
TouchUp-G: Improving Feature Representation through
Graph-Centric Finetuning

Jing Zhu
University of Michigan, Ann Arbor

jingzhuu@umich.edu

Xiang Song
Amazon

xiangsx@amazon.com

Vassilis N. Ioannidis
Amazon

ivasilei@amazon.com

Danai Koutra
University of Michigan, Ann Arbor

Amazon
dkoutra@umich.edu

Christos Faloutsos
Carnegie Mellon University

Amazon
christos@cs.cmu.edu

ABSTRACT

How can we improve node features obtained from Pretrained Mod-
els (PMs) for downstream graph tasks? Graph Neural Networks
(GNNs) have demonstrated promising results in various graph learn-
ing tasks, including node classification and link prediction. Despite
their remarkable success in high-impact applications, we have ob-
served that for feature-rich graphs, it is a common practice to
directly employ a PM for feature generation in GNNs without incor-
porating any domain adaptation techniques. However, this practice
is suboptimal because the node features extracted from PM are
graph-agnostic and it prevents fully utilize the potential correla-
tions between graph structures and node features. So how can we
improve node features obtained from a PM for downstream graph
tasks? We found that the best way is to do graph-centric finetuning
on the PM.

In this paper, we present TouchUp-G; a simple Touch-Up en-
hancement technique to improve Graphs’ node features obtained
from PMs via graph-centric pretraining. TouchUp-G has the fol-
lowing advantages: (a) General, can be applied to any downstream
graph tasks; (b)Multi-modal, can improve raw features that come
from any modality (e.g. images, texts); (c) Principled, we propose
a novel metric: feature homophily to quantify the potential corre-
lations between graph structures and node features; (d) Effective,
outperforms baselines on 4 real datasets across various tasks and
modalities, with up to 2× performance improvement on MRR.

1 INTRODUCTION

How can we improve node features obtained from a Pretrained
Model (PM) for downstream graph tasks? Graphs or networks are
foundational representations for relational structures and their
analysis is useful in many scientific and industrial applications.
Various tasks, including recommendation, question answering, and
knowledge graph completion, can be cast graph tasks. Graph Neu-
ral Networks (GNNs) operate in a message passing mechanism,
where the nodes pass their feature representations as messages to
their neighbors and update their neighbors feature representations
accordingly [12, 14, 25, 39, 45]. The feature representation for each
node is initialized as the node’s initial features. With the advantage

Accepted to Second Workshop on Knowledge Augmented Methods for Natural Lan-
guage Processing, in conjunction with KDD 2023.
Work done while doing an internship at Amazon

Text

Image

+25pp

+5pp

+5pp

(a) Quantative Result

ViT+
Query

Query Top-2 Prediction

Top-2 Prediction

Ground Truth

TOUCHUP-G

(b) Qualitative Result

Figure 1: TouchUp-G wins: Compared with features ob-

tained directly from pretrained models (BERT [9] or

ViT [11]), (a) TouchUp-G improves the quantative perfor-

mance by more than 25% across datasets and modalities. (b)

shows a co-purchasing example that exists in Amazon-CP

in the test split. TouchUp-G correctly predicts the ground

truth in top-2 predictions while ViT+ fails.

of combining the topology structure and node features, GNNs have
become the state of the art practice for most real-world graph tasks

Conference’17, July 2017, Washington, DC, USA Jing Zhu, Xiang Song, Vassilis N. Ioannidis, Danai Koutra, and Christos Faloutsos

Figure 2: Why pretrained features may fail: We show a sub-

graph of Amazon Co-purchasing graph (Amazon-CP). Prod-

ucts have completely different visual features, but they are

often bought together.

such as node classification. Besides the conventional node classifica-
tion task, link prediction has also gained widespread popularity as
a graph pretraining technique to tackle the challenge of insufficient
labels for self-supervised learning on graphs [20, 21, 57].

Pretrained Models (PMs), like BERT, GPT, ViT [3, 9, 11] have
shown remarkable performance on many natural language process-
ing and computer vision tasks, such as question answering and
image classification, and have became the foundations of modern
ML systems. As a result, for feature-rich graphs (each node in the
graph has raw features such as images, texts, audios), it is a com-
mon practice to directly employ a pretrained model to generate
node features and and then directly adapt the generated features
into GNNs, without any domain adaptation [5, 17, 18, 22, 55]. As a
result, the features generated from PMs are completely unaware
of the graph structures and yields poor performance when doing
feature propagation on these node features using GNNs. As shown
in Fig. 2, while these products, have completely different visual
representations, they are often bought together according to user
co-purchasing history. Directly using the image features from ViT
will give completely different feature embeddings for each product
and thus making GNNs fail to predict the products are likely to
be co-purchased together. This is a widespread issue that persists
whenever a PM is leveraged to generate the node features and the
pretraining objective is irrelevant with the graph’s structure infor-
mation. So how can we improve node features obtained from a PM
for the downstream graph tasks?

