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ABSTRACT
Information extraction, e.g., attribute value extraction, has been ex-
tensively studied and formulated based only on text. However, many
attributes can benefit from image-based extraction, like color, shape,
pattern, among others. The visual modality has long been underuti-
lized, mainly due to multimodal annotation difficulty. In this paper,
we aim to patch the visual modality to the textual-established at-
tribute information extractor. The cross-modality integration faces
several unique challenges: (C1) images and textual descriptions are
loosely paired intra-sample and inter-samples; (C2) images usu-
ally contain rich backgrounds that can mislead the prediction; (C3)
weakly supervised labels from textual-established extractors are
biased for multimodal training. We present PV2TEA, an encoder-
decoder architecture equipped with three bias reduction schemes:
(S1) Augmented label-smoothed contrast to improve the cross-modality
alignment for loosely-paired image and text; (S2) Attention-pruning
that adaptively distinguishes the visual foreground; (S3) Two-level
neighborhood regularization that mitigates the label textual bias via
reliability estimation. Empirical results on real-world e-Commerce
datasets demonstrate up to 11.74% absolute (20.97% relatively) F1
increase over unimodal baselines.
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Textual Descriptions: “Best Price Mattress 12 Inch 
Memory Foam Mattress, Calming Green Tea-Infused
Foam, Pressure Relieving, Bed-in-a-Box, Queen”
Question: What is the color of the mattress?
Training Label: green True Value: whiteProduct Image

⋯Challenge Explanations:
C1 Loosely-aligned product image and textual descriptions:
• intra-sample: weakly related across modalities and difficult to ground;
• inter-samples: images of other products can also pair with the text
C2 Visual bias: noisy contextual backgrounds, e.g., pillow, bed frame, etc.
C3 Textual bias: the training label is misled/biased by ‘green tea’ in text

Figure 1: Illustration of multimodal attribute extraction and the
challenges in cross-modality integration.

1 INTRODUCTION
Information extraction, e.g., attribute value extraction, aims to ex-
tract structured knowledge triples, i.e., (sample_id, attribute, value),
from the unstructured information. As shown in Figure 1, the in-
puts include text descriptions and images (optional) along with the
queried attribute, and the output is the extracted value. In prac-
tice, textual description has played as the main or only input in
mainstream approaches for automatic attribute value extraction
[6, 12, 27, 31, 32, 36]. Such models perform well when the pre-
diction targets are inferrable from the text.

As the datasets evolve, interest in incorporating visual modality
naturally arises, especially for image-driven attributes, e.g., Color,
Pattern, Item Shape. Such extraction tasks rely heavily on visual
information to obtain the correct attribute values. The complemen-
tary information contained in the images can improve recall in cases
where the target values are not mentioned in the texts. In the mean-
time, the cross-modality information can help with ambiguous cases
and improve precision.

However, extending a single-modality task to multi-modality can
be very challenging, especially due to the lack of annotations in
the new modality. Performing accurate labeling based on multiple
modalities requires the annotator to refer to multiple information
resources, leading to a high cost of human labor. Although there are
some initial explorations on multimodal attribute value extraction [4,
18, 37], all of them are fully supervised and overlook the resource-
constrained setting of building a multimodal attribute extraction
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framework based on the previous textual-established models. In
this paper, we aim to patch the visual modality to attribute value
extraction by leveraging textual-based models for weak supervision,
thus reducing the manual labeling effort.
Challenges. Several unique challenges exist in visual modality patch-
ing: C1. Images and their textual descriptions are usually loosely
aligned in two aspects: From the intra-sample aspect, they are usu-
ally weakly related considering the rich characteristics, making it
difficult to ground the language fragments to the corresponding im-
age regions; From the inter-samples aspect, it is commonly observed
that the text description of one sample may also partially match the
image of another. As illustrated in Figure 1, the textual description of
the mattress product is fragmented and can also correspond to other
images in the training data. Therefore, traditional training objectives
for multimodal learning such as binary matching [13] or contrastive
loss [23] that only treat the text and image of the same sample as
positive pairs may not be appropriate. C2. Bias can be brought by
the visual input from the noisy contextual background. The images
usually not only contain the interested object itself but also demon-
strate a complex background scene. Although the backgrounds are
helpful for scene understanding, they may also introduce spurious
correlation in a fine-grained task such as attribute value extraction,
which leads to imprecise prediction [11, 30]. C3. Bias also exists in
language perspective regarding the biased weak labels from textual-
based models. As illustrated in Figure 1, the color label of mattress
is misled by ‘green tea infused’ in the text. These noisy labels can
be more catastrophic for a multimodal model due to their incorrect
grounding in images. Directly training the model with these biased
labels can lead to gaps between modalities [33].
Solutions. We propose PV2TEA, a sequence-to-sequence backbone
composed of three modules: visual encoding, cross-modality fu-
sion and grounding, and attribute value generation, each with a
bias-reduction scheme dedicated to the above challenges: S1. To
better integrate the loosely-aligned texts and images, we design an
augmented label-smoothed contrast schema for cross-modality fu-
sion and grounding, which considers both the intra-sample weak
correlation and the inter-sample potential alignment, encouraging
knowledge transfer from the strong textual modality to the weak
visual one. S2. During the visual encoding, we equip PV2TEA with
an attention-pruning mechanism that adaptively distinguishes the
distracting background and attends to the most relevant regions
given the entire input image, aiming to improve precision in the fine-
grained task of attribute extraction. S3. To mitigate the bias from
textual-biased weak labels, a two-level neighborhood regularization
based on visual features and previous predictions, is designed to em-
phasize trustworthy training samples while mitigating the influence
of textual-biased labels. In this way, the model learns to generate
more balanced results rather than being dominated by one modality
of information. In summary, our main contributions are three-fold:
• We propose PV2TEA, an encoder-decoder framework effectively

patching up visual modality to textual-established attribute value
extraction.

• We identify three unique challenges in patching visual modality for
information extraction, with solutions for intra-sample and inter-
samples loose alignment and bias from complex visual background
and textual-biased labels.

Figure 2: Source-aware evaluation of existing unimodal and
multimodal models on the textual-biased issue.

