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ABSTRACT
Recent works in commonsense question answering are leveraging
the unstructured knowledge from powerful language models and
structured knowledge from Knowledge Graphs. QA-GNN [26] is
one such method giving state-of-the-art performances, but is lim-
ited by its reliance on the extraction of contextual subgraph for
every QA pair through entity linking and heuristics. To address
this limitation, there is a growing need for more generalizable ap-
proaches to sub-graph retrieval. There has been an increasing effort
of dense retrieval in the language domain [6, 11, 12] which focus on
retrieving relevant information from large knowledge sources like
Wikipedia through learning better data and query representations.
In this work, we extend this approach to the context of graphs and
build DrKG, a dense retrieval framework for Knowledge graphs
in the task of question answering. Our experiments with empirical
and qualitative results suggest that our framework extracts sub-
graphs that show improved performance on multiple datasets for
commonsense QA.

KEYWORDS
knowledge graph, information retrieval, question answering
ACM Reference Format:
Sharmila Reddy Nangi, Michihiro Yasunaga, Hongyu Ren, Qian Huang,
Percy Liang, Jure Leskovec. 2023. Dense Retrieval of Knowledge Graphs
for Question Answering. In Proceedings of ACM Conference (KDD’23). ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The Commonsense Question Answering (QA) task refers to the chal-
lenge of answering questions that require a deep understanding of
everyday knowledge and reasoning abilities. Many state-of-the-art
solutions incorporate this commonsense knowledge using large
pre-trained language models like BERT and using information from
Knowledge Graphs like ConceptNet. These two knowledge sources
are complementary in nature, as pre-trained language models have
information from unstructured documents and KGs have informa-
tion in structured form, enabling logical reasoning. Prior works
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in this domain use a combination of Graph Neural Networks and
Language Models.

The QA-GNN model [26] is one such work that leverages the
power of a pre-trained Large Language Models (LLMs) and Knowl-
edge Graph for end-to-end question answering in commonsense
reasoning task. At its core, this model involves several steps. Ini-
tially, a vector representation of the question-and-answer (QA)
context is procured by utilizing a pre-trained Language Model. It
then retrieves a sub-graph from the ConceptNet Knowledge Graph,
a process that’s carried out heuristically via entity linking. Subse-
quently, a Graph Attention Network (GAT) is trained on a joint
graph that is assembled from the QA context and the heuristically-
extracted KG sub-graph, with an ultimate goal to predict the score
of the correct answer.

Despite the effectiveness of the QA-GNN model, the method
employed for extracting the KG subgraph hinges on a heuristic
approach, where all the 2-hop paths emanating from the question
and answer entities are included. This mechanism, while useful,
has two significant drawbacks. Firstly, it potentially restricts the
extraction of relevant nodes that aren’t located within the 2-hop
network. In other words, there may be valuable information resid-
ing in nodes outside the 2-hop network which will be missed by
this approach. Secondly, the heuristic nature of the KG extraction
procedure is not trainable, meaning it doesn’t have the capacity
to learn from its mistakes or enhance the quality of subgraph re-
trieval over time. Thus, despite the initial promise of the QA-GNN
model, its potential could be further realized if these limitations
were addressed. To address this, there is a growing need for more
generalizable approaches to sub-graph retrieval. Subgraph retrieval
is crucial to the overall QA performance, as a small subgraph is
highly likely to exclude the answer but a large one might introduce
noises that affect the QA performance.

Recent advancements in the field of information retrieval from
expansive knowledge sources have led to the development of mod-
els designed to enhance the accuracy of relevant data extraction.
For instance, in the context of open domain question answering,
Dense Passage Retrieval framework [11] performs efficient pas-
sage retrieval with a simple dual encoder framework that learns
dense representations. REALM [6] presents a differential knowl-
edge retriever which allows the model to retrieve and attend over
documents from a large corpus such as Wikipedia and pre-train
with MLM or fine-tune it for the task of Question Answering. Build-
ing on these developments, the Retrieval Augmented Generation
(RAG) [12] follows REALM, DPR to retrieve the right passages,
with a particular focus on the generation of questions, answers, and
tags for evidence-based problem. Drawing inspiration from these
works, we believe that expanding this framework to the context of
knowledge graphs would be simple and powerful, especially in the
tasks of question answering.
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Figure 1: Overview of our approach, Dense Retrieval of Knowledge Graphs for Question Answering (DrKG). The framework
include (a) Representing Knowledge Graph triplets as text passages (b) Training a Dense Retriever to extract the relevant
triplets in the question-answering context and (c) Construction of the relevant sub-graph from the retrieved triplets.