We found that the best approach is to do graph-centric finetun-
ing on the PM. By doing graph-centric finetuning on the PM, the
PM gets the structure information needed to extract meaningful
topological aware features that can benefit the downstream graph
tasks, and as a result, let GNNs better utilize the correlation between
node features and graph structures. To quantify the correlation be-
tween the extracted node features and graph structure, we propose
Feature Homophily, a extended metric from assortativity [34, 35] to

Table 1: TouchUp-G matches all specs: Comparing finetun-

ing frameworks. TouchUpG is General: can be applied on

any graph datasets and Multi-modal: can be used to features

from any modality, Principled, the .

Property
Method

Ad
sG

N
N
[2
8]

GI
A
N
T
[5
]

BE
RT

+
[9
]

T
o
u
c
h
U
p
-
G

General ✓ ✓

Multi-modal ✓

Principled ✓ ✓

Effective ✓ ✓ ? ✓

assess the necessity of applying graph-centric finetuning on the PM.
To improve node features obtained from a PM for graph tasks, we
present TouchUp-G; a simple TouchUp enhancement technique
that improves Graph’s node features from any Pretrained Models.
TouchUp-G is lightweight, and easily adaptable to a variety of
pretrained models across multiple domains. The node features ob-
tained from TouchUp-G exhibit a strong correlation with the graph
structure and can achieve up to 2× performance improvement for
GNNs on downstream graph tasks. A summary of our results are
shown in Fig. 1. Our code will be made public upon acceptance of
the paper.

Our contributions are summarized as follows:
• General: TouchUp-G can be applied to a variety of graph
tasks, including node classification as well as link prediction.

• Multi-modal: TouchUp-G can be applied any pretrained
models from any modality, e.g. texts, images etc.

• Principled:We propose a novelmetric (see Eq. 2, section 4.1):
feature homphily to measure the correlation between node
features and graph structure when features are vectors in-
stead of scalars/categorical.

• Effective: TouchUp-G outperforms baselines on 4 real datasets,
with up to 2× performance improvement across various
tasks, metrics and modalities.

2 RELATEDWORK

Next we discuss related work. Notice that none of the methods
below, satisfy all the specifications (see Table 1).
Pretrained Transformers as Feature Embeddings. Pretrained
language models aim to learn general language representations
from large-scale corpora, have been used to obtain a contextualized
text representation for graphs with rich text information [9, 31, 32].
Yasunaga et al. pretrains LMs by leveraging links between doc-
uments and show that the joint pretraining of masked language
modeling and document relation prediction improves the language
representation of documents [51]. The breakthroughs of transform-
ers [44] has also sparked great interest in the computer vision
community. Vision Transformers (ViTs) have been proposed to
learn a general visual representation for images [11, 27, 33, 38].
We refer to the survey for more details [24]. The typical approach
for graph learning with rich text or image features is to adopt a

TouchUp-G: Improving Feature Representation through Graph-Centric Finetuning Conference’17, July 2017, Washington, DC, USA