• We release three human-annotated datasets with modality source
labels of the gold values to facilitate fine-grained evaluation. Ex-
tensive results validate the effectiveness of PV2TEA.

2 PRELIMINARIES
2.1 Problem Definition
We consider the task of automatic attribute extraction from mul-
timodal input, i.e., textual descriptions and images. Formally, the
input is a query attribute ℛ and a text-image pairs dataset 𝒟 =
{𝒳𝑛}𝑁𝑛=1 = {(ℐ𝑛,𝒯𝑛, 𝑐𝑛)}𝑁𝑛=1 consisting of 𝑁 samples (e.g., prod-
ucts), where ℐ𝑛 represents the profile image of 𝒳𝑛 , 𝒯𝑛 represents
the textual description and 𝑐𝑛 is the sample category (e.g., product
type). The model is expected to infer attribute value 𝑦𝑛 of the query
attribute ℛ for sample 𝒳𝑛 . We consider the challenging setting with
open-vocabulary attributes, where the number of candidate values is
extensive and 𝑦𝑛 can contain either single or multiple values.

2.2 Motivating Analysis on the Textual Bias of
Attribute Information Extraction

Existing textual-based models or multimodal models directly trained
with weak labels suffer from a strong bias toward the texts. As il-
lustrated in Figure 1, the training label for the color attribute of the
mattress is misled by ‘green tea infused’ from the textual profile.
Models trained with such textual-shifted labels will result in a learn-
ing ability gap between modalities, where the model learns better
from the textual than the visual modality. To quantitatively study the
learning bias, we conduct fine-grained source-aware evaluations on
a real-world e-Commerce dataset with representative unimodal and
multimodal methods, namely OpenTag [36] with the classification
setup and PAM [18]. Specifically, for each sample in the test set, we
collect the source of the gold value (i.e., text or image). Experiment
results are shown in Figure 2, where label Source: Text indicates the
gold value is present in the text, while label Source: Image indicates
the gold value is absent from the text and must be inferred from
the image. It is shown that both the text-based unimodal extractor
and multimodal extractor achieve impressive results when the gold
value is contained in the text. However, when the gold value is not
contained in the text and must be derived from visual input, the
performance of all three metrics drops dramatically, indicating a
strong textual bias and dependence of existing models.
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Figure 3: The overview of PV2TEA model architecture with three modules, where each of them is equipped with a bias reduction
scheme corresponding to the discussed challenges in Figure 1.

3 PV2TEA
We present the backbone architecture and three bias reduction de-
signs of PV2TEA, shown in Figure 3. The backbone is formulated
based on visual question answering (VQA) composed of three mod-
ules:
(1) Visual Encoding. We adopt the Vision Transformer (ViT) [8]
as the visual encoder. The given product image ℐ𝑛 is divided into
patches and featured as a sequence of tokens, with a special token
[CLS-I]appended at the head of the sequence, whose representa-
tion 𝒗cls

𝑛 stands for the whole input image ℐ𝑛 .
(2) Cross-Modality Fusion and Grounding. Following the VQA
paradigm, we define the question prompt as “What is the ℛ of the
𝑐𝑛?", with a special token [CLS-Q] appended at the beginning. A
unimodal BERT [5] encoder is adopted to produce token-wise textual
representation from product profiles (title, bullets, and descriptions).
The visual representations of P image patches 𝒗𝑛 = [𝒗cls

𝑛 , 𝒗1𝑛, . . . , 𝒗
P
𝑛]

are concatenated with the textual representation of T tokens 𝒕𝑛 =
[𝒕cls
𝑛 , 𝒕1𝑛, . . . , 𝒕

T
𝑛 ], which is further used to perform cross-modality fu-

sion and grounding with the question prompt through cross-attention.
The output 𝒒𝑛 = [𝒒cls

𝑛 , 𝒒1𝑛, . . . , 𝒒
Q
𝑛 ] is then used as the grounded rep-

resentation for the answer decoder.
(3) Attribute Value Generation. We follow the design from [15],
where each block of the decoder is composed of a causal self-
attention layer, a cross-attention layer, and a feed-forward network.
The decoder takes the grounded multimodal representation as input
and predicts the attribute value 𝑦𝑛 in a generative manner2.
Training Objectives. The overall training objective of PV2TEA is
formulated as

ℒ = ℒsc + ℒpt + ℒr-mlm, (1)

where the three loss terms, namely augmented label-smoothed con-
trastive loss ℒsc (Section 3.1), product type aware ViT loss ℒpt

2We compared the settings of generation and classification for the attribute value
extractor. See results in Section 5.2.

(Section 3.2), and neighborhood-regularized mask language mod-
eling loss ℒr-mlm (Section 3.3) correspond to each of the three
prementioned modules respectively.

3.1 Augmented Label-Smoothed Contrast for
Multi-modality Loose Alignment (S1)

Contrastive objectives have been proven effective in multimodal
pre-training [23] by minimizing the representation distance between
different modalities of the same data point while keeping those of
different samples away. However, for product attribute extraction,
the image and textual descriptions of products are typically loosely
aligned from two perspectives: (1) Intra-sample weak alignment:
The product description usually does not form a coherent and com-
plete sentence, but a set of semantic fragments describing multiple
facets of the product. Thus, grounding the language to corresponding
visual regions is difficult. (2) Potential inter-samples alignment: Due
to the commonality of products, the textual description of one prod-
uct may also correspond to the image of another. Thus, traditional
binary matching and contrastive objectives become suboptimal for
these loosely-aligned texts and images.