In this work, we introduce DrKG, a new approach to training a
dense retriever specifically designed for knowledge graphs, with
a focus on the task of commonsense question answering. Our ap-
proach aims to harness the benefits of these recent advancements in
information retrieval and apply them to the unique challenges pre-
sented by knowledge graphs. Additionally, we thoroughly explore
the benefits of different training approaches, model designs, pre-
training techniques, and perform experiments on the end-to-end
question-answering task to assess its efficacy.

2 RELATEDWORK
Question Answering with LM+KG: Prior works in question an-
swering [1, 13, 16, 25] employ the representations from LLMs and
GNNs to model interaction from both modalities. Recent works like
QA-GNN [26], GreaseLM [29] and JointLK[23] adopt joint learn-
ing by integrating the language and graph modalities into a joint
graph representation through GNNs. However, they rely on re-
trieval methods for subgraph extraction which are predominantly
heuristic, resulting in limited reasoning capabilities, which is ad-
dressable through our proposed method.

Trainable Retriever for QA: Dense retrieval for open-domain QA
has been initially explored to retrieve relevant passages iteratively
using reformulated question vectors [3]. This was further extended
by REALM (Retrieval-Augmented Language Model Pretraining)[6]
which includes tuning the passage encoder asynchronously by re-
indexing the passages during training. Dense Passage Retrieval
(DPR) [11], presented novel retrieval method for open-domain QA

that uses dense vector representations of questions and documents,
rather than traditional sparse retrieval techniques. These methods
was later extended in the work of Retrieval-Augmented Generation
for Knowledge-Intensive NLP Tasks [12], which uses a seq2seq
generator, conditioned on the input and retrieved documents, to
produce detailed responses. UniK-QA[18] uses DPR to retrieve
relevant information from structured and flattened unstructured
knowledge sources. KG-FiD [27] and GRAPE [10] follow a reader-
retriever method to retrieve relevant passages with DPR and use
graph based methods to capture the relation between them to im-
prove reader performance for QA. However, these methods are
designed specifically for open-domain QA and do not extend di-
rectly to Commonsense QA, where we need structured knowledge
graph information. We draw inspiration from these retrieval based
methods in QA and extend it into the task of sub-graph retrieval,
which is very crucial in Commonsense QA.

Sub-Graph Retrieval: Extracting subgraphs is a challenging and
important problem. Some recent emerging works such as PullNet
[22], SRN [19] conducted retrieval by training the retriever, but the
retrieving and the reasoning are intertwined, causing the reasoning
on partially retrieved subgraphs. Recently, a toolkit designed for
Semantic-relevant Subgraph Retrieval, SRTK [20] was developed to
facilitate entity linking, retrieval, and visualization on large knowl-
edge sources like Wikidata and Freebase using advanced retrieval
algorithms . Another closely related work [28], trainable subgraph
retrieval for multi-hop question answering on knowledge bases.
Their approach involves training a retriever separately from the
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reasoning process, using weakly supervised or unsupervised pre-
training and end-to-end fine-tuning with a reasoner. The model
employs a dual-encoder method to expand paths and generate
subgraphs, with the ability to automatically terminate expansion.
However, while there are similarities between their approach and
ours, their multi-hop KBQA systems rely on direct answers from
the knowledge base and cannot be extended to the more compre-
hensive CSQA task. In CSQA, a more comprehensive extraction of
relevant information is required, and it necessitates a combination
of language model knowledge to tackle challenging questions.

3 METHOD
In this work, we propose DrKG, which is a trainable dense retrieval
framework for contextual extraction of relevant subgraphs from
vast structured Knowledge Graphs. Inspired by the Dense Pas-
sage Retrieval approach [11] developed for open-domain question
answering, we utilize a dual-encoder framework to expand into
relevant sub-graph retrieval. The retrieval pipeline, as depicted in
Figure 1, illustrates the steps involved in our approach.

3.1 Knowledge Graph as Text
Our approach begins with structured Knowledge Graphs, such as
ConceptNet[21], wherein entities are depicted as nodes and the
relations between them as edges. We extract all the triplets from
the Knowledge Graph, each comprising two entities connected
by a relation, and treat each triplet as a passage or document in
a text corpus. This process effectively deconstructs the original
problem by transforming the graph structure into a collection of text
passages. These newly formed passages serve as an open-domain
knowledge source, similar to the corpus used in traditional text-
based retrieval methods like Dense Passage Retrieval (DPR). Thus,
we conduct neural retrieval on this transformed corpus, maintaining
a direct parallel with the original DPR methodology.

3.2 Dense Sub-Graph Retriever
Dense Subgraph Retriever (DrKG) uses a dense encoder 𝐸𝑃 (.) which
maps any text passages to a 𝑑-dimensional real-valued vectors
and builds an index for all the 𝑀 passages that we will use for
retrieval. At run-time, DrKG applies a different encoder 𝐸𝑄 (.) that
maps the input question to a 𝑑-dimensional vector, and retrieves
𝑘 passages of which vectors are the closest to the question vector.
We use a inner-product between the embeddings to measure the
similarity/closeness of the query-passage pair.

3.2.1 Encoder Models. : We use BERT [4] and RoBERTa [15]
based models as our encoders. In BERT models, we use the repre-
sentation of [𝐶𝐿𝑆] token, while in RoBERTa, we use the average
representation of all the tokens in the sentence as the as the text/
query embedding. We also tried out the more recent Contriever
[8] model, which employed contrastive learning for unsupervised
dense retrievers which showed significant improvement in perfor-
mance.More details about themodel variants and their performance
are presented in the experiments section. During inference time,
we index all the passages and query embeddings through FAISS
[9], which provides better clustering and similarity search on dense
vector representations.

3.2.2 Retriever Training. : Our goal during the training phase
is to fine-tune the encoders in a manner that allows the similarity
between the query and passage vectors to effectively function as a
reliable ranking metric for retrieval. Essentially, we aim to train the
encoder to learn representations that ensure relevant passages (or
triplets, in our context) are nearer to the query in the embedding
space, while the non-relevant ones are kept at a distance. Similar to
DPR, we achieve this by minimizing a negative log-likelihood loss
on the positive and negative passage examples for a given query.

3.2.3 Training Data. : The most challenging part in this setting
is to decide what constitutes the positive and negative passages
for a given query, especially when we do not have a ground truth
optimal subgraph. In prior works within the text domain, a notion
of relatedness to a positive context is usually present, which can
be deduced through text representations or by comparing with the
ground truth context. However, when representing a Knowledge
Graph as text, applying this notion becomes complicated due to the
difficulty in designating a single triplet as the ground truth. This
has led us to design for multiple positive contexts for each query. In
the Commonsense QA datasets, we have question-answer pairs in
a multiple choice setting. We thus choose the query and the correct
answer pairs for training the retriever. We extract entities from
the query and correct answer, and all the triplets that include one
of these entities and that form a path from query-answer entities
are chosen as the positive context for a question. This approach
is guided by the intuition that during the inference time, when a
query is input, we want the retriever models to predict the set of
triplets that are closer to the query and the correct answer. This
methodology is an attempt to create a robust system that can predict
the most relevant triplets, thus enhancing the effectiveness and
accuracy of the retriever in question answering tasks.