“cascaded architecture” where the feature information of each node
is first extracted by a PM, and the extracted features are used as
node feature embeddings for GNNs, without further pretraining on
the graph domain. [5, 21–23, 28, 57]. Gururangan et al. shows the
importance of doing domain-adaptative pretraining and language
domains and the same applies to the graph domain [13]. It is essen-
tial to do domain adaptation on the features extracted from PMs
for downstream graph tasks. Ioannidis et al. proposes a multi-step
finetuning framework that can jointly train LMs and GNNs effec-
tively and efficiently [21]. GIANT uses a neighborhood prediction
objective to pretrain XR-Transformers with topology information
for node classification on text-rich graphs [5]. GLEM proposes
an alternating training framework that fuses graph structure and
language learning with a variational Expectation Maximization
framework [55].To the best of our knowledge, we are the first to
propose finetuning on pretrained visual representations for graphs.
We are also the first to propose finetuning technique which can
be applied to any pretrained models from any modality, e.g. texts,
images, and a variety of graph tasks, including node classification
and link prediction.
Link Prediction using GNNs. Link prediction is the task of infer-
ring missing links from an observed network. Techniques to solve
this task range from heuristics–e.g., predicting links based on the
number of common neighbors between a pair of nodes–to graph
neural network (GNN) models , which rely on message passing and
leverage both the graph structure and node features [30]. Methods
that use GNNs for link prediction mainly fall into two categories:
Graph Autoencoder (GAE)-based methods and enclosing subgraph-
based methods. GAE-based methods use GNNs as the encoder of
nodes, and edges are decoded by their nodes’ encoding vectors using
score functions [7, 26, 43]. For enclosing subgraph-based methods
including SEAL [52, 54], IGMC [53], GraIL [42], NBFNet [59] first
extract an enclosing subgraph for the target edge, apply GNNs to
encode the node representations of nodes in enclosing subgraph,
and then aggregate the node representations by pooling methods.
The learned subgraph features are fed into a classifier to predict
the existence of the target edge. In this work, we focus on link
prediction as the main downstream graph task because link pre-
diction gives meaningful embeddings for self-supervised learning
on graph [18, 20] and we mainly focus on GAE-based approaches
since they are more scalable and typically used to deal with graphs
with millions or even billions of nodes.
Homophily and Heterophily in GNNs Heterophily has been
an area of raising interest for GNNs, as conventional GNN designs
are ineffective when dealing with heterophily [16, 58]. A variety
of methods have been proposed to solve the case of heterophily
on node classification. We refer to the survey for more details [56].
However, existing measures of homophily focus on label homophily,
which quantifies the variation of node labels across edges. In this
work, our focus is on feature homophily, which aims to measure
the similarity of node features along connected edges. In [49, 50],
the authors showed that GNNs penalizes deviations between the
embeddings of two nodes sharing an edge and as a result, GNNs
implicitly assumes feature homophily between connected edges.
Scalar assortativity is first proposed to quantify the similarity of
scalar or categorical features over connected edges [34, 35]. But

Table 2: Major symbols and their definitions.

Symbols Definitions

G Graph
A Adjacency Matrix
T Pretrained Model used to generate node feature
S set of all raw node features (e.g. texts, images)
X node feature extracted the pretrained model T
ℎ Feature Homophily score

the traditional notion of assortativity is not application to vector-
ized features obtained from PMs.ß To the best of our knowledge,
our work is the first to introduce measures of feature homophily
for vectorized features. Additionally, we pioneer in using feature
homophily to quantify the correlation between node features and
graph structures. The most closely related metric to our feature ho-
mophily measure is the feature smoothness score, which quantifies
the propagation of features in the network [16]. However, feature
smootheness score fails to be used as a measure of quantifying
if graph-centric finetuning is needed because feature smoothness
score (1) is unbounded in magnitude, making it unsuitable for com-
paring graphs of varying sizes, and (2) fails to differentiate the cases
of negative or zero correlation of node features and graph structure.

3 PRELIMINARIES

In this section, we formally define key notions that we use through-
out the paper, as well as the problem that we seek to solve. The
major symbols we use is defined in Tab. 2.

3.1 Definitions

Graphs.We consider a graph G = (V, E, S), where V is the set of
vertices, E is the set of edges. Denote A ∈ R |V |× |V | as the adjacency
matrix for G.
Node Feature X. We consider the case where S is the set of raw
node features, e.g. raw text, raw images etc., T is a pretained model
from any modalities, then we have X = T(S). X ∈ R |V |×𝑑 is ex-
tracted 𝑑-dimensional node feature embedding from the pretrained
model T, that we use during GNN training.
Link Prediction. Given a graph G = (V, E, S), the link prediction
task aims to determine whether there will be a link 𝑒𝑖 𝑗 between
a pair of nodes 𝑖 and 𝑗 , where 𝑖, 𝑗 ∈ V and 𝑒𝑖 𝑗 ∉ E based on the
extracted node features X and graph structure A.
Node Classification. Given a graph G = (V, E, S), the node clas-
sification task aims to determine the node label 𝑁 based on the
extracted node features X and the graph structure A.
Graph Neural Networks (GNNs). GNN models utilize a neigh-
borhood aggregation scheme to learn a representation vector ℎ𝑣 for
each node 𝑣 . In general, the node representation of node 𝑣 can be
formulated as a 𝑘-round neighborhood aggregation schema: ℎ (𝑘)𝑣 =

COMBINE(𝑘) ({ℎ (𝑘−1)
𝑣 ,AGGREGATE(𝑘) ({ℎ (𝑘−1)

𝑢 : 𝑢 ∈ 𝑁𝑘 (𝑣)})}),
where AGGREGATE(.) is typically mean or max pooling, and COM-
BINE(.) can be a sum/concatenation/attention on nodes’ ego- and
neighbor-embeddings. And ℎ (0)𝑢 = 𝑥𝑢 is node u’s feature from T.