To handle the looseness of product images and texts, we augment
the contrast to include sample comparison outside the batch with
two queues storing the most recent 𝑀 (𝑀 ≫ batch size 𝐵 ) visual
and textual representations, inspired by the momentum contrast in
MoCo [9] and ALBEF [16]. For the intra-sample weak alignment
of each given sample 𝒳𝑛 , instead of using the one-hot pairing label
p𝑖2𝑡𝑛 , we smooth the pairing target with the pseudo-similarity q𝑖2𝑡𝑛 ,

p̃𝑖2𝑡𝑛 = (1 − 𝛼 )p𝑖2𝑡𝑛 + 𝛼q𝑖2𝑡𝑛 , (2)

where 𝛼 is a hyper-parameter and q𝑖2𝑡𝑛 is calculated by softmax over
the representation multiplication of the [CLS] tokens, 𝒗

′cls
𝑛 and

𝒕
′cls
𝑛 , from momentum unimodal encoders ℱ ′

𝑣 and ℱ ′
𝑡 ,

q𝑖2𝑡𝑛 = 𝜎
(
ℱ ′

𝑣 (ℐ𝑛 )⊤ℱ ′
𝑡 (𝒯𝑛 )

)
= 𝜎

(
𝒗
′cls
𝑛

⊤
𝒕
′cls
𝑛

)
. (3)
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For potential inter-samples product pairing relations, the visual
representation 𝒗

′cls
𝑛 is compared with all textual representations 𝑻 ′

in the queue to augment contrastive loss. Formally, the predicted
image-to-text matching probability of 𝒳𝑛 is

d𝑖2𝑡𝑛 =
exp

(
𝒗
′cls
𝑛

⊤
𝑻 ′
𝑚/𝜏

)
∑𝑀
𝑚=1 exp

(
𝒗
′cls
𝑛

⊤
𝑻 ′
𝑚/𝜏

) . (4)

With the smoothed targets from Equation (2), the image-to-text
contrastive loss 𝐿𝑖2𝑡 is calculated as the cross-entropy between the
smoothed targets p̃𝑖2𝑡𝑛 and contrast-augmented predictions d𝑖2𝑡𝑛 ,

𝐿𝑖2𝑡 = − 1
𝑁

(
𝑁∑︁
𝑛=1

p̃𝑖2𝑡𝑛 · log
(
d𝑖2𝑡𝑛

))
, (5)

and vise versa for the text-to-image contrastive loss 𝐿𝑡2𝑖 . Finally,
the augmented label-smoothed contrastive loss 𝐿sc is the average of
these two terms,

𝐿sc = (𝐿𝑖2𝑡 + 𝐿𝑡2𝑖 ) /2. (6)

3.2 Visual Attention Pruning (S2)
Product images on e-Commerce services usually contain not only the
product itself but also rich background contexts. Although previous
studies indicate context can serve as an effective cue for visual under-
standing [7, 30, 35], it has been found that the output of ViT is often
based on supportive signals in the background rather than the actual
object [2]. Especially in a fine-grained task such as product attribute
value extraction, the associated backgrounds could distract the visual
model and harm the prediction precision. For example, when predict-
ing the color of birthday balloons, commonly co-occurring contexts
such as flowers could mislead the model and result in wrongly pre-
dicted values.

To encourage the ViT encoder ℱ focus on task-relevant fore-
grounds given the input image ℐ𝑛 , we add a product type aware
attention pruning schema, supervised with product type classifica-
tion,

𝐿pt = − 1
𝑁

(
𝑁∑︁
𝑛=1

𝑐𝑛 · log (ℱ (ℐ𝑛 ))
)
. (7)

The learned attention mask 𝑴 in ViT can gradually resemble the
product boundary and distinguishes the most important task-related
regions from backgrounds by assigning different attention weights to
the image patches [24]. The learned 𝑴 is then applied on the visual
representation sequences 𝒗𝑛 of the whole image,

𝒗
𝑝𝑡
𝑛 = 𝒗𝑛 ⊙ 𝜎(𝑴), (8)

to screen out noisy background and task-irrelevant patches before
concatenating with the textual representation 𝒕𝑛 for further cross-
modal grounding.

3.3 Two-level Neighborhood-regularized Sample
Weight Adjustment (S3)

Weak labels from established models can be noisy and biased to-
ward the textual input. Directly training the models with these labels
leads to a learning gap across modalities. Prior work on self-training
shows that embedding similarity can help to mitigate the label errors
issue [14, 38]. Inspired by this line of work, we design a two-level
neighborhood-regularized sample weight adjustment. In each itera-
tion, sample weight 𝑠 (𝒳𝑛) is updated based on its label reliability,

which is then applied to the training objective of attribute value
generation in the next iteration,

ℒr-mlm = − 1
𝑁

(
𝑁∑︁
𝑛=1

𝑠 (𝒳𝑛 ) · 𝑔 (𝑦𝑛, �̂�𝑛 )
)
, (9)

where 𝑔 measures the element-wise cross entropy between the train-
ing label𝑦𝑛 and the prediction𝑦𝑛 . As illustrated by the right example
in Figure 33, where green arrows point to samples with the same
training label as 𝑦𝑛 , and red arrows point to either visual or predic-
tion neighbors, a higher consistency between the two sets indicates
a higher reliability of 𝑦𝑛 , formally explained as below:
(1) Visual Neighbor Regularization. The first level of regulariza-
tion is based on the consistency between the sample set with the
same training label 𝑦𝑛 and visual feature neighbors of 𝒳𝑛 . For each
sample 𝒳𝑛 with visual representation 𝒗𝑛 , we adopt the 𝐾-nearest
neighbors (KNN) algorithm to find its neighbor samples in the visual
feature space:

𝒩𝑛 = {𝒳𝑛 ∪ 𝒳𝑘 ∈ KNN (𝒗𝑛,𝒟, 𝐾 ) } , (10)

where KNN (𝒗𝑛,𝒟, 𝐾) demotes 𝐾 samples in 𝒟 with visual repre-
sentation nearest to 𝒗𝑛 . Simultaneously, we obtain the set of samples
in 𝒟 with the same training label 𝑦 𝑗 as that of the sample 𝒳𝑛 ,

𝒴𝑛 =
{
𝒳𝑛 ∪ 𝒳𝑗 ∈ 𝒟𝑦 𝑗 =𝑦𝑛

}
. (11)

The reliability of sample 𝒳𝑛 based on the visual neighborhood
regularization is

𝑠𝑣 (𝒳𝑛 ) = |𝒩𝑛 ∩ 𝒴𝑛 | /𝐾. (12)

