 Conclusions

In this paper, we presented methods of distilling
event sequence knowledge from large language
models. This work demonstrates the utility of large
language models for extracting event-related infor-
mation and helps researchers better navigate the
complex interaction between event-related entities.
While we have demonstrated some use-cases for
the resulting dataset of event sequences – mining
logical rules/patterns and extracting influencing
event types – the resulting datasets in this work
and those from other domains could themselves
be a useful resource for researchers, as one may
leverage them suitably to inform or justify decision-
making. We make our code and datasets publicly
available for future research.



Limitations

We have proposed new methods of generating event
sequences and establishing associations between
the events. This work has several important limi-
tations, and subsequently, opportunities for future
work.

Limited Data First, we considered a dataset
(Wikidata) of only newsworthy event concepts –
and consequently generated sequences of the same
type. Such generic concepts often appear in the
pretraining datasets of large language models. We
did not consider more complex, domain-specific
datasets of non-timestamped events (e.g. Health-
care, Finance). Applying LLMs to generate domain
specific events may require considerable amounts
of data to fine-tune these models, and collecting
such supervision to train these models at scale may
be prohibitively expensive. We leave such analysis
for future work.

Noisy Evaluation Second, a key element of our
evaluation strategy (precision) involves the use of
the same language models that were used to gener-
ate the sequences being evaluated in the first place.
Through qualitative examples and past research on
using LLMs as annotators, we observe that such a
strategy yields a noisy but useful signal on evaluat-
ing model performance. However, an ideal and ac-
curate evaluation of model outputs should involve
use of human annotators. We also do not attempt to
evaluate the correctness of post-hoc explanations
generated by models for their corresponding output
during precision evaluation.

Use of Even Larger Models Third, a method-
ological limitation of our work is that we did not
experiment with GPT-∗ models (OpenAI, 2023).
We could use OpenAI’s API for the task we’ve pro-
posed, which might yield improved results. How-
ever, our primary goal was to frame this task as a
language modeling problem; the specific choice of
an underlying LLM is a secondary consideration.
Further, opting for open-source models ensures
transparency allowing us to release the necessary
code and other details for reproducibility.

English-Only Experiments Finally, we only
conducted experiments with data in English and
therefore, we do not know what issues may occur
replicating our work with data in other languages.

Ethical Considerations

We believe our work has potential applications
that can significantly contribute to human well be-
ing through the development of probabilistic event
models on real-world data. Realizing these poten-
tial applications, however, raises concerns about
how such models may be used to influence policy
decisions and broader viewpoints of those interpret-
ing the data being generated. In light of these ethi-
cal considerations, we emphasize that any resulting
event models created through the use of model-
generated data should be thoroughly evaluated by
humans, including a comprehensive evaluation of
the generated data itself to adjust for risk of bias
and its resulting effects.
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Appendix

This section constitutes technical appendix (i.e.
supplementary material) for the submission titled
“Distilling Event Sequences from Large Language
Models”.

A Experimental Settings

We performed all our model inference related ex-
periments on two NVIDIA V100 GPUs. We used
the Huggingface library v4.26.1 (Wolf et al., 2020)
and publicly available model checkpoints.7 Classi-
cal pattern mining algorithms (GSP, SPADE) were
implemented in Python through the use of spmf8

library v1.4. For event sequence generation, we
use in-context learning under zero shot settings
for all LLMs, with top-k sampling (k = 50, in
conjunction with top-p, where p = 0.95). To
identify influencing events from Summary Markov
Models (SuMMs), we use implementations from
(Bhattacharjya et al., 2022) and split the dataset
(generated from LLMs) into train/dev/test sets
(70%/15%/15%) to generate results reported in
Table 2. BSuMMs and OSuMMs were learned
with hyperparameters of α = 0.1, γ = 0.5 and a
look-back (κ) window of 4.

B Supplemental Material Statement

Our supplementary material (included as a zip file
in our submission) includes code and the prompts
used for event sequence generation and benchmark-
ing, as well as the base KG, and sample output files.
README.md has all the details.

C Event Sequence Prompts

We now describe the specific prompt-types used
(including pseudo-code for their use) to generate
event sequences given individual Wikidata event
concepts. We start a Wikidata event concept
label and feed it into the following prompt with
3 ICL exemplars. The prompt also includes a
label space of other Wikidata concepts from
which we i nstruct the model to choose a concept.
In case of an out-of-domain generated output
(≈ 15% of total outputs), we discard those outputs.