Conference’17, July 2017, Washington, DC, USA Jing Zhu, Xiang Song, Vassilis N. Ioannidis, Danai Koutra, and Christos Faloutsos

0

1

!0

!1

!0

!1

2

3

4

0

1

Pretrained
Transformer

Graph Neural NetworksPretrained Model Baseline

0

1

!0

!1

!0

!1

2

3

4

0

1

!#$%&'$
Pretrained

& TouchUp
Transformer

TOUCHUP-G Forward
Backward

Graph Neural Networks

Figure 3: Overview of TouchUp-G. Typically, researchers use a pretrained transformer [9, 11] to extract features from raw text

or images of each node, and train GNNs (blue). We propose TouchUp-G (orange), which apply graph-centric finetuning on

the pretrained transformer using a structure loss 𝐿𝑠𝑡𝑟𝑢𝑐𝑡 . The features from the touchup transformer incoporates structure

information, which boosts the performance of GNNs on downstream graph tasks

3.2 Problem Statement

We seek to finetune the pretrained model T by minimize the feature
embedding distance between connected nodes and maximize the
feature embedding distance between disconnected nodes (see Eq 1).
Mathematically speaking,

• Given an undirected graph G = (V, E,X), its adjacency
matrix A ∈ R |V |× |V | contains both the observed (training
edge) and unobserved link(validation and test edge) in the
graph G, a pretrained model T and X′ = T(X).

• The set S of raw node features (e.g. texts, images) for all
nodes 𝑛 ∈ V.

• A pretrained model T that transforms raw node features to
node feature embeddings, X = T(S), X ∈ R |V |×𝑑 .

• Find the finetuned model T′ such that

Tr(X′𝑇AX′) − Tr(X′𝑇 (1 − A)X′) (1)

is minimized for a hold-out set (validation and test edges),
where X′ = T′ (S), 1 ∈ R |V |× |V | is a matrix of all 1s. Note
that the edges in the hold-out set is unobserved and are not
used to train the model in the proposed methods.

4 PROPOSED METHOD

Next, we detail TouchUp-G, the first pretraining framework that
enhances the node features by graph-centric multi-modal finetun-
ing on the pretrained models from any modality (e.g. vision, lan-
guage etc.). An overview of our method is shown in Fig. 3. We

first propose feature homophily score to measure if TouchUp-G
is needed. If finetuning is needed, the nodes’ raw features are first
passed through the pretrained transformer to get the extracted
feature embeddings. The extracted feature embedding are then
minimized using a structure-aware loss function to finetune the
pretained transformers. The node embeddings from the finetuned
transformer are used as features in the graph neural network for
downstream graph tasks.

4.1 Proposed Homophily Measure

We first propose Feature Homophily to quantify the correlation
between features and structures for any graph with features, and
decide if TouchUp-G is needed. The Feature Homophily is an ex-
tended vectorized version of scalar assortativity, a matrix that quan-
tifies the similarity of scalar features over connected edges.
Feature Homophily. In this work, we focus on using feature
homophily ℎ to characterize the correlation between node features
and graph structure, and use it to as a threshold to decide whether
feature enhancement is needed using TouchUp-G.
Definition 1. The feature homophily ratio h is defined as follows.

ℎ =

∑
𝑖 𝑗∈𝐸 (𝑥𝑖 − 𝑥) · (𝑥 𝑗 − 𝑥)√︃∑

𝑖 𝑗∈𝐸 (𝑥𝑖 − 𝑥) · (𝑥𝑖 − 𝑥) ·
√︃∑

𝑖 𝑗∈𝐸 (𝑥 𝑗 − 𝑥) · (𝑥 𝑗 − 𝑥)
(2)

TouchUp-G: Improving Feature Representation through Graph-Centric Finetuning Conference’17, July 2017, Washington, DC, USA

(a) h = 1 (b) h = -1

Figure 4: Example graphs that exhibits strong positive/nega-

tive correlation between features and structure. For example,

for figure(a), every node over the connected edge has the

exact same feature and for figure (b), every node over the

connected edge has the exact opposite feature.