(2) Prediction Neighbor Regularization. The second level of regu-
larization is based on the consistency between the sample set with the
same training label and the prediction neighbors from the previous
iteration, which represents the learned multimodal representation.
Prediction regularization is further added after 𝐸 epochs when the
model can give relatively confident predictions, ensuring the pre-
dicted values are qualified for correcting potential noise. Formally,
we obtain the set of samples in 𝒟 whose predicted attribute value 𝑝 𝑗
from the last iteration is the same as that of the sample 𝒳𝑛 ,

𝒴𝑛 =
{
𝒳𝑛 ∪ 𝒳𝑗 ∈ 𝒟�̂� 𝑗 =�̂�𝑛

}
. (13)

With the truth-value consensus set 𝒴𝑛 from Equation (11), the reli-
ability based on previous prediction neighbor regularization of the
sample 𝒳𝑛 is

𝑠𝑝 (𝒳𝑛 ) =
���𝒴𝑛 ∩ 𝒴𝑛

��� /���𝒴𝑛 ∪ 𝒴𝑛

��� . (14)

Overall, 𝑠(𝒳𝑛) is initially regularized with visual neighbors and
jointly with prediction neighbors after 𝐸 epochs when the model
predicts credibly,

𝑠 (𝒳𝑛 ) =
{
𝑠𝑣 (𝒳𝑛 ) 𝑒 < 𝐸,

AVG
(
𝑠𝑣 (𝒳𝑛 ) , 𝑠𝑝 (𝒳𝑛 )

)
𝑒 ≥ 𝐸.

(15)

4 EXPERIMENTAL SETUP
4.1 Dataset
We build three datasets by collecting product profiles (title, bul-
lets, and descriptions) and images from the public amazon.com
web pages, where each dataset corresponds to one attribute ℛ. The
dataset information is summarized in Table 1, where Attr is the

3See Appendix 5.4 for additional demo examples.
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Attr # PT Value Type # Valid # Train & Val # Test

Item Form 14 Single 142 42,911 4,165
Color 255 Multiple 24 106,176 3,777

Pattern 31 Single 30 119,622 2,093

Table 1: Statistics of the product attribute datasets.

attribute ℛ, # PT represents the number of unique product types,
Value Type indicates whether 𝑦𝑛 contain single or multiple values,
and # Valid represents the number of valid values. To better re-
flect real-world scenarios, we use the attribute-value pairs from the
product information section on web pages as weak training labels
instead of highly processed data. We follow the same filtering strat-
egy from prior text established work [34] to denoise training data.
For the testing, we manually annotate gold labels on the benchmark
dataset to ensure preciseness. Besides, the label sources are marked
down, indicating whether the attribute value is present or absent
in the text, to facilitate fine-grained source-aware evaluation. The
human-annotated benchmark datasets will be released to encourage
the future development of modality-balanced multimodal extraction
models.

4.2 Evaluation Protocol
We use Precision, Recall, and F1 score based on synonym nor-
malized exact string matching. For single value type, an extracted
value 𝑦𝑛 is considered correct when it exactly matches the gold value
string 𝑦𝑛 . For multiple value type where the gold values for the query
attribute ℛ can contain multiple answers 𝑦𝑛 ∈

{
𝑦1𝑛, . . . , 𝑦

𝑚
𝑛

}
, the

extraction is considered correct when all the gold values are matched
in the prediction. Macro-aggregation is performed across attribute
values to avoid the influence of class imbalance. All reported results
are the average of three runs under the best settings.

4.3 Baselines
We compare our proposed model with a series of baselines, spanning
unimodal-based methods and multimodal-based ones. For unimodal
baselines, OpenTag [36] is considered a strong text-based model for
attribute extraction. OpenTag-seq formulates the task as sequence
tagging and uses the BiLSTM-CRF architecture with self-attention.
OpenTag-cls replaces the BiLSTM encoder with a transformer en-
coder and tackles the task as classification. TEA is another text-only
unimodal generative model with the same architecture as PV2TEA
but without the image patching, which is included to demonstrate
the influence of the generation setting. For multimodal baselines, we
consider discriminative encoder models, including ViLBERT [21],
LXMERT [26] with dual encoders, and UNITER [3] with a joint
encoder. We also add generative encoder-decoder models for com-
parisons. BLIP [15] adopts dual encoders and an image-grounded
text decoder. PAM [18] uses a shared encoder and decoder separated
by a prefix causal mask.

5 EXPERIMENTAL RESULTS
5.1 Overall Comparison
Table 2 shows the performance comparison of different types of
extraction methods. It is shown that PV2TEA achieves the best F1

Figure 4: The influence study of alignment objectives, i.e., binary
matching v.s. contrastive loss, and the influence of softness 𝛼 via
the task of image-to-text and text-to-image retrieval. The metric
T/I@1 is the recall of text/image retrieval at rank 1, T/I@M
means the rank average, and R@Mean further averages T@M
and I@M.

performance, especially compared to unimodal baselines, demon-
strating the advantages of patching visual modality to this text-
established task. Comparing the unimodal methods with multimodal
ones, textual-only models achieve impressive results on precision
while greatly suffering from low recall, which indicates potential
information loss when the gold value is not contained in the input
text. With the generative setting, TEA sort of mitigates the infor-
mation loss and improves recall over OpenTag under the tagging
and classification settings. Besides, adding visual information can
further improve recall, especially for the multi-value attribute Color,
where multimodal models can even double that of text-only ones.
However, the lower precision performance of the multimodal models
implies the challenges beneath cross-modality integration. With the
three proposed bias-reduction schemes, PV2TEA improves on all
three metrics over multimodal baselines and balances precision and
recall to a great extent compared with unimodal models. Besides
the full PV2TEA, we also include three variants that remove one
proposed schema at a time. It shows that the visual attention prun-
ing module mainly helps with precision while the other two benefit
both precision and recall, leading to the best F1 performance when
all three schemes are equipped. We include several case studies in
Appendix 5.3 for qualitative observation.
Source-Aware Evaluation. To investigate how the modality learning
bias is addressed, we conduct fine-grained source-aware evaluation
similarly to Section 2.2, as shown in Table 34. The performance
gap between when the gold value is present or absent in the text is
significantly reduced by PV2TEA when compared to both unimodal
and multimodal representative methods, which suggests a more bal-
anced and generalized capacity of PV2TEA to learn from different
modalities. When the gold value is absent in the text, our method
outperforms OpenTagcls by more than twice as much on recall, and
also outperforms on precision under various scenarios compared to
the multimodal PAM.

