
Tackling the Class Imbalance Challenge for Software Defect Type
Classification using Knowledge Augmented Method

Sangameshwar Patil
TCS Research and Dept. of CSE, IIT Madras

India
sangameshwar.patil@tcs.com,sangam@cse.iitm.ac.in

B. Ravindran
Dept. of CSE and RBC DSAI, IIT Madras

India
ravi@cse.iitm.ac.in

ABSTRACT
Automatically predicting the defect type from a software defect
report is an important task for improving the software defect man-
agement process. State-of-the-art solutions for this task are based
on supervised machine learning and its variants. These algorithms
are susceptible to the imbalanced learning challenge (also known
as the class imbalance problem). When the label distribution in
training data is skewed, they are prone to perform poorly on the
minority classes. This leads to imbalanced learning of the classifier
model.

In this paper, we evaluate the feasibility of using the concept-
based classification (CBC) approach to tackle this imbalanced learn-
ing challenge in the automated software defect type prediction task.
CBC approach leverages a knowledge augmented representation
of the documents to be classified and labels using concept-based
semantic representation. As the CBC approach does not need la-
belled training data, it is able to treat each software defect type
label without getting biased by the dominant classes in case of
class-imbalanced datasets. Using experimental evaluation on real-
life datasets, we show that the CBC approach is able to tackle the
class imbalance better than the supervised machine learning al-
gorithms for software defect type prediction task and provides a
viable, knowledge augmented learning approach for the imbalanced
learning problem.

CCS CONCEPTS
• Software and its engineering → Software defect analysis;
Maintaining software; • Computing methodologies → Ma-
chine learning; Natural language processing.

KEYWORDS
Imbalanced Learning, Class Imbalance Problem, Software Defect
Analysis, Concept-based Classification, Knowledge Augmented
Learning

ACM Reference Format:
Sangameshwar Patil and B. Ravindran. 2023. Tackling the Class Imbal-
ance Challenge for Software Defect Type Classification using Knowledge

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KNLP at KDD’23, Aug. 06 - 10, 2023, Long Beach, CA
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Augmented Method. In Proceedings of Second Workshop on Knowledge Aug-
mented Methods for Natural Language Processing, in conjunction with KDD
2023 (KNLP at KDD’23). ACM, New York, NY, USA, 6 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 INTRODUCTION
Software defect type prediction is an important problem in the
software defect management process. The ability to automatically
predict the software defect type from a software defect report can
significantly help in improving the efficiency and reducing the cost
of software defect management process. Different machine learning
techniques such as supervised learning, semi-supervised learning,
active learning, etc. have been proposed for this task [14, 15]. These
techniques need training data labeled by human experts to learn
the classification models. In many real-life software projects, such
labeled training datasets suffer from the class imbalance in their
defect datasets. For instance, Table 1 shows the defect type label
distributions in two datasets classified using two different defect
classification schemes. (Details of these datasets are elaborated in
the Section 3.) In case of a class-imbalanced dataset, the instances
belonging to one or a very few classes significantly outnumber the
instances of other classes.

One of the limitations of the supervised learning algorithms is
that they are susceptible to the imbalanced learning problem (i.e.,
the class imbalance problem). In the context of machine learning,
this problem [2, 9] refers to the undesirable effects of skewed label
distributions in training data on the classification algorithms. These
algorithms tend to perform well when the number of instances be-
longing to each class in the training data are roughly similar to each
other. The class-imbalance can potentially bias the classification
algorithms to focus on the classes having dominant majority. As a
result, performance of these algorithms can suffer on the classes
having very few instances in the training data.

Concept-based classification (CBC) of software defect reports [11]
has been proposed as an alternative to the traditional supervised
learning based approaches for software defect type prediction. CBC
approach leverages a knowledge-augmented representation of the
documents to be classified and labels using concept-based semantic
representation. CBC approach does not need labeled training data;
instead it uses the text description of the software defect report and
a set of keywords describing the software defect types. CBC lever-
ages the human-curated knowledge in Wikipedia by treating each
Wikipedia article as a concept. CBC projects these text snippets
in a concept-space spanned by the Wikipedia articles. Similarity

Accepted to Second Workshop on Knowledge Augmented Methods for Natural Lan-
guage Processing, in conjunction with KDD 2023.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

KNLP at KDD’23, Aug. 06 - 10, 2023, Long Beach, CA Sangameshwar Patil and B. Ravindran

Table 1: Dataset statistics and class label distribution.