where 𝑥 =

∑
𝑖 𝑗 ∈𝐸 (𝑥𝑖+𝑥 𝑗)

2 |𝐸 | . are the mean of node features over edges.
For each edges 𝑒𝑖 𝑗 ∈ 𝐸, denote the first node 𝑖 as the head node and
the second node 𝑗 as the tail node. The feature homophily score ℎ is
essentially the pearson correlation between the set of all head node
features 𝑥𝑖 and the set of all tail node features 𝑥 𝑗 . As a result, the
feature homophily ℎ score quantifies the correlation between node
features and graph structures, and h is bounded in the range [−1, 1].
In real-world, most graphs exhibit feature homophily ℎ > 0 and we
leave the case of ℎ < 0 for future discussion. In Fig. 4, we give two
example graphs that exhibits strong feature homophily/heterophily.
Feature Homophily vs. Label Homophily. Label homophily
captures the different tendency between each pair of classes. While
label homophily is connected with feature homophily, they are still
different from each other in two ways. First, graphs that exhibit
strong label homophily may not exhibit strong feature homophily.
For example, Books has a label homophily of 0.654 , but its feature
homophily score is only 0.194 [40]. Second, label homophily cannot
be calculated for all graph tasks. For example, for graphs designed
for link prediction, nodes do not have class labels, and thus label
homophily score cannot be calculated.
Comparison wrt. Feature Smoothness. Feature smoothness
score measures how features propagate throughout the network,
which is defined as follows:

𝜆𝑓 =

����∑
𝑣∈𝑉 (∑𝑣′∈𝑁 (𝑣) (𝑥𝑣−𝑥𝑣′)

����
1

|𝐸 |𝑑 (3)

where 𝜆𝑓 ∈ [0, +∞). Here a smaller 𝜆𝑓 indicates the feature
vectors 𝑥𝑣 and 𝑥𝑣′ are more likely to be similar for two connected
nodes v and 𝑣 ′ in the graph.

While similar to Feature Homophily, 𝜆𝑓 also captures the similar-
ity of features for connected edges in the graphs, the magnitude of
the feature smoothness score is unbounded and is directly related
to the number of edges that a graph has. As a result, it cannot be
compared against graphs of different sizes cannot be used to decide
if finetuning is needed.

4.2 TouchUp-G

Since the feature homophily score is a pearson correlation between
the feature distributions over connected edges and essentially quan-
tifying the correlation between node features and graph features,

we use the feature homophily score ℎ as an indicator of whether
finetuning is needed. According to [35], a scalar assortativity score
greater than 0.5 is regarded as strong. Thus, we set the finetun-
ing threshold to be 0.5. When ℎ > 0.5, the graph exhibits strong
feature homphily and thus we don’t employ TouchUp-G. When
0 < ℎ < 0.5, the graph exhibits weak feature homophily, and thus
we enhance the feature embeddings by using TouchUp-G. In Fig. 3,
we show a specific case of how the TouchUp-G finetuning is done
for a training edge 𝑒0,1.

For each training edge 𝑒𝑢,𝑣 ∈ E, the original feature of node u,v
is 𝑥𝑢 , 𝑥𝑣 respectively. We first randomly sample a negative node
m, where 𝑒𝑢,𝑚 ∉ E. 𝑥 ′𝑢 = max(T(𝑥𝑢), 0), 𝑥 ′𝑣 = max(T(𝑥𝑣), 0), 𝑥 ′𝑚 =

max(T(𝑥𝑚), 0) are the pretrained feature embedding obtained from
a pretrained model T for node𝑢, 𝑣,𝑚 respectively. We then finetune
the pretrained transformer T using a binary cross entropy loss.

𝐿struct = − 1
|𝐸 |

∑︁
(𝑢,𝑣) ∈𝐸
(𝑢,𝑚)∉𝐸

(log(𝑥 ′𝑢 · 𝑥 ′𝑣) + log(1 − 𝑥 ′𝑢 · 𝑥 ′𝑚)) (4)