1 def build_prompt1(vocab , target_label):

7huggingface.co/docs/transformers/model_doc/
flan-t5

8pypi.org/project/spmf/

2 prompt = "Use the following
vocabulary to respond to the
questions: " + \

3 f"{’ ’.join(label_space)}\n"
+ \

4 f"Question: what usually
happens after earthquake ?\n" +\

5 f"Answer: tsunami\n" + \
6

7 f"Question: what usually
happens after economic crises ?\n" +\

8 f"Answer: unemployment\n" + \
9

10 f"Question: what usually
happens after bomb attack ?\n" +\

11 f"Answer: injury\n" + \
12

13 f"Question: what usually
happens after {target_label }?\n" +\

14 f"Answer:"
15

16 return prompt

Listing 1: Initial Trigger Prompt

Following the output from the above prompt
trigger, we feed the in-domain outputs to the
following ICL iterative prompt with conjunctive
event exemplars (i.e. X and Y). We then succes-
sively use this prompt by feeding model generated
outputs as new event concepts. Restricting
the generated vocabulary to existing Wikidata
concepts allows for a reasonable recall evaluation
even from a sparse reference set. We illus-
trate this approach in Figure 2 in the main paper.

1 def build_prompt2(vocab , target_labels):
2

3 prompt = "Use the following
vocabulary to respond to the
questions: " + \

4 f"{’ ’.join(label_space)}\n"
+ \

5 f"Question: what usually
happens after earthquake ?\n" +\

6 f"Answer: tsunami\n" + \
7

8 f"Question: what usually
happens after earthquake and tsunami
?\n" +\

9 f"Answer: nuclear disaster\n"
+ \

10

11 f"Question: what usually
happens after economic crises and
wage decline and unemployment ?\n" +\

12 f"Answer: legislation\n" + \
13

14 f"Question: what usually
happens after military conflict ?\n"
+\

15 f"Answer: war\n" + \
16

17 f"Question: what usually
happens after military conflict and
war?\n" +\

huggingface.co/docs/transformers/model_doc/flan-t5
huggingface.co/docs/transformers/model_doc/flan-t5


18 f"Answer: peace treaty\n" + \
19

20 f"Question: what usually
happens after {’ and ’.join(
target_labels)}?\n" +\

21 f"Answer:"
22

23 return prompt

Listing 2: Iterative ICL Prompt with Conjunctive
Examples

D Evaluator Models (Example Outputs
and Prompts)

For a model generated event sequence
α = a1, a2, .., an, we consider all possible pairs
of events (ai, ai+1) as (trigger, consequence)
pairs where a0 is the initial trigger sequence
and i ∈ 1, .., n are all events generated by the
model that follow a0. Then we use the follow-
ing prompt to evaluate correctness of all such
possible pairs and use this as proxy for a true
precision evaluation of the generated sequences.

1 def build_precision_eval(trigger ,
consequence):

2 prompt = "Respond to the questions
below with a (YES/NO) with a
historical example:" + \

3 f"Question: Can economic
crises cause a landslide ?\n" +\

4 f"Answer: NO. There is no
historical example of an economic
crisis causing a landslide , which is
natural disaster .\n" + \

5 f"Question: Can earthquake
cause a tsunami ?\n" +\

6 f"Answer: YES. In 2011,
Japan experienced an earthquake in
tohoku that caused a tsunami. \n" +
\

7 f"Question: Can mass
shooting cause a condensation cloud
?\n" +\

8 f"Answer: NO. A condensation
cloud is a weather phenomenon , not

a mass shooting .\n" + \
9 f"Question: Can accident

cause a stock market crash?\n" +\
10 f"Answer: NO. The stock

market crash of 1929 was caused by a
series of events , not an accident .\

n" + \
11 f"Question: Can disease

outbreak cause a inventory shrinkage
?\n" +\

12 f"Answer: YES. The bubonic
plague outbreak in Europe in 1348
caused a massive inventory shrinkage
.\n" + \

13 f"Question: Can fraud cause
a travel ban?\n" +\

14 f"Answer: YES. Travel bans
are a form of punishment for

immigration fraud.\n" + \
15 f"Question: Can {trigger}

cause a {consequence }?\n" + "Answer:
"

16 return prompt

Listing 3: Prompt used to evaluate correctness of a given
event pair

As mentioned in the limitations section, a key
shortcoming of our approach here is that we do not
evaluate the correctness of the post-hoc explana-
tions generated by the model for it’s classification
label. We leave that analysis for future work.

E ATOMIC Human Evaluations

Amazon Mechanical Turk (AMT) is a platform
for non-expert works to perform microtasks, in
our case – human annotations. Three authors with
graduate degrees in computer science carried out
these human evaluations. Figure 3 shows the in-
terface provided to these human annotators. The
human evaluators were asked to answer the follow-
ing questions–

• Are both responses functionally similar?

• Which response do you prefer?

• Which response, if any, is completely irrele-
vant?

Functionally Similar Responses For responses
to be functionally similar, they must convey the
same meaning even if there is major lexical mis-
match between the actual tokens.

Human Preferences The preferences elicited
here are based on a humans degree of reasonable-
ness given an event trigger. We observed a high
Fleiss κ = 0.81 indiciating a high degree of agree-
ment between the annotators.

Irrelevant Responses Here, again the annotators
were asked to exercise judgment in what they may
find a completely unreasonable response to a given
event trigger.

We release the results from these human anno-
tations for a comprehensive analysis and any addi-
tional findings that readers may infer.



Figure 3: Annotation interface for classifying model generated response vs reference (anonymized) for the ATOMIC
event descriptions.
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