5.2 Ablation Studies
Augmented Label-Smoothed Contrast. We look into the impact
of label-smoothed contrast on both single- and multiple-value type
datasets 5. Table 4 shows that removing the contrastive objective

4We demonstrate results on the Item Form dataset due to limited space. For more results,
please refer to Appendix B.

5For ablation analysis, we select Item Form as the representative for single-value and
Color for multiple-value type dataset. More ablation results can be referred in Appendix
C.
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Type Method
Dataset: Item Form Dataset: Color Dataset: Pattern

Precision Recall F1 Precision Recall F1 Precision Recall F1

Unimodal
OpenTag-seq 91.37 44.97 60.27 83.94 24.73 38.20 79.65 19.83 31.75
OpenTag-cls 89.40 51.67 65.49 81.13 28.61 42.30 78.10 24.41 37.19

TEA 82.71 60.98 70.20 67.58 47.80 55.99 60.87 37.40 46.33

Multimodal

ViLBERT 75.97 65.67 70.45 60.22 51.12 55.30 60.10 40.52 48.40
LXMERT 75.79 68.72 72.08 60.20 54.26 57.08 60.33 42.28 49.72
UNITER 76.75 69.10 72.72 61.30 54.69 57.81 62.45 43.38 51.20

BLIP 78.21 69.25 73.46 62.70 58.23 60.38 58.74 44.01 50.32
PAM 78.83 74.35 76.52 63.34 60.43 61.85 61.80 44.29 51.60

Ours

PV2TEA w/o S1 80.03 72.49 76.07 71.00 58.41 64.09 60.03 45.59 51.82
PV2TEA w/o S2 80.48 75.32 77.81 73.77 59.37 65.79 59.01 46.74 52.16
PV2TEA w/o S3 80.87 72.71 76.57 74.29 59.04 65.79 59.92 44.92 51.35

PV2TEA 82.46 75.40 78.77 77.44 60.19 67.73 62.10 46.84 53.40
Table 2: Performance comparison with different baselines (%). The performance gains over the baselines have passed the t-test with a
p-value<0.05. The best performance is in bold, and the second runner baseline is underlined.

Method Gold Value Source Precision Recall F1

OpenTag-cls
Text ✓ 89.78 52.13 65.96

Text ✗ Image ✓ 78.95 31.25 44.78
GAP ↓ 10.83 20.88 21.18

PAM
Text ✓ 79.16 74.53 76.78

Text ✗ Image ✓ 66.67 58.33 62.22
GAP ↓ 12.50 16.20 14.56

PV2TEA
Text ✓ 82.64 75.71 79.02

Text ✗ Image ✓ 75.00 62.50 68.18
GAP ↓ 7.64 13.21 10.84

Table 3: Fine-grained source-aware evaluation of different meth-
ods. The gold value source indicates whether the gold value is
contained in the text, or is not contained in the text and must be
inferred from the image.

Method
Single Value Dataset Multiple Value Dataset

P R F1 P R F1

w/o 𝐿sc 80.03 72.49 76.07 71.00 58.41 64.09
w/o Smooth 81.42 74.41 77.76 75.06 59.99 66.68

PV2TEA 82.46 75.40 78.77 77.44 60.19 67.73

Table 4: Ablation study on the augmented label-smoothed con-
trast for cross-modality alignment (%).

leads to a drop in both precision and recall. For the multiple-value
dataset, adding the contrastive objective significantly benefits pre-
cision, suggesting it encourages cross-modal validation when there
are multiple valid answers in the visual input. With label smoothing,
the recall can be further improved. This indicates that the augmented
and smoothed contrast can effectively leverage the cross-modality
alignment inter-samples, hence improving the coverage rate when
making predictions.

Figure 5: The influence study of alignment objectives, i.e., binary
matching v.s. contrastive, and softness 𝛼 study via cross-modality
retrieval on the Pattern dataset.

In addition, we conduct cross-modality retrieval to study the ef-
ficacy of aligning objectives, i.e., binary matching and contrastive
loss, for cross-modality alignment and the influence of the softness
𝛼 , as shown in Figure 4. Across different datasets and metrics, the
contrastive loss consistently outperforms the binary matching loss.
This consolidates our choice of contrasting objectives and highlights
the potential benefits of label-smoothing and contrast augmenta-
tion, given that both are neglected in a binary matching objective.
Retrieval performance under different smoothness values shows a
trend of first rising and then falling. We simply take 0.4 for 𝛼 in our
experiments.

Similar to Figure 4, we also demonstrate the cross-modality re-
trieval results on the pattern dataset in Figure 10. The conclusion is
consistent with our observations mentioned in Section 5.2, where
the contrastive objective demonstrates advantages in cross-modal
alignment and fusion, and the best smoothness choice peaks at 0.4.
Product Type Aware Attention Pruning. We study the influence
of the product type aware attention pruning, as shown in Table 5.
The results imply that adding the product type classification helps
to improve precision performance without harming recall, and the
learned attention mask can effectively highlight the foreground re-
gions of the queried product. Figure 6 presents several visualizations
of the learned attention mask.
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Method
Single Value Dataset Multiple Value Dataset

P R F1 P R F1

w/o 𝐿pt 80.48 75.32 77.81 73.77 59.37 65.79
w/o Attn Prun 80.61 75.49 77.97 74.60 59.42 66.15

PV2TEA 82.46 75.40 78.77 77.44 60.19 67.73

Table 5: Ablation study on the product type supervised visual
attention pruning (%).

Product Type (𝑐!): storage bag

Product Type (𝑐!): curtainProduct Type (𝑐!): vest

Product Type (𝑐!): bottom

Figure 6: Visualization example of the learned attention mask
with product type aware ViT classification.

Neighborhood Regularization. We consider the influence of the

Method
Single Value Dataset Multiple Value Dataset

P R F1 P R F1

w/o NR 80.87 72.71 76.57 74.29 59.04 65.79
w/o Vis-NR 81.87 73.54 77.48 77.07 59.99 67.47

w/o Pred-NR 81.81 73.18 77.25 76.71 59.44 66.98
PV2TEA 82.46 75.40 78.77 77.44 60.19 67.73

Table 6: Ablation study on the two-level neighborhood-
regularized sample weight adjustment (%).

two-level neighborhood regularization by removing the visual neigh-
borhood regularization (Vis-NR), prediction neighborhood regular-
ization (Pred-NR), or both (NR) from the full model. Results in
Table 6 show all the metrics decrease when both regularizations are
removed, indicating the validity of the proposed neighborhood regu-
larized sample weight adjustment in mitigating the influence of hard,
noisy samples. Besides, since the second-level prediction-based
neighbor regularization is independent of the multimodal extraction
framework, it can be incorporated flexibly into other frameworks as
well for future usage.
Classification vs. Generation.

Setting
𝒟 : Item Form 𝒟 : Color 𝒟 : Pattern

P R F1 P R F1 P R F1

Classification 79.93 70.47 74.90 72.21 50.18 59.21 59.08 42.16 49.21
Generation 82.46 75.40 78.77 77.44 60.19 67.73 62.10 46.84 53.40

Table 7: Attribute extraction performance comparison between
the settings of classification and generation.

To determine which architecture is better for multimodal attribute
value extraction, we compare the generation and classification set-
tings for the module of the product attribute value extractor. The
results are demonstrated in Table 7. It is shown that the setting of
generation achieves significant advantages over classification. Espe-
cially on the recall performance for multi-value type attribute Color,
where the gold value can be multiple, the improvement of recall can
be up to 20% relatively. This indicates that the generation setting can
extract more complete results from the multimodal input, leading
to a higher coverage rate. Therefore, we choose the generation set-
ting in the attribute value extraction module in the final architecture
design of PV2TEA.

5.3 Case Study

Milumia Women Casual 2 Piece Outfits Tie Back Cami Crop Top Belted Pants 
Sets Navy Medium Material: 100% Polyester. Fabric is Non-stretch. Feature: 
Cami Crop Top with Pants Sets, Tie Hem, Bow, Spaghetti Strap, Sleeveless, 
Knot, Belted Pants, Striped Occasion: Perfect for Summer Beach, Vacation, 
Traveling, Holiday, Party, Weekend Casual, Going Out, Weekend Daily, 
Shopping and Dating wear. Season: Suitable for Spring, Summer

Q: what is the pattern of the one-piece outfit? PV2TEA Prediction: striped

WSERE 3 Pack Plastic Flip Top Bird Small Poultry Feeder for Pigeon Quails 
Ducklings Birds, No Mess No Waste Multihole Birds Feeding Dish Dispenser 
Chick Feeder

Q: what is the color of the wildlife feeder?
PV2TEA Prediction: red,
yellow, green

URATOT Glittered Christmas Tree Topper Metal Christmas Treetop Hallow 
Wire Star Topper for Christmas Home Decoration; Product material: this 
Christmas tree topper is made of quality plastic

Q: what is the color of the decoration? PV2TEA Prediction: silver

Sugar in the raw 500 packets 4 lbs 15 4 ounces cooking raw sugar. A natural 
unrefined sugar made from sugar cane grown in each packet holds 
approximately one teaspoon and has five grams of carbohydrates and 20 
calories flavor: original; packing type: packets; premeasured: yes; capacity 
weight : 0 18 oz

Q: what is the item form of the sugar? PV2TEA Prediction: crystal

Figure 7: Qualitatively case studies.

To qualitatively observe the extraction performance, we attach
several case studies in Figure 7. It shows that even when the attribute
value is not contained in the text, PV2TEA can still perform the
extraction reliably from product images. In multiple value datasets
such as Color, PV2TEA can effectively differentiate related regions
and extract multiple values with comprehensive coverage.

5.4 Neighborhood Regularization Demos
We provide two more demo examples for illustrating the two-level
neighborhood-regularized sample weight adjustment in Figure 8.



KDD’23, August 6–10, 2023, Long Beach, CA, USA Hejie Cui et al.

…

Visual/Prediction Neighbor

…

Training Label Neighbor
Query: What is the itemform (ℛ) of the 𝑐! ?

𝑦!: tablet

𝑦!: tablet

𝑦!: tablet

𝑦!: liquid

𝑦!: liquid 𝑦!: liquid

𝑦!: liquid

𝒄𝒏: dishwasher detergent

high consistency High 𝒔(𝓧𝒏)

𝒄𝒏: face makeup

Low 𝒔(𝓧𝒏)

𝑦!: cream

𝑦!: powder

𝑦!: powder 𝑦!: powder

𝑦!: cream

𝑦!: stick

𝑦!: stick

𝒚𝒏: liquid
𝒚𝒏: cream

low consistency

Figure 8: Demo examples for illustrating S3: two-level
neighborhood-regularized sample weight adjustment.

The example on the left demonstrates a higher consistency between
the green arrows (which point to samples with the same training la-
bel as 𝑦𝑛) and red arrows (which point to 𝑘-nearest neighbor samples
in visual feature and previous prediction space), indicating a higher
reliability of 𝑦𝑛 . Thus the sample weight of 𝒳𝑛 will be increased in
the next training epoch. In contrast, the training label neighbors and
visual/prediction neighbors of the right example show a large incon-
sistency, which implies a relatively lower reliability of 𝑦𝑛 . Therefore,
the sample weight 𝑠 (𝒳𝑛) of the right 𝒳𝑛 will be degraded in the
next epoch. This regularization process adjusts the sample weights
of all the training samples in each epoch.

6 RELATED WORK
Product Attribute Extraction. Product attribute extraction has been
extensively studied in the literature primarily based on textual input.
OpenTag [36] formalizes it as a sequence tagging task and proposes
a combined model leveraging bi-LSTM-CRF, and attention to per-
form end-to-end tagging. Xu et al. [31] scales the sequence-tagging-
based model with a global set of BIO tags. AVEQA [27] develops a
question-answering model by treating each attribute as a question
and extracting the best answer span from the text. TXtract [12] uses
a hierarchical taxonomy of product categories and improves value
extraction through multi-task learning. AdaTag [32] exploits an adap-
tive CRF-based decoder to handle multi-attribute value extractions.
Additionally, there have been a few attempts at multimodal attribute
value extraction. M-JAVE [37] introduces a gated attention layer to
combine information from the product image and text. PAM [18] pro-
poses a transformer-based sequence-to-sequence generation model
for multimodal product attribute extraction. Although the latter two
use both visual and textual input, they fail to account for possible
modality bias and are fully supervised.
Multi-modality Alignment and Fusion. The goal of multimodal
learning is to process and relate information from diverse modalities.
CLIP [23] makes a gigantic leap forward in bridging embedding
spaces of image and text with contrastive language-image pretrain-
ing. ALBEF [16] applies a contrastive loss to align the image and text
representation before merging with cross-modal attention, which fits
loosely-aligned product image and text. Using noisy picture alt-text
data, ALIGN [10] jointly learns representations applicable to either
vision-only or vision-language tasks. The novel Vision-Language
Pre-training (VLP) framework established by BLIP [15] is flexibly

applied to both vision-language understanding and generation tasks.
GLIP [17] offers a grounded language-image paradigm for learning
semantically rich visual representations. FLAVA [25] creates a foun-
dational alignment that simultaneously addresses vision, language,
and their interconnected multimodality. Flamingo [1] equips the
model with in-context few-shot learning capabilities. SimVLM [29]
is trained end-to-end with a single prefix language modeling and
investigates large-scale weak supervision. Multi-way Transformers
are introduced in BEIT-3 [28] for generic modeling and modality-
specific encoding.

7 CONCLUSION
In this work, we propose PV2TEA, a bias-mitigated visual modality
patching-up model for product attribute extraction. Results on our
released source-aware benchmarks demonstrate remarkable improve-
ments: the augmented label-smoothed contrast promotes a more
accurate and complete alignment for loosely related product images
and texts; the visual attention pruning improves precision by mask-
ing out task-irrelevant regions; and the neighborhood-regularized
sample weight adjustment reduces textual bias by lowering the influ-
ence of noisy samples. We anticipate the investigated challenges and
proposed solutions will inspire future scenarios where the task is first
established on the text and then expanded to multiple modalities.

There are several limitations can be considered for future improve-
ments: (1) In multimodal alignment and fusion, we only consider a
single image of the product, whereas usually multiple product im-
ages are available in different views and even styles. A more flexible
visual encoding architecture that can digest an indefinite number of
input images can potentially improve the visual information cover-
age; 2) The empirical results in this work focus on three attribute
extraction datasets that can clearly benefit from visual perspectives,
while there are also various attribute types that rely more on the
textual input; 3) The attention-pruning mechanism encourages the
model to focus on the task-relevant foreground on the given image
selected with product-type supervision, which can improve the pre-
diction precision given the input image is visually rich and contains
noisy context background. While for some types of images, such as
infographics, there may be helpful text information on the product
packages or intentionally attached by vendors. These additional texts
may be overlooked by the attention-pruning mechanism, resulting
in potential information losses. A possible mitigation strategy is to
add an OCR component along with the visual encoder to extract
potential text information from given images.
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A IMPLEMENTATION DETAILS
Our models are implemented with PyTorch [22] and Huggingface
Transformer library and trained on an 8 Tesla V100 GPU node. The
model is trained for 10 epochs, where the Item Form dataset takes
around 12 hours, the Color dataset takes about 32 hours, and the
Pattern dataset needs around 35 hours to run on a single GPU. The
overall architecture of PV2TEA consists of 361M trainable parame-
ters, where a ViTbase [8] is used as the image encoder and initialized
with the pre-trained model on ImageNet of 85M parameters, and the
text encoder is initialized from BERTbase [5] of 123M parameters.
We use AdamW [20] as the optimizer with a weight decay of 0.05.
The learning rate of each parameter group is set using a cosine an-
nealing schedule [19] with the initial value of 1𝑒-5. The model is
trained for 10 epochs, with both training and testing batch sizes of
8. The memory queue size 𝑀 is set as 57600 and the temperature 𝜏
of in Equation 4 is set as 0.07. We performed a grid search for the
softness 𝛼 from [0, 0.2, 0.4, 0.6, 0.8] and used the best-performed
0.4 for reporting the final results. The 𝐾 for two-level neighborhood
regularization is set at 10. The input product textual description is
cropped to a maximum of 100 words. The input image is divided into
30 by 30 patches. The hidden dimension of both the visual and tex-
tual encoders is set to 768 to produce the representations of patches,
tokens, or the whole image/sequence. The epoch 𝐸 for adding the
second-level prediction neighbor regularization to reliability score
𝑠 (𝒳𝑛) is set as 2.

B MORE SOURCE-AWARE EVALUATION

Method Gold Value Source
𝒟: Color 𝒟 : Pattern

P R F1 P R F1

OpenTagcls

Text ✓ 85.06 43.28 57.37 85.00 42.96 57.07
Text ✗ Image ✓ 66.28 10.24 17.74 66.23 12.02 20.35

GAP ↓ 18.78 33.04 39.63 18.77 30.94 36.72

PAM
Text ✓ 73.20 71.88 72.53 75.00 57.04 64.80

Text ✗ Image ✓ 50.30 45.45 47.75 51.82 36.23 42.64
GAP ↓ 22.90 26.43 24.78 23.18 20.81 22.16

PV2TEA
Text ✓ 81.74 74.25 77.82 71.19 61.25 65.85

Text ✗ Image ✓ 71.89 47.19 56.98 54.48 37.26 44.25
GAP ↓ 9.85 27.06 20.84 16.71 23.99 21.59

Table 8: Fine-grained source-aware evaluation for the Color and
Pattern datasets.

The source-aware evaluation of the Color and Pattern datasets is
shown in Table 8. We can observe that similarly to the discussions
in Section 5.1, compared with the baselines, the proposed PV2TEA
effectively mitigates the performance gap of F1 when the gold value
is not contained in the text. More specifically, we observed that com-
pared with the unimodal method, PV2TEA mainly reduces the recall
performance gap across modalities, while compared with the mul-
timodal method, the reduction happens mainly in precision, which
all corresponds to the weaker metrics for each type of method. This
indicates the stronger generalizability and more balanced learning
ability of PV2TEA.

C ABLATION STUDIES ON PATTERN
DATASET

We further include the ablation results on the single-value type
dataset Pattern for each proposed mechanism in Table 9, Table 10,
and Table 11, respectively. The observations are mostly consistent
with the discussion in section 5.2, where all three proposed mech-
anisms support improvements in the overall performance of F1. It
is noted that the recall performance with attention-pruning drops a
bit compared with that without. This may indicate potential informa-
tion losses on the challenging dataset such as Pattern with only the
selected foreground. We discuss this potential risk in detail in the
Limitation section.

Method
Single Value Dataset: Pattern

Precision Recall F1

PV2TEA w/o 𝐿sc 60.03 45.59 51.82
PV2TEA w/o smooth 61.87 45.72 52.58

PV2TEA 62.10 46.84 53.40

Table 9: Ablations on the augmented label-smoothed contrast
for cross-modality alignment (%).

Method
Single Value Dataset: Pattern

Precision Recall F1

PV2TEA w/o 𝐿pt & Attn Prun 59.01 46.74 52.16
PV2TEA w/o Attn Prun 60.14 46.98 52.75

PV2TEA 62.10 46.84 53.40

Table 10: Ablation study on the product type supervised visual
attention pruning (%).

Method
Single Value Dataset: Pattern

Precision Recall F1

PV2TEA w/o NR 59.92 44.92 51.35
PV2TEA w/o Vis-NR 61.59 46.24 52.82

PV2TEA w/o Pred-NR 60.77 45.11 51.78
PV2TEA 62.10 46.84 53.40

Table 11: Ablations on the two-level neighborhood-regularized
sample weight adjustment (%).

D RETRIEVAL ABLATION ON PATTERN
DATASET

Similar to Figure 4, we also demonstrate the cross-modality re-
trieval results on the pattern dataset in Figure 10. The conclusion is
consistent with our observations mentioned in Section 5.2, where
the contrastive objective demonstrates advantages in cross-modal
alignment and fusion, and the best smoothness choice peaks at 0.4.
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Product Type (𝑐!): makeup Product Type (𝑐!): makeup Product Type (𝑐!): steak Product Type (𝑐!): grain

Product Type (𝑐!): mattress Product Type (𝑐!): chair Product Type (𝑐!): Mug Product Type (𝑐!):
decoration

Product Type (𝑐!): shirtProduct Type (𝑐!): scarf Product Type (𝑐!): tights Product Type (𝑐!): shirt

Figure 9: Visualization examples of the learned category aware attention pruning mask.

Figure 10: The influence study of alignment objectives, i.e., bi-
nary matching v.s. contrastive, and softness 𝛼 study via cross-
modality retrieval on the Pattern dataset.

E VISUALIZATIONS OF ATTENTION
PRUNING

Examples of visualization on the learned attention mask are demon-
strated in Figure 9. It is observed that product foreground is high-
lighted under the supervision of product type classification, which
potentially encourages a higher prediction precision for fine-grained
tasks like attribute extraction, as proved by the experimental results.

E.1 Human Annotation Instruction
We create source-aware fine-grained datasets with internal human
annotators. Below are the instruction texts provided to annotators:

The annotated attribute values are used for research model devel-
opment of multimodal product attribute extraction and fine-grained
error analysis. The datasets are named source-aware multimodal
product attribute extraction evaluation benchmarks and will be re-
leased to facilitate public testing and future studies in bias-reduced
multimodal attribute value extraction model designs. All the given
product profiles (title, bullets, and descriptions) and images are col-
lected from the public amazon.com web pages, so there is no
potential legal or ethical risk for annotators. Specifically, the annota-
tion requirements compose two tasks in order: (1) Firstly, for each

given ASIN (product_id) in the given ASINs set, first determine the
product type of the sample by referring to ASIN2Product_Type.csv
mapping file, then label the gold value for the queried attribute by
selecting from the candidates given the product type. The annotation
answer candidates for the Item Form dataset can be referred to in
Table 12. Note that this gold value annotation step requires reference
to both product textual title, descriptions, and product images; (2)
For each annotated ASIN, mark down which modality implies the
gold value with an additional source label, with different meanings
as below:
• 0: the gold attribute value can be found in text.
• 1: the gold attribute value cannot be inferred from the text but can

be found in the image.
The annotated attribute values and source labels are assembled in
fine-grained source-aware evaluation.
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Product Type Candidate Attribute Values Given the Product Type

cereal grain, flake, seed, liquid, powder, ground
dishwasher detergent gel, capsule, pac, liquid, tablet, pod, powder
face shaping makeup powder, pencil, cream, liquid, stick, oil, spray, gel, cushion, blush, drop, balm, gloss
fish fillet, chunk, steak, solid, stick, whole, slice, ground
herb powder, root, leaf, thread, flake, seed, tea bag, stick, oil, slice, pod, ground, bean, paste
honey jelly, capsule, lozenge, candy, cream, powder, granule, flake, liquid, stick, oil, crystal, butter, drop, syrup, comb
insect repellent wipe, spray, band, granular, liquid, stick, candle, coil, oil, lotion, gel, capsule, tablet, powder, balm, patch, roll on
jerky strip, slab, shredded, bite, bar, slice, stick, ground
sauce puree, jelly, paste, seed, liquid, gravy, ground, oil, powder, cream
skin cleaning agent powder, capsule, toothpaste, wipe, cream, spray, mousse, bar, flake, liquid, lotion, gel, serum, mask, ground, balm, paste, foam
skin foundation concealer powder, pencil, cream, mousse, liquid, stick, oil, lotion, spray, cushion, gel, drop, serum, balm, airbrush
sugar granule, crystal, pearl, liquid, powder, cube, ground
sunscreen wipe, cream, spray, mousse, liquid, ointment, stick, fluid, oil, lotion, milk, compact, gel, drop, serum, powder, balm, foam, mist
tea leaf, powder, granule, tea bag, liquid, pod, ground, brick

Table 12: The annotation candidates provided to annotators given each product type on the Item Form dataset.
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