Similar to knowledge graph embedding objectives such as Dist-
Mult [4], this structure-aware loss can be seen as a way to learn
the graph’s topological information in the nodes’ representation
through gradient descent. As a result, 𝐿struct fuses graph’s structure
information with the raw features together. Note that this structure-
aware loss 𝐿struct can be used to any pretrained models from any
modalities. No matter it is Language models, Vision Transformers
or Convolutional Neural Networks for computer vision and audio
processing. As long as the pretrained model generates an embed-
ding for each node, it can be finetuned using the structure-aware
objective to enhance its feature embeddings with graph’s topolog-
ical information. In practice, we use gradient clipping and early
stopping to prevent overfitting on the training edges [29, 41].
Relation with Feature Homophily. In the optimal case, 𝐿struct =
0, resulting in 𝑥 ′𝑢 ·𝑥 ′𝑣 = 1 for all (𝑢, 𝑣) ∈ 𝐸. And this indicates strong
positive correlation between 𝑥 ′𝑢 and 𝑥 ′𝑣 . Since the feature homophily
ratio h is essentially a pearson correlation of node features between
the set of head entities 𝑢 versus the set of tail entities 𝑣 . As a result,
when the pretrained model T learned a strong correlation between
𝑥 ′𝑢 and 𝑥 ′𝑣 , it would result in a Feature Homophily close to 1.

5 EXPERIMENTS

We aim to address the following research questions (RQ) through
experiments.

• RQ1 - Effective: How accurate is TouchUp-G?
• RQ2 - Multi-modal: Can TouchUp-G handle other modali-
ties (like, images), in addition to text?

• RQ3 - General: Can TouchUp-G handle other down-stream
tasks (like node classification), besides link prediction?

• RQ4 - Principled: How well is the feature representation
learnt by TouchUp-G, according to feature homophily score,
compared with features obtained directly from pretrained
models?

We first describe our experimental setup, including the datasets
and baselines used in our empirical analysis. Then we show the

Conference’17, July 2017, Washington, DC, USA Jing Zhu, Xiang Song, Vassilis N. Ioannidis, Danai Koutra, and Christos Faloutsos

Table 3: Dataset used in TouchUp-G: These three datasets represent datasets of various scales and modalities. Books and

Ogb-Products have original text descriptions as features, and a pretrained BERT is used to generate the feature embeddings.

Amazon-CP have images of products as original visual features, and a pretrained ViT is used to generate feature embeddings.

LP = Link Prediction. NC = Node Classification.

Name Nodes Edges Description Node Features Pretrained Model Downstream Task

Ogb-Products [18] 2,449,029 61,859,140 Purchasing Network Text BERT [9] LP & NC
Books [46, 47] 1,098,672 33,619,434 Recommendation Network Text BERT [9] LP
Amazon-CP [36] 379,770 4,102,444 Purchasing Network Image ViT [11] LP
Ogb-Arxiv [18] 169,343 1,166,243 Citation Network Text SciBERT [1] NC

practical quantitative improvements from TouchUp-G and a closer
ablation study on the feature homophily score.

5.1 Experimental Setup

Data.Wemainly focuses on analyzing and enhancing features from
feature-rich graphs, where each node need to have natural features
that comes from other domains e.g. text, images. In this work, we
mainly focus on discussing the case where all nodes in the same
graph have features that come from the same modality (text-rich
graphs, image-rich graphs). And we leave the case of mixing textual
and visual features in one graph to further study. We adapted four
public datasets: Ogb-Products, Books, Amazon-CP, Ogb-arxiv. The
details of these datasest are shown in Tab. 3.
(Ogb-products): is anAmazon product co-purchasing networkwhere
the feature is each products’ description [18]. We obtain the raw
text feature following [5].
(Ogb-Arxiv): is an a citation network where the feature is each
paper’s title and abstract [18]. We obtain the raw text feature fol-
lowing [5].
(Books): is a book recommendation dataset from Goodreads [46, 47].
Following [40], the node feature is each book’s description and
the links capture if a reader who recommenders one book will
recommend the other book on Goodreads as well.
(Amazon-CP): is a dataset constructed using the metadata from
Amazon-Review dataset [36]. We extract the copurchasing informa-
tion from the metadata and each product’s high resolution image
as the raw node features. Nodes with missing visual features and
have insufficient density ,degree<5 are eliminated.
For node classification, we follow the split and evaluation in [18] for
both Ogb-Arxiv and Ogb-Products. For link prediction, since we are
adapting new datasets to link prediction and no public split is avail-
able, we do random split on Ogb-Products, Books, Amazon-CP. Ogb-
products and Books are splitted at a ratio of 60%/10%/30%. Amazon-
CP is using a 80%/10%/10% split ratio. For every validation and test
edges, we randomly generate 1000 negatives for Books dataset, 100
negatives for Ogb-Products and 300 negatives for Amazon-CP. All
of these graphs are homogeneous, undirected graphs. The dataset
construction pipelines for Books and Amazon-CP dataset will be
made public upon acceptance in a notