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ABSTRACT
Transformer-based language models have achieved impressive suc-
cess in various natural language processing tasks due to their ability
to capture complex dependencies and contextual information using
self-attention mechanisms. However, they are not without limita-
tions. These limitations include hallucinations, where they produce
incorrect outputs with high confidence, and alignment issues, where
they generate unhelpful and unsafe outputs for human users. These
limitations stem from the absence of implicit and missing context
in the data alone. To address this, researchers have explored aug-
menting these models with external knowledge from knowledge
graphs to provide the necessary additional context. However, the
ad-hoc nature of existing methods makes it difficult to properly
analyze the effects of knowledge infusion on the many moving
parts or components of a transformer. This paper introduces a sys-
tematic method for infusing knowledge into different components
of a transformer-based model. A modular framework is proposed
to identify specific components within the transformer architec-
ture, such as the self-attention mechanism, encoder layers, or the
input embedding layer, where knowledge infusion can be applied.
Additionally, extensive experiments are conducted on the General
Language Understanding Evaluation (GLUE) benchmark tasks, and
the findings are reported. This systematic approach aims to facili-
tate more principled approaches to incorporating knowledge into
language model architectures.
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1 INTRODUCTION
Language modeling has witnessed significant advancements with
the introduction of self-attention-based transformer architectures
(e.g., GPT-3, ChatGPT, PaLM, etc.)[1, 2]. Thesemodels have achieved
remarkable success in a wide range of natural language process-
ing tasks, demonstrating their ability to generate coherent and
contextually relevant text. By utilizing self-attention mechanisms,
transformers excel at capturing long-range dependencies and estab-
lishing meaningful relationships between words, enabling them to
generate high-quality, context-aware text. However, despite their
successes, self-attention-based transformer models have limitations
when it comes to capturing all the necessary context solely from the

available data. Language models often struggle with comprehend-
ing missing or implicit information, particularly in scenarios where
the training data is incomplete or lack the desired context[3]. This
limitation can lead to generated text that is plausible but semanti-
cally incorrect or inconsistent, diminishing the model’s ability to
fully understand and generate language with nuanced meaning[4].
To address these limitations, incorporating external knowledge
into language models can provide the missing and implicit context
required for accurate language generation. External knowledge,
such as factual information, world knowledge, or domain-specific
expertise, can supplement the training data by offering additional
context that may not be explicitly present in the data alone. By in-
tegrating external knowledge, language models can enhance their
understanding of complex concepts, disambiguate ambiguous state-
ments, and generate more coherent and contextually accurate text.

However, the existing methods used to incorporate external
knowledge into language models often lack a systematic and well-
defined approach. These methods seem rather ad hoc, as they intro-
duce knowledge at various components of the transformer architec-
ture based mainly on empirical justifications related to improved
performance in downstream tasks. Transformers comprise several
interconnected components, including input embedding matrices,
encoder layers, and self-attention operations. One concern is that
augmenting knowledge in an ad hoc manner may lead to the ex-
ploitation of statistical artifacts by the numerous moving parts of
the transformer[5]. For instance, it could involve overfitting by uti-
lizing additional parameters provided by the knowledge or fitting
to task-specific hidden or spurious patterns to achieve high down-
stream performance scores. Consequently, it remains unclear, based
solely on performance metrics, to what extent such augmentation
truly enhances the language comprehension and understanding of
the model[6].

In light of these limitations, we propose a systematic approach
to infusing knowledge in language models that adopts different
strategies depending on the specific transformer component. Ini-
tially, we categorize the architectural elements of a transformer into
two groups: (i) inductive biases, such as the self-attention matrices,
and (ii) latent representations, including the input embeddings and
the intermediate representations between encoder layers (Figure 1
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illustrates this categorization). Subsequently, we introduce three
distinct categories of knowledge infusion: (i) shallow knowledge
infusion, which involves incorporating knowledge at the latent rep-
resentations of the first transformer block; (ii) semi-deep knowledge
infusion, where knowledge is also integrated at the self-attention
matrix (inductive bias) of the first transformer block, and (iii) deep
knowledge infusion, which interleaves knowledge incorporation
at the latent representations and self-attention matrices (inductive
biases) of the various transformer blocks. In essence, these three
methods aim to infuse knowledge at either the level of inductive
biases, latent representations, or both. To evaluate the effectiveness
of the three categories of knowledge infusion, we conduct exten-
sive experimentation and ablation studies on various tasks from
the General Language Understanding Evaluation (GLUE) bench-
mark, reporting our findings[7]. As mentioned earlier, due to the
potential exploitation of statistical artifacts by knowledge infusion
methods, traditional downstream task performance metrics can be
an ineffective measure of knowledge infusion. Therefore, we also
introduce new evaluation metrics for a more robust measurement
of the effectiveness of knowledge infusion (see Section 3.2). Our re-
sults indicate that deep knowledge infusion outperforms the other
two categories of knowledge infusion using both traditional metrics
of accuracy and F1-score, as well as the newly introduced metrics.
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Figure 1: The figure shows the different components of a
transformer block, categorized into inductive biases and la-
tent representations. We categorize the input embeddings
and the representations obtained after each encoder as latent
representations and the self-attention matrices as inductive
biases. This structure is repeated N times (e.g., 12 times in
BERT).

2 KNOWLEDGE-INFUSED SELF-ATTENTION
TRANSFORMERS

(a) Knowledge Graph Compression for
Knowledge Infusion
Since a transformer architecture consists of two distinct types of
components, namely (i) inductive biases represented as matrices
and (ii) latent representations represented as vectors (as depicted
in Figure 1), the challenge lies in compressing external knowledge
from knowledge graphs into one of these mathematical represen-
tations. This compression process enables the infusion of external

knowledge into the transformer-based models. For this, we first
obtain knowledge graph node embeddings (vectors) using a graph
encoder network (e.g., numberbatch embeddings obtained by com-
pression of the knowledge graph ConceptNet) and then compute
pair-wise inner products between the node embeddings to obtain
a graph node embedding-based correlation matrix[8]. Figure 2 (a)
illustrates this knowledge compression process.

(b) Defining Knowledge Infusion Operations
Having obtained the knowledge graph representation in the form
of matrices and vectors, we proceed to define two distinct infusion
operations. The first operation involves infusing knowledge at the
latent representations of a transformer block, which is achieved
by adding the graph node embedding vectors to the existing latent
representations within the transformer block. The second operation
pertains to infusing knowledge at the inductive biases of a trans-
former block. In this case, the infusion entails adding the graph node
embedding-based correlation matrix to the inductive bias, which
corresponds to the self-attention matrix of the transformer block.
Figure 2 (b) provides a visual depiction of these two operations.

(c) Shallow Knowledge Infusion
Shallow Infusion involves the operation of infusing the knowledge
at the latent representations of just the first transformer block of a
transformer-based architecture. It is important to note that a single
block usually consists of multiple heads, each associated with its
own set of latent representations. In such cases, the knowledge
infusion operation is performed on all the latent representations
corresponding to the multiple heads. Figure 2 (c) visually represents
the shallow infusion approach.

(d) Semi-deep Knowledge Infusion
Semi-deep Infusion involves both the operations of infusing the
knowledge at the latent representations and the inductive biases
of just the first transformer block. Similar to the shallow infusion
method, if there are multiple heads present, the infusion opera-
tions are performed across all heads. Figure 2 (d) provides a visual
illustration of the semi-deep infusion approach.

(e) Deep Knowledge Infusion
Deep Infusion involves both operations of infusing the knowledge
at the latent representations and the inductive biases of all the 𝑁
transformer blocks. Once again, if there are multiple heads present,
these operations are performed across all heads. Figure 2 (e) il-
lustrates the deep-infusion approach, showcasing the infusion of
knowledge throughout the transformer blocks.

3 EVALUATION TASKS AND METRICS USED
IN EXPERIMENTATION

3.1 Evaluation Tasks
To assess the performance, we utilize the General Language Under-
standing Evaluation (GLUE) benchmark tasks. We categorize the
tasks we experiment with into three distinct types, which serve as
significant indicators of a model’s language comprehension abili-
ties.:
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Figure 2: (a) Knowledge compression - Compressing the information in the knowledge graph into graph node embeddings
(vectors) and graph node embedding-based correlations (matrices) for infusion in transformer architectures, namely at the
latent representations of the transformer (vectors), or the inductive biases (self-attention matrices). (b) Knowledge infusion
operations - Once compressed, we define the operation of knowledge infusion using vectors and matrices as summing the
inductive biases (matrices) with the graph node embedding-based correlations and summing the latent representations (vectors)
with the graph node embeddings. (c) Shallow infusion - Performing the knowledge infusion operation of adding the graph node
embeddings to the latent representations of the first transformer block. (d) Semi-deep infusion - Performing the knowledge
infusion operation of adding the graph node embedding-based correlation matrix to the inductive bias matrix of the first
transformer block. (e) Deep infusion - Performing both adding the graph node embeddings and graph node embedding-based
correlations to the latent representations and inductive biases across all 𝑁 transformer blocks.

Natural Language Inference (NLI) tasks. The GLUE tasks MNLI
(Multi-genre Natural Language Inference), QNLI (Question An-
swering Natural Language Inference), and WNLI (Winograd Natu-
ral Language Inference) test NLI capabilities from varying angles.
MNLI tests whether the model can appropriately judge if a sentence
logically follows from another, i.e., logical entailment. QNLI tests
similar logical entailment between question and statement pairs -
does it make logical sense to ask a follow-up question? WNLI tests
logical entailment in the presence of pronouns and the nouns they
reference.

Textual Entailment (TE) tasks. The GLUE task RTE (Recognizing
Textual Entailment) tests for logical entailment similar to the NLI
task MNLI. However, RTE emphasizes on the meaning - given two
text fragments, whether the meaning of one can be entailed (or can
be inferred) from the other.

Textual Similarity (TS) tasks. The GLUE task QQP (Quora Ques-
tion Pairs) tests for the ability to assess the semantic equivalence,

measured as the similarity between a pair of questions that appear
on the social media forum Quora.

3.2 Evaluation Metrics
In Section 1, we discussed how ad hoc knowledge infusion tech-
niques can lead to models exploiting statistical artifacts towards
achieving high downstream task performance. Therefore, to eval-
uate the different knowledge infusion methods, in addition to the
traditional performance metrics of accuracy, F1-scores across GLUE
tasks, we also devise the following metrics:

3.2.1 Combined Graph Encoder and KSAT model Accuracy
(CGKA). :This metric evaluates the combined accuracies of two
components. Firstly, it measures the accuracy of link prediction
by the graph encoder on a separate test set that includes triples
from the knowledge graph it encodes. Link prediction is carried
out by summing the subject and predicate vectors and finding the
closest object vector in a (subject, predicate, object) triple (we check
if the similarity is greater than a threshold in our experiments, see
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Model QQP QNLI WNLI MNLI RTE
Baseline (XLNET) 74.79 84.17 79.9 72.3 83.6
Shallow Infusion 76.11 89.9 80.5 75.3 85.1

Semi-Deep Infusion 80.2 90.5 90.5 82.1 90.3
Deep-Infusion 80.9 92.3 90.91 88.53 90.4

Table 1: Shows the comparison of accuracy across the different GLUE tasks from Section 3 for the baseline XLNET model and
its variants using the different kinds of knowledge infusion - Shallow, Semi-deep and Deep Infusion. We see that there is steady
improvement as external knowledge is included at different components, i.e., latent representations and Inductive biases of a
transformer-based model.

Section 5.2). These triples were not used during runtime. Secondly,
it calculates the average accuracy of the KSAT model across all the
GLUE tasks. The underlying idea is that if we observe high scores
on conventional accuracy and F1-score metrics but low scores on
the CGKA metric, it suggests that the KSAT model has possibly
learned misleading patterns. A low CGKA score indicates a lack of
capturing knowledge graph information by the graph encoder.

3.2.2 Data Efficiency at K (DE@k). : This metric evaluates the
performance of the KSAT model after training it with only k%
of the total available training data. The rationale behind this is
that effective knowledge infusion should result in improved data
sufficiency. In other words, the additional context provided by high-
quality knowledge should compensate for the need for a large
volume of data to achieve good performance.

4 KNOWLEDGE GRAPHS, GRAPH ENCODER
NETWORKS, AND TRANSFORMER MODELS
USED IN EXPERIMENTATION

We use the knowledge graphs ConceptNet and WorNet in our
experiments. For the graph encoder network to obtain graph node
embeddings (see Figure 2 (a)), we use ConceptNet Numberbatch
embeddings and ewise embeddings for ConceptNet and WordNet,
respectively[8, 9]. We sum the graph node embeddings from both
ConceptNet and WordNet for every input token to obtain a single
graph node embedding per token. For the transformer models using
which we test knowledge infusion, we use the language models -
BERT, XLNET, RoBERTa, ELECTRA, and Longformer[10–14].

5 EXPERIMENTS
5.1 Traditional Performance Tests
For all our experiments, we use the large version of the models. All
experiments are run on a single A100 GPU. We use the standard
configurations of the models (e.g., 12 heads per block and 𝑁=12
in BERT) Out of all the transformer-based models we experiment
with from among those listed in Section 4, XLNET performs the
best, both as a baseline and when used with various knowledge
infusion techniques. Table 1 shows this result.

5.2 Performance Tests using Newly Introduced
Metrics

For the DE@K metric, we want to see if higher performance can be
achieved using lesser data. So we plot results averaged across the

GLUE tasks for each transformer-based model with the different
infusion techniques using only 50% of the training data, i.e., DE@50.
We also want tomeasure the combined accuracies on link prediction
of the embeddings from ConceptNet and WordNet(summed) with
the average performance across the GLUE tasks. The method of
link prediction is as described in Section 3.2.1, i.e., to predict a link
between a subject and object in a (subject, predicate, object) triple,
we check if the cosine similarity between the sum of subject and
predicate vectors, and the object vectors is greater than 0.5 (we
tuned this number from the set {0, 0.25, 0.5, 0.75}. Table 2 shows the
results.

Model CGKA DE@50 DE@75 DE@100

BERT 80/71/67/ 81/79/70 81/81/73 82/81/73

RoBERTa 79/67/65/ 81/74/71 81/76/73 82/79/73

ELECTRA 80/67/60/ 75/72/72 77/73/71 81/75/71

XLNET 81/71/65/ 80/79/69 82/80/71 83/81/73

Longformer 78/67/61/ 79/75/73 79/76/72 78/76/74

Table 2: Here, we see the performance (accuracy) of differ-
ent models with deep-infusion/semi-deep infusion/shallow-
infusion using the metrics introduced in Section 3. We see
that both metrics improve with the addition of external
knowledge using the infusion methods, with deep infusion
performing the best. Furthermore, we see that the accuracy
numbers are already in the 70-80s with just 50% of the data
points used (this is average accuracy measured across all
GLUE tasks)

.

6 CONCLUSION AND FUTUREWORK
This paper introduces a systematic approach to knowledge infusion
in transformer-based models. The findings indicate that incorpo-
rating external knowledge indeed enhances the performance of
the models on language understanding tasks. Even more so as the
infusion techniques operate on both the latent representations and
inductive biases of the model across all transformer layers. This
improvement is observed through the evaluation of both traditional
metrics and newly introduced evaluation metrics, validating the
effectiveness of knowledge infusion. For future research, we plan
to explore hybrid knowledge infusion, which involves selectively
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choosing the blocks where knowledge infusion occurs and deter-
mining which knowledge to infuse. This differs from the current
setup where graph node embeddings from WordNet and Concept-
Net are summed. The analysis presented in this paper aims to lay the
foundation for more principled approaches to external knowledge-
augmented language models in the future.
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