Defect Classification Scheme Defect type family Data Set

ODC-based scheme (Table I of [14])

Apache-Libs Roundcube

Control and Data flow 287 394
Structural 98 76
Non Code 115 55

Total 500 525

IEEE-based scheme (Table 2)

Interface 98 102
Logic and Data 288 347
Description 35 4
Build-Config-Install 57 48
Standards 16 6
Syntax 6 18

Total 500 525

between the concepts shared by the projects of the software defect
report and the defect type class labels is used to make the classifica-
tion decisions. This allows the CBC approach to avoid the need of
labeled training data to carry out software defect type classification
by relying solely on the knowledge augmented representation.

In this paper, we focus on following two research questions:
• 𝑅𝑄1: Do the existing benchmark algorithms for software
defect type classification [15] based on the supervised ma-
chine learning (ML) paradigm suffer from the class imbalance
problem?

• 𝑅𝑄2: Can concept-based classification (CBC) provide a feasi-
ble option for tackling the class imbalance problem, as the
CBC approach does not depend on the labeled training data?

Rest of the paper is organized as follows: In Section 2, we give a
brief overview of the concept-based classification approach. Details
of the datasets and experimental setup are provided in the Section 3.
The evaluation of the results and their analysis with respect to
the research questions posed is provided in Section 4. Finally, we
conclude in Section 5.

2 CONCEPT-BASED CLASSIFICATION OF
SOFTWARE DEFECT REPORTS

Concept-based Classification (CBC) has been motivated by the
observation that unlike the supervised learning algorithms, the
human experts do not need a large number of labeled examples to
carry out classification of software defects. Humans seem to make
use of the inherent conceptual knowledge about the software defect
reports and the defect type class labels to estimate the similarity
between them. This intuition has been formalized in the notion of
explicit semantic analysis (ESA) [5]. Concept-based classification
approach for software defect type identification [11] is based on
ESA. An article in the Wikipedia is considered to be equivalent to a
concept grounded in human coginition. The Wikipedia is treated as
a surrogate knowledge representation of the human concept-space.

Let X be the set of software defect reports, i.e., X = {𝑥𝑖 |𝑥𝑖 is the
textual description of 𝑖𝑡ℎ software defect}. Y𝑑 denotes the set of
software defect type labels along with their descriptions to be used
in classification, i.e., Y𝑑 = {(𝑦𝑖 , 𝑑𝑖) | 𝑦𝑖 denotes the software defect
type label and 𝑑𝑖 is the set of keywords and phrases from textual
description of 𝑦𝑖 in the software defect classification scheme }. Let
Y = {𝑦1, 𝑦2, . . . , 𝑦𝑚} be the set of software defect type labels used
for classification. Note that each defect type label 𝑦𝑖 ∈ Y has a

corresponding entry (𝑦𝑖 , 𝑑𝑖) ∈ Y𝑑 . Let 𝑁 be the maximum number
of concepts (i.e., Wikipedia articles) to be used in the concept-based
representations of a defect report or a defect type label.

Then, the concept-based representations of the defect reports
and the defect type labels are computed using ESA as follows –
Let 𝐸𝑥 denote the sparse vector representation of a defect report 𝑥
computed using ESA. 𝐸𝑥 = < (𝑐 𝑗 , 𝑝 𝑗𝑥) >. It is composed of at most
𝑁 tuples in the decreasing order of the concept importance score,
𝑝 𝑗𝑥 . In a tuple entry (𝑐 𝑗 , 𝑝 𝑗𝑥) ∈ 𝐸𝑥 , the score 𝑝 𝑗𝑥 quantifies the
strength of association between the concept (i.e., Wikipedia article)
𝑐 𝑗 and the defect report 𝑥 . It is computed as 𝑝 𝑗𝑥 =