Now, for choosing the negative context, we use In-batch Nega-
tives following prior work [2, 5, 7, 11]. In this approach, within a
mini-batch consisting of N instances, when provided with a positive
context for a question pair, we consider the positive contexts from
the remaining N-1 data points as negative samples. This technique
has been proven effective for training the encoders efficiently.

3.3 Optimal Subgraph Construction
Once the training of the DrKG encoder model is complete, we
proceed to generate and index dense representations for the triplet
passages. Subsequently, when presented with a query from our QA
dataset, we pass it through the encoder and extract the top 200
triplet passages that exhibit closer proximity to the query in the
embedding space. Using this retrieved data, we can construct the
graph by incorporating the entities and relationships present in
the triplets. This constructed graph is considered as the retrieved
optimal subgraph, which is employed during QA-GNN training
instead of the sub-graph obtained through heuristic methods.

This approach is better than the heuristics-based sub-graph gen-
eration as it surpasses the limitations imposed by potential 2-hop
paths involving the extracted QA entities. Furthermore, this method
has the capability to retrieve components that are not connected,
an outcome unattainable through heuristics alone. Moreover, the
KG retrieval process in this framework is trainable, enabling us to
enhance the sub-graph generation by training the retriever.
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4 EXPERIMENTAL SETUP
To assess the performance of our proposed method, we conducted
experiments with QA-GNN to compare its performance with the
proposed sub-graph retrieval method, in contrast to the heuristics-
based method.

4.1 Datasets
Wemajorly evaluate on 2 datasets - CommonsenseQA [24] andOpen-
BookQA [17]. CommonsenseQA is a 5-way multiple choice QA task
that requires reasoning with commonsense knowledge, containing
12,102 questions. OpenBookQA is a 4-way multiple choice QA task
that requires reasoning with elementary science knowledge, con-
taining 5,957 questions. We use the data splits similar to QA-GNN.
Additionally, we also make use of the RiddleSense [14] dataset with
5,715 examples during the retriever training as it is complemen-
tary to the CSQA dataset and introduces novel challenges for the
commonsense reasoning community. We use ConceptNet [21], a
general- domain knowledge graph, as our structured knowledge
source for all of the above tasks.

4.2 Implementation and Training Details
Weuse the official DPR2 implementation for training dense graph re-
triever. For the inference stage, we conducted experiments by vary-
ing the number of triplets, namely 50, 100, and 200.Additionally, we
explored different combinations of datasets, such as CSQA+OBQA,
CSQA+RS, during the retriever’s training process. During the con-
struction of optimal sub-graph, we noticed that the model might
not extract all the relevant entities in the form of triplets. There-
fore, we opted to include the question and answer triplets in the
construction of the optimal sub-graph.

Furthermore, we introduced a new relation between the context
node and the additional nodes (excluding QA nodes) present in the
extracted subgraph. This addition ensures graph connectivity, facil-
itating effective message passing within the GNN. Consequently,
the total number of relations in the QAGNN code increased to 40,
compared to the original 38. Apart from this modification, we main-
tained the same set of hyperparameter and optimizer settings while
training QAGNN on both CSQA and OBQA datasets.

4.3 Multiple Choice v/s Open QA
By training the retriever to extract pertinent information from a
vast knowledge graph (KG), we gain the flexibility to approach
the commonsense QA task as an open domain QA. This implies
that we do not rely on any information derived from multiple
answer choices in the input data. Instead, we utilize only the query
statement for the retriever and include only the question entities
during sub-graph construction. Alternatively, in themultiple-choice
setting, we employ the (query+answer choice) statement as input
to the encoder and utilize both the question and answer choice
entities in the construction of the sub-graph.

4.4 Evaluation Metrics
In the case of multiple-choice questions, our objective is to predict
the correct option from the given answer choices. Therefore, we

2https://github.com/facebookresearch/DPR

assess the performance of the QA-GNN models based on their
accuracy in correctly predicting the ground truth answer. We select
the model that achieves the highest performance on the dev split
and report the accuracies for both the dev and test sets.

4.5 Baselines
As baselines for our experiments, we utilize the QA-GNN models
trained on CSQA and OBQA datasets respectively. However, we
introduce an extension to the baseline models by increasing the
number of relations to 40, as previously mentioned. This expansion
allows us to investigate the impact of the additional relations on the
model performance. Consequently, we repeat the experiments on
both the original setting with 38 relations and the modified setting
with 40 relations. Additionally, to compare the effectiveness of the
retrieval process, we also used a random-retrieved baseline, where
we randomly sample the triplets (which are connected with the
question and answer entities) to create an optimal sub-graph, as
against using a trained retriever.

5 RESULTS AND ANALYSIS
5.1 Quantitative Results
Table 1 and 2 present the QAGNN model performance results with
heuristic graph baselines and sub-graphs extracted through differ-
ent graph retriever modules on CSQA and OBQA datasets.

Encoder Training Data Relations Dev Accuracy Test Accuracy
QAGNN Heuristic Graphs (Baselines)

- - 38 0.785 0.724
- - 40 0.764 0.732

Random Retrieval Graphs (Baselines)

- - 38 0.760 0.686
- - 40 0.752 0.708

Graph Retriever - Open-Domain QA

BERT-Base CSQA 38 0.745 0.720
BERT-Base No pretraining 40 0.754 0.719
BERT-Base CSQA 40 0.756 0.744
RoBERTa-Base No pretraining 40 0.761 0.707
RoBERTa-Base CSQA 40 0.747 0.725
RoBERTa-Base CSQA+RS 40 0.761 0.708
RoBERTa-Base CSQA+OBQA 40 0.754 0.704
RoBERTa-Base CSQA+OBQA+RS 40 0.743 0.707
RoBERTa-Large CSQA 40 0.756 0.698
Contriever CSQA 40 0.763 0.709

Graph Retriever - Multiple Choice QA

BERT-Base CSQA 38 0.731 0.728
BERT-Base No pretraining 40 0.759 0.694
BERT-Base CSQA 40 0.756 0.732
RoBERTa-Base No pretraining 40 0.756 0.696
RoBERTa-Base CSQA 40 0.753 0.724
RoBERTa-Base CSQA+RS 40 0.745 0.704
RoBERTa-Base CSQA+OBQA 40 0.750 0.701
RoBERTa-Base CSQA+OBQA+RS 40 0.745 0.712
RoBERTa-Large CSQA 40 0.763 0.703
Contriever CSQA 40 0.756 0.713

Table 1: Performance of DrKG modules on CSQA dataset

5.1.1 Number of Relations: Firstly, when comparing the perfor-
mance of baselines with 38 and 40 relations, we note that the model
with 40 relations perform much better in both the datasets. This
indicates that the additional relation to connect context node to
extra nodes is helpful in passing useful information along the GNN

https://github.com/facebookresearch/DPR
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Encoder Training Data Relations Dev Accuracy Test Accuracy
QAGNN Heuristic Graphs (Baselines)

- - 38 0.616 0.594
- - 40 0.712 0.658

Random Retrieval Graphs (Baselines)

- - 38 0.644 0.624
- - 40 0.698 0.670

Graph Retriever - Open-Domain QA

RoBERTa-Base No pretraining 40 0.690 0.670
RoBERTa-Base CSQA 40 0.678 0.644
RoBERTa-Base CSQA+OBQA 40 0.672 0.664
RoBERTa-Large CSQA 40 0.692 0.672
Contriever CSQA 40 0.712 0.682

Graph Retriever - Multiple Choice QA

RoBERTa-Base No pretraining 40 0.660 0.622
RoBERTa-Base CSQA 40 0.678 0.652
RoBERTa-Base CSQA+OBQA 40 0.690 0.658
RoBERTa-Large CSQA 40 0.720 0.688
Contriever CSQA 40 0.680 0.662

Table 2: Performance of DrKG modules on OBQA dataset

network. This was a strong indication for us to pursue other graph
retrieval modules experiments with 40 relations.

5.1.2 Graph Retriever vs Baselines: In our evaluation, we compare
the results obtained from different settings of the graph retriever
modules, including variations in encoder models, training combina-
tions, and the distinction between multi-domain and open-domain
QA, with the baseline models with heuristic graphs. The overall
findings reveal that the graph retriever modules outperform the
heuristic graph extractions when integrated into the end-to-end
QAGNN model training. For the CSQA task, the BERT-base model
trained on the CSQA test dataset, along with the RoBERTA-Large
model trained on CSQA data, yielded the highest performance in
the OBQA task. Additionally, to assess the accuracy of the retrieval
process, we contrast the performance of the retrieved graphs with
subgraphs constructed through random retrieval. Remarkably, we
observe that the randomly sampled triplets (from all the triplets
related to the question and answer entities), perform inadequately
on both datasets. This outcome provides further evidence that the
neural graph retrieval mechanism is capable of learning meaningful
information and extracting relevant triplets.

5.1.3 Base v/s Trained Retriever: It is evident from the results that
the trained DrKG encoder provides a substantial performance im-
provement compared to the base model across all tasks. This obser-
vation highlights the effectiveness of our chosen training data and
the selection of positive and in-batch negative contexts in enhanc-
ing the encoder.

5.1.4 Impact of Training Data: To analyze whether the inclusion of
additional training data would enhance the retriever’s performance,
we conducted pre-training of RoBERTa models using various com-
binations of training data. In the case of the CSQA task, augmenting
the CSQA dataset with more data did not result in significant perfor-
mance improvement for both the multi-domain and open-domain
QA settings. This outcome could be attributed to the fact that the
CSQA dataset already contains a relatively large amount of data
compared to the RS and OBQA datasets. As our ultimate task fo-
cuses on CSQA, incorporating training data from OBQA/RS, which

potentially originates from slightly different distributions, did not
contribute significantly to the training module.

However, for the OBQA task, we observed that the performance
was higher when using the CSQA+OBQA combination in the multi-
choice setting, compared to the base model or the model trained
solely on CSQA. This improvement may be attributed to the limited
amount of data available in the OBQA dataset. The introduction of
data from the richer CSQA dataset facilitates knowledge transfer,
allowing the encoder parameters to learn more effectively.

5.1.5 RoBERTa Base v/s Large Models: In case of OBQA task, we
notice that having a RoBERTa large model is very helpful in boost-
ing the performance in all cases. However, in case of CSQA task,
while having a large model improves the performance on dev set,
there is no significant improvement in the test accuracy. We know
that the test data is anonymous and we only us the in-house dataset
split for test. So, it would be better to use the model for the original
test set to appropriately conclude the impact of large models on
CSQA.

5.1.6 Impact of Contriever: The Contriever encoder proves to be
a highly advantageous choice for integration within the graph
retriever framework. We observed a remarkable performance en-
hancement in the OBQA task compared to the baselines. Addition-
ally, in the CSQA tasks, although the Contriever did not surpass
the baselines, its performance was notably superior to training the
RoBERTa-Large model alone. The Contriever’s superiority can be
attributed to its pre-training on extensive datasets using contrastive
loss. This training methodology enables the model to discern the
attributes of similar objects while distinguishing dissimilar objects.
Consequently, the Contriever excels in learning meaningful deep
representations for both positive and negative contexts, ultimately
leading to performance improvement in the tasks at hand.

5.2 Qualitative Analysis
Based on the empirical results of the QA-GNN end-to-end task
using the retrieved graphs, it is evident that the retrieved graphs ex-
hibit favorable performance. However, since we lack a ground truth
optimal subgraph for measuring the correctness of the extracted
subgraph, we conducted a thorough analysis of the graphs obtained
from training different retriever models such as BERT, RoBERTa,
and Contriever. This analysis aimed to gain insights into the simi-
larities and differences introduced by these models in comparison
to the baseline heuristic graphs. More details for each model are
discussed below:

5.2.1 Heuristic Graphs. In Figure 2, we present heuristic graphs
obtained through a two-hop search in ConceptNet. The graph in-
cludes Question (Q) entities (blue), Answer (A) entities (red), and
Other (O) entities (grey) within the two-hop connections. The graph
is limited to a maximum of 200 nodes, resulting in a high density
with around 4,000 edges. To maintain clarity, the figure excludes
the display of O-O edges. The selected two-hop nodes reveal a path
connecting the question and answer entities.

5.2.2 Graph Retrieval with BERT Encoder. In Figure 3, we present
the re-constructed graphs obtained after applying the graph re-
trieval pipeline with the BERT encoder. In this case, the BERT
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What is someone who isn't clever, bright, or competent called?

Answer: stupid   Prediction: dull
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Figure 2: Retrieved graph with two-hop heuristics

encoder model [4] was pre-trained on the CSQA dataset. As we
limit the number of triplets to be retrieved, the resulting graph is not
as densely connected as the heuristic graphs. However, we observe
that the extracted triplets are closer to the question-answer choice
and exhibit greater relevance compared to the heuristic graph. For
example, the top 5 retrieved triplets for the Question ,“What is some-
one who isn’t clever, bright, or competent called?" are - (bright,
relatedto, bright_young_thing), (bright, relatedto, smart), (bright,
relatedto, witty), (clever, relatedto, bright_spark), (clever, relatedto,
dull_headed). We notice that these are very closely related to the
key entities in the question like “bright" and “clever" and ignores
the unrelated entities like “called". In the previous heuristic graph,
since we were taking one hop neighbourhood, there are edges from
all the question entities even though unrelated. Additionally, there
are some very unrelated entities extracted in the heuristic graph
like “varying_camera_focal_point", “lambent" which is focussed
on the entity “bright" in context of light, but does not make sense
in the context of the question. Additionally, despite the extensive
extraction of the dense subgraph in the heuristic graph, it failed to
correctly identify the answer choice. On the other hand, the graph
extracted by the BERT retriever accurately identifies the correct
answer. Note that the BERT-retrieved graph is considerably smaller
in comparison to the heuristic graph.

5.2.3 Graph Retrieval with RoBERTa Encoder. In Figure 4, we show-
case the retrieved graphs obtained using the RoBERTa [15] encoder
in the graph retriever. These graphs exhibit similarities to those
obtained with the BERT retriever since both models are trained in a
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Figure 3: Retrieved graph with BERT encoder in DrKG

similar manner. However, due to the RoBERTa model being trained
on a larger corpus and having a better understanding of context,
the retrieved graphs demonstrate nodes that are closer in proximity
to the contextual understanding of the question.

For the presented example, numerous entities are related to
synonyms, related words, and antonyms of “clever" or “bright,"
providing a richer context for answering the question. It is worth
noting that in both the BERT and RoBERTa models, the graphs are
not highly connected to the answer entities but primarily connected
to the question entities. This observation suggests that greater
importance is placed on the context of the question during triplet
extraction, rather than direct connections to the answer entities.

5.2.4 Graph Retrieval with Contriever Encoder. In Figure 5, we
showcase the retrieved graphs using the Contriever[8] encoder in
the graph retriever. The Contriever model, based on the transformer
architecture like BERT and RoBERTa, is specifically designed for
information retrieval tasks, such as searching a large document
database to extract relevant information based on a query.

However, Contriever models differ from BERT and RoBERTa
in key aspects. They employ an adaptive span-based approach for
retrieving information from documents, instead of relying on fixed-
length sequences. This adaptive approach enables more effective
retrieval of relevant information from longer documents. The im-
pact of span-based training is evident in the retrieved nodes, which
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Figure 4: Retrieved graph with RoBERTa encoder in DrKG

are more descriptive, and the extracted triplets demonstrate high
relevance to both the question and answer context. Notably, there is
a clear path connecting the question to the answer entities: (heifer,
cows, dairy cattle, farmland, farm), leading to the answer “farm-
house." This path would have been missed if the graph extraction
had been limited to a two-hop structure.

Overall, the retrieved graph exhibits closer contextual alignment
with the question-answer choice. The empirical impact of these
graphs is already demonstrated through the end-to-end training
results, as shown in Table 1. It is important to note that although
some of the retrieved graphs may appear disconnected, this issue
is resolved in the QAGNN model by introducing a context node
that connects to all retrieved nodes, allowing for effective message
passing of information.

5.2.5 Open Domain v/s Multi-choice Graph Retrieval. In Figure 6,
we illustrate the disparity between the graphs retrieved in the open
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Figure 5: Retrieved graph with Contriever encoder

domain and multiple-choice settings. Originally, the CSQA task
is designed as a multiple-choice question answering task. How-
ever, in our proposed methodology, we also approached it as an
open-domain question answering task. In the open domain set-
ting, the retriever is provided only with the question statement
and is not given any information about the answer choices. On the
other hand, in the multiple-choice setting, the statement from the
question-answer choice is used to extract relevant KG triplets. The
difference in the extracted graphs is evident in the figure presented.
Notably, in the multiple-choice setting, the triplets related to the
answer entities are also retrieved in the triplets, whereas in the
open-domain question answering (QnA) setting, this is not the case
since there is no contextual information available regarding the
answer choices.

6 CONCLUSION
In conclusion, our research unveiled a new learning framework
(DrKG) designed specifically to extract optimal subgraphs from
large, structured knowledge graphs, targeting the task of Com-
monsense Question Answering. This framework incorporated a
unique method to represent knowledge graphs into textual form
and then harnessing a dense retriever, trained to isolate relevant
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Figure 6: Retrieved graph with Contriever model in Open Domain v/s Multiple choice QnA setting

subgraph components. To understand the impact of various ele-
ments in the pipeline, we conducted numerous experiments on the
training of the graph dense retriever, varying the type of encoder
architectures and pre-training techniques with different datasets.
Empirical evidence illustrated that our retriever-extracted graphs
performed notably better than heuristic graph baselines employed
in the QA-GNN model. Through the consolidation of our quantita-
tive findings and qualitative insights we can show the effectiveness
of our approach in facilitating logical reasoning. Furthermore, this
technique possesses generalizability and presents potential for ex-
tension to other sub-graph extraction problems within Knowledge
Graph-related tasks.

Despite these promising results, we recognize the potential for
further enhancement in our model’s capabilities. One potential av-
enue for enhancement is to develop a mechanism to incorporate
feedback into the graph retriever, integrating retriever training as

part of the end-to-end network rather than as a separate framework.
This design concept requires further investigation, particularly in
terms of determining appropriate quantitative metrics for provid-
ing feedback to the retriever module. Exploring these possibilities
constitutes an important aspect of our future work.
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A APPENDIX - QUALITATIVE ANALYSIS
Appendix with more some more qualitative examples.

Where does a heifer's master live?

Answer: farm_house   Prediction: farm_house

(G): QA-GNN
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Figure 7: Retrieved graph with BERT encoder

Bert Encoder: For the question, “Where does a heifer’s master
live?" the top-5 relevant triplets retrieved with BERT encoder model
are: (heifer, relatedto, capea), (live, relatedto, woodman), (heifer, re-
latedto, cow), (heifer, relatedto, quey), (woodsman, relatedto, wood),
which are very relevant to the question choice. (Refer 7)

Where does a heifer's master live?

Answer: farm_house   Prediction: farm_house

(G): QA-GNN
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Figure 8: Retrieved graph with RoBERTa encoder

RoBERTa Encoder: For Question in figure 8, the extracted nodes
appear to form contextual clusters related to "heifer," connecting to
categories such as cattle, plants, and animals, which contribute to
a more comprehensive context for deriving the answer “farmhouse".
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Contriever Encoder: For the question in 9, in the first question,
we find the entity “difficult to grasp," which is directly related to the
question about bright and stupid people. These descriptive nodes
are typically missing in in the BERT and RoBERTa retrieved graphs.

What is someone who isn't clever, bright, or competent called?

Answer: stupid   Prediction: stupid

(G): QA-GNN
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Figure 9: Retrieved graph with Contriever encoder
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