∑
𝑡 ∈𝑥 𝜏 (𝑡, 𝑐 𝑗);

where 𝑡 is a term in the defect report 𝑥 and 𝜏 (𝑡, 𝑐 𝑗) is the term-
weight of 𝑡 in the Wikipedia article 𝑐 𝑗 , computed using the term-
weighting function 𝜏 . We use BM25 [13] as the term-weighting
function 𝜏 . Similarly, for a software defect type label 𝑦𝑖 and its
description 𝑑𝑖 , the concept-based representation computed by ESA
is 𝐸𝑦𝑖 = < (𝑐 𝑗 , 𝑞 𝑗𝑦𝑖) >. The importance score 𝑞 𝑗𝑦𝑖 gives the degree
of relevance between concept 𝑐 𝑗 and the defect type label 𝑦𝑖 . The
importance score is computed as 𝑞 𝑗𝑦𝑖 =

∑
𝑡 ∈𝑑𝑖 𝜏 (𝑡, 𝑐 𝑗); where 𝑡 is

a term in 𝑑𝑖 , the description of software defect type label 𝑦𝑖 and
𝜏 (𝑡, 𝑐 𝑗) is the term-weight of 𝑡 in concept (i.e., Wikipedia article)
𝑐 𝑗 .

Once the concept-based representations have been computed,
the degree of relevance of a defect type label for a given sofware
defect is computed using cosine similarity. To make the final clas-
sification decision, the defect type class label having the highest
cosine similarity with the concept-based representation of the de-
fect report 𝑥 is used.

𝐶𝐵𝐶 (𝑥,Y,Y𝑑) =𝑦𝑖 ∈Y
𝐸𝑥 · 𝐸𝑦𝑖

∥𝐸𝑥 ∥ · ∥𝐸𝑦𝑖 ∥

=𝑦𝑖 ∈Y

∑︁
𝑐 𝑗 ∈𝐸𝑥 ∧ 𝑐 𝑗 ∈𝐸𝑦𝑖

𝑝 𝑗𝑥 · 𝑞 𝑗𝑦𝑖√︄ ∑︁
𝑐 𝑗 ∈𝐸𝑥

𝑝2
𝑗𝑥

·
√︄ ∑︁

𝑐 𝑗 ∈𝐸𝑦𝑖

𝑞2
𝑗𝑦𝑖

(1)

3 EXPERIMENTAL SETUP
3.1 Datasets
We use two software defect datasets from real-life software projects
and two different software defect classification schemes for ex-
perimental evaluation of the research questions. The datasets are
available on request for research purpose. The first dataset, Apache-
Libs, is the standard software defect dataset used by Thung et al.
[14, 15] to establish and benchmark the state-of-the-art for the soft-
ware defect type classification. The Apache-Libs dataset contains a
total of 500 defects from Apache JIRA repositories of three open-
source libraries. It consists of (i) 200 randomly sampled defects from
Mahout, (ii) 200 randomly sampled defects from Lucene, and (iii)
100 randomly sampled defects from OpenNLP. These libraries are

https://issues.apache.org/jira/issues/
Mahout, the machine learning library, https://mahout.apache.org
Lucene, the search engine library https://lucene.apache.org/core
OpenNLP, the natural language processing library https://opennlp.apache.org

 https://issues.apache.org/jira/issues/
https://mahout.apache.org
https://lucene.apache.org/core
https://opennlp.apache.org

Tackling the Class Imbalance Challenge for Software Defect Type Classification using Knowledge Augmented Method KNLP at KDD’23, Aug. 06 - 10, 2023, Long Beach, CA

Table 2: The software defect type families based on Table A.1 (Annexure A) of IEEE 1044-2009 Standard [8]

Defect
Type
Family

Defect
Type in
IEEE 1044
Table A.1

Description

Logic
and
Data

Logic

“Defect in decision logic, branching, sequencing, or computational algorithm, as found in natural language
specifications or in implementation language. Examples: Missing else clause; Incorrect sequencing of operations;
Incorrect operator or operand in expression; Missing logic to test for or respond to an error condition (e.g.,
return code, end of file, null value, etc.); Input value not compared with valid range; Missing system response in
sequence diagram; Ambiguous definition of business rule in specification . . . ”

Data
“Defect in data definition, initialization, mapping, access, or use, as found in a model, specification, or imple-
mentation. Examples: Variable not assigned initial value or flag not set; Incorrect data type or column size;
Incorrect variable name used; Valid range undefined; Incorrect relationship cardinality in data model; Missing
or incorrect value in pick list . . . ”

Interface Interface

“Defect in specification or implementation of an interface (e.g., between user and machine, between two internal
software modules, between software module and database, between internal and external software components,
between software and hardware, etc.). Examples: Incorrect module interface design or implementation; Incorrect
report layout (design or implementation); Incorrect or insufficient parameters passed; Cryptic or unfamiliar
label or message in user interface; Incomplete or incorrect message sent or displayed; Missing required field on
data entry screen . . . ”

Description Description “Defect in description of software or its use, installation, or operation . . . ”

Syntax Syntax “Nonconformity with the defined rules of a language. . . . ”

Standards Standards “Nonconformity with a defined standard. . . . ”

Build-
Config-
Install

Others
(Build/
Package/
Installation/
Config)

“(Other defects for which there is no defined type in IEEE 1044-2009 Table A.1). Problems encountered during
the build process, in library systems, or with management of change or version control . . . ”, or “Problems in the
configuration files or parameters”, or “Problems in the installation process”

developed using Java programming language. The second defect
report dataset has been collected from the Roundcube webmail
software. Roundcube is a public webmail solution with a desktop-
like GUI. It is developed using PHP, a database, TinyMCE rich-text
editor, an IMAP library, etc.

3.2 Software Defect Classification Schemes
We use two different software defect type classification schemes
derived from well-known standards. The first defect classification
scheme has been used by [14, 15] to establish the state-of-the-art. It
is based on the well-known IBM Orthogonal Defect Classification
(ODC) [6, 7]. Please refer Table I of [14] for the details of this scheme.
It uses three high-level defect type families to classify the defects:
(i) Control and Data Flow, (ii) Structural, and (iii) Non-code.

The second defect classification scheme as shown in Table 2
is based on the sample defect classification scheme in Table A.1
(Annexure A) of IEEE 1044-2009 Standard [8]. It has six high-level
defect type families, viz., (i) Interface, (ii) Logic and Data, (iii) De-
scription, (iv) Standards, (v) Syntax, and (vi) Build-Config-Install.

https://github.com/roundcube/roundcubemail/issues
https://roundcube.net/about/

The dataset statistics and the class label distribution of software de-
fect type families annotated using these two classification schemes
are summarized in the Table 1.

3.3 Algorithm Implementations
3.3.1 Supervised Learning: To implement the current state-of-the-
art solutions for software defect type classification, we used scikit-
learn [12] library. According to Thung et al. [15], following the
standard fully supervised learning approach, the Support VectorMa-
chine (SVM) algorithm had given the best results. We implemented
it using the scikit-learn (version 0.20.1). Since, as per Table 1, the
least number of examples for a class are 4 (in case of Description
class), we use stratified 4-fold cross-validation to ensure that there
is at least one instance for each class while splitting the dataset into
training and test subsets.

3.3.2 SMOTE and Other Standard Approaches for Imbalanced Learn-
ing: An established approach to tackle the imbalanced learning
problem has been either to oversample the minority class(es) or to
undersample majority class(es) so that number of training examples
in the input are comparable for each class. Random OverSampling

https://github.com/roundcube/roundcubemail/issues
https://roundcube.net/about/

KNLP at KDD’23, Aug. 06 - 10, 2023, Long Beach, CA Sangameshwar Patil and B. Ravindran

Table 3: Class imbalance results: (i) CBC is the Concept-based classification approach, (ii) Supervised ML results are for SVM
classifier (the best performing supervised algorithm for this task as per [15]) with 4-fold cross-validation (i.e., 75% labeled
training data and 25% test data), (iii) Class-imbalanced learning in supervised ML setting: SMOTE algorithm [1] with the SVM
classifier. (Numbers in ‘boldface’ font highlight the high recall values for the majority class and the numbers with underline
highlight the adverse effect on recall for the minority class, emphasizing the challenge of class imbalance for supervised ML
setting.)

Dataset
Classification
Scheme

Defect
type
family

Algorithm

CBC Supervised ML (SVM) SMOTE

P R F1 P R F1 P R F1

Apache
Libs

ODC
Control & Data flow 73.44 77.78 75.55 67.53 96.49 79.43 73.09 81.52 76.98

Structural 50.0 27.88 35.80 54.43 14.61 22.44 41.84 36.44 38.53
Non Code 48.15 60.19 53.50 89.62 48.70 62.59 68.66 54.26 60.15

IEEE

Interface 33.06 41.84 36.94 49.75 13.32 20.60 38.21 35.93 36.55
Logic & Data 70.98 70.49 70.73 64.96 97.42 77.94 71.58 82.48 76.59
Description 56.0 40.0 46.67 84.42 28.99 41.87 58.81 37.40 44.56

Build-Config-Install 76.92 17.54 28.57 81.37 44.65 56.47 61.98 52.22 54.93
Standards 40.0 12.50 19.05 0.00 0 0.00 14.58 4.62 6.76
Syntax 6.52 50.00 11.54 0.00 0 0.00 0 0 0

Round
cube

ODC
Control & Data flow 89.19 67.01 76.52 79.12 99.18 88.02 83.35 91.29 87.09

Structural 42.86 47.37 45.00 53.33 5.92 10.47 41.95 28.55 33.49
Non Code 25.17 65.45 36.36 85.70 35.05 48.67 71.51 50.31 57.49

IEEE

Interface 34.50 67.65 45.70 57.38 14.97 23.39 46.40 37.62 41.35
Logic & Data 82.61 49.28 61.73 70.96 97.26 82.04 75.62 86.83 80.81
Description 4.76 25.00 8.00 0 0 0 0 0 0

Build-Config-Install 66.67 33.33 44.44 85.52 35.83 48.89 73.72 51.04 59.12
Standards 25.0 50.0 33.33 0 0 0 23.75 17.50 19.17
Syntax 10.91 33.33 16.44 21.25 5.75 8.88 57.92 32.88 38.44

technique expands the training dataset by adding more examples
to the minority class(es) by oversampling them. A complementary
approach is taken by Random UnderSampling technique in which
the training dataset size is shrunk by undersampling the majority
class so as to remove the skewness in the label distribution and
make the training dataset balanced with respect the number of
instances belonging to each class.

Synthetic Minority Oversampling TEchnique, (or more popu-
larly known as SMOTE) [1, 3] is an advanced version of the basic
oversampling technique that creates new, synthetic training in-
stances by interpolating the instances of the minority class in X,
the given input data. While iterating over an instance 𝑥 ∈ X of
the minority class, SMOTE first randomly selects 𝑥𝑛𝑛 , one of the
k-nearest neighbors belonging to the same class. Then, to create
a new artificial data instance, 𝑥𝑆𝑀𝑂𝑇𝐸 to be added to the training
set, the feature values of 𝑥 and 𝑥𝑛𝑛 are linearly interpolated, i.e.,
𝑥𝑆𝑀𝑂𝑇𝐸 = 𝑥 + 𝛼.(𝑥𝑛𝑛 − 𝑥), where 𝛼 ∈ (0, 1).

We use the imbalanced-learn python library [10] to implement
the standard and well-known approaches for imbalanced learning:

(1) Synthetic Minority Oversampling TEchnique (SMOTE)
(2) Random Over-sampling (ROS)
(3) Random Under-sampling (RUS)

3.3.3 Concept-based Classification: To implement the CBC ap-
proach, we use the Wikipedia dump, the JWPL library and the
Lucene library. Note that the CBC approach does not need labeled

training data. Instead, CBC relies on the the human-curated knowl-
edge in the Wikipedia as a computationally amenable approxima-
tion for the human concept-space. Since the defect reports and the
software defect classification scheme are in English, we use the
English Wikipedia as the knowledge-base. We remove stub-like
Wikipedia articles which are very short (having less than 100 char-
acters in content), or have less than 3 hyperlinks. We assume that
such short articles do not constrain sufficient content or they are
isolated/pendant nodes in the Wikipedia hyperlink graph. We use
Wikipedia dump snapshot was taken from theWikipedia website on
14𝑡ℎ April 2016. In order to parse the Wikipedia dump and extract
plain text from the Wikitext markup language, we use the DKPro
Java Wikipedia Library (JWPL) [4, 17]. We use Lucene (version 6.6)
to index the Wikipedia pages parsed by JWPL.

3.4 Evaluation Measures
We use the standard evaluation metrics [16] of precision, recall
and 𝐹1 score to evaluate the accuracy of the proposed approach.
Precision (𝑃𝑖) for the 𝑖𝑡ℎ class label (i.e., defect type label 𝑦𝑖 ∈ Y)
measures how many of the instances (i.e., defect reports) predicted
as the 𝑖𝑡ℎ class actually belong to that class in the gold-standard

https://dumps.wikimedia.org
https://en.wikipedia.org/wiki/Help:Wikitext

https://dumps.wikimedia.org
https://en.wikipedia.org/wiki/Help:Wikitext

Tackling the Class Imbalance Challenge for Software Defect Type Classification using Knowledge Augmented Method KNLP at KDD’23, Aug. 06 - 10, 2023, Long Beach, CA

dataset (i.e., the expert annotated ground-truth).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃𝑖) =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

Recall (𝑅𝑖) for 𝑖𝑡ℎ class label measures how many of the instances
belonging to the 𝑖𝑡ℎ class in the gold dataset are correctly predicted
by the classifier.

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅𝑖) =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

where𝑇𝑃𝑖 denotes the true positives, 𝐹𝑃𝑖 denotes the false positives,
and 𝐹𝑁𝑖 denotes the false negatives for the 𝑖𝑡ℎ class label. The 𝐹1𝑖
score for 𝑖𝑡ℎ class label is the harmonic mean of the corresponding
precision (𝑃𝑖) and recall (𝑅𝑖).

𝐹1𝑖 =
2 · 𝑃𝑖 · 𝑅𝑖
𝑃𝑖 + 𝑅𝑖

4 RESULTS AND ANALYSIS
Table 3 summarizes the per-class accuracies in terms of the preci-
sion, recall and F1 measures for the different approaches to address
the software defect type classification task.

As we can observe from Table 1, there is class imbalance in the
datasets. For the IEEE-based classification scheme, the number of
examples belonging to the Logic and Data class signifiantly domi-
nate the minority classes such as Description, Standards, or Syntax
for both the datasets. Similarly, when we use the ODC-based defect
classification scheme, the Control and Data flow defect type domi-
nates the other classes, though the degree of imbalance is relatively
lesser than the IEEE based classification.

While using SMOTE and other standard approaches for imbal-
anced learning, we used SVM as the underlying classification algo-
rithm as SVM has been reported [15] to perform the best for this
task. Results of SMOTE and Random Over-sampling techniques
were comparable. Random Under-sampling performed poorly than
both SMOTE and Random Over-sampling. Due to space constraints,
we report only the results for SMOTE based approach for imbal-
anced learning.

𝑅𝑄1: The impact of class imbalance in the dataset is discernible
in the Table 3. The accuracy of the dominant classes such as Logic
and Data or Control and Data flow is significantly higher than other
classes for the supervised ML (SVM) as well as SMOTE. Note that,
for the dominant classes the recall (R) is very high compared to
other classes. This clearly indicates that the standard supervised
learning approach tends to get biased by the classes having large
number of training instances at the expense of the classes having
smaller number of instances. This happens because they try to
learn the dominant patterns in the labeled training data and in
this process, the smaller classes get overshadowed by the patterns
characterizing the classes with larger number of instances. Observe
that the classes with less number of examples, such as Syntax or
Standards get very poor accuracy.

𝑅𝑄2: Observe that under the CBC approach, the accurancy of mi-
nority classes is not as severely impacted due to the class imbalance
as in the case of supervised ML approach. CBC approach does not
need the labeled training data and instead it relies on the knowledge
augmented representation using Wikipedia as a concept-space. As
a result of this, CBC approach does not get biased by the patterns

characterizing the classes that dominate the label distribution in
training data. SMOTE does better than the standard supervised ML
approach, but still the minority classes do suffer to an extent. Fur-
ther, we need to note that SMOTE based approach does still require
the labeled training data (75% labeled data in this case due to 4-fold
cross-validation). CBC approach does not have this dependence
on labeled training data. Hence, we believe that CBC approach
does provide a feasible alternative to tackle the class imbalance
problem which is faced by the traditional supervised learning ap-
proach and the over-sampling/under-sampling based approaches
for imbalanced learning.

5 CONCLUSION
In this paper, we examined the feasibility of using the concept-based
classification approach to tackle the class imbalance problem faced
by the supervised learning paradigm. The CBC approach leverages
a knowledge augmented representation of the documents to be clas-
sified and labels computed using the human-curated knowledge in
Wikipedia. As the CBC approach does not need labeled training
data, it is able to treat each software defect type label without get-
ting biased by the skew in the label distributions in case of class
imbalanced datasets. In case a dataset is class imbalanced, then the
CBC approach has a natural advantage over the standard super-
vised machine learning algorithms. This helps the concept-based
classification approach to overcome the important limitation, viz.,
dependence on labeled training data, when using the supervised
machine learning paradigm as well standard imbalanced learning
approaches such as SMOTE.

REFERENCES
[1] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.

2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321–357.

[2] Nitesh V. Chawla, Nathalie Japkowicz, and Aleksander Kotcz. 2004. Edit.: Special
Issue on Learning from Imbalanced Data Sets. SIGKDD Explorations Newsletter 6,
1 (June 2004), 1–6. https://doi.org/10.1145/1007730.1007733

[3] Alberto Fernández, Salvador Garcia, Francisco Herrera, and Nitesh V Chawla.
2018. SMOTE for learning from imbalanced data: progress and challenges, mark-
ing the 15-year anniversary. Journal of artificial intelligence research 61 (2018),
863–905.

[4] Oliver Ferschke, Torsten Zesch, and Iryna Gurevych. 2011. Wikipedia Revision
Toolkit: Efficiently Accessing Wikipedia’s Edit History. In Proc. of the ACL-HLT
2011 System Demonstrations. Association for Computational Linguistics, 97–102.

[5] Evgeniy Gabrilovich and Shaul Markovitch. 2007. Computing semantic related-
ness using wikipedia-based explicit semantic analysis. In Proc. of the Twentieth
International Joint Conference on Artificial Intelligence (IJCAI), Vol. 7. 1606–1611.

[6] IBM. 2013. Orthogonal Defect Classification version 5.2 extensions for De-
fects in GUI, User Documentation, Build and National Language Support
(NLS). https://researcher.watson.ibm.com/researcher/files/us-pasanth/ODC-5-2-
Extensions.pdf. (URL accessibility verified on 9𝑡ℎ Nov., 2018).

[7] IBM. 2013. Orthogonal Defect Classification version 5.2 For Software Design
and Code. http://researcher.watson.ibm.com/researcher/files/us-pasanth/ODC-5-
2.pdf. (URL accessibility verified on 9𝑡ℎ Nov., 2018).

[8] IEEE. 2009. IEEE Standard 1044-2009 Classification for Software Anomalies.
[9] Nathalie Japkowicz and Shaju Stephen. 2002. The class imbalance problem: A

systematic study. Intelligent data analysis 6, 5 (2002), 429–449.
[10] Guillaume Lemaître, Fernando Nogueira, and Christos K Aridas. 2017.

Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets
in machine learning. The Journal of Machine Learning Research 18, 1 (2017),
559–563.

[11] Sangameshwar Patil. 2017. Concept based Classification of Software Defect
Reports. In Proc. of 14th International Conference on Mining Software Repositories
(MSR). IEEE/ACM.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

https://doi.org/10.1145/1007730.1007733

KNLP at KDD’23, Aug. 06 - 10, 2023, Long Beach, CA Sangameshwar Patil and B. Ravindran

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.
[13] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance

framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.

[14] Ferdian Thung, Xuan-Bach Le D., and David Lo. 2015. Active Semi-Supervised
Defect Categorization. In Proc. of IEEE 23rd International Conference on Program
Comprehension (ICPC). 60–70.

[15] Ferdian Thung, David Lo, and Lingxiao Jiang. 2012. Automatic defect categoriza-
tion. In Proc. of 19th Working Conference on Reverse Engineering (WCRE). IEEE,
205–214.

[16] Mohammed J. Zaki and Jr. Wagner Meira. 2014. Data Mining and Analysis:
Fundamental Concepts and Algorithms. Cambridge University Press.

[17] Torsten Zesch, Christof Müller, and Iryna Gurevych. 2008. Extracting Lexical
Semantic Knowledge fromWikipedia andWiktionary.. In Proc. of 6th International
Conference on Language Resources and Evaluation (LREC), Vol. 8. 1646–1652.

	Abstract
	1 Introduction
	2 Concept-based Classification of Software Defect Reports
	3 Experimental Setup
	3.1 Datasets
	3.2 Software Defect Classification Schemes
	3.3 Algorithm Implementations
	3.4 Evaluation Measures

	4 Results and Analysis
	5 Conclusion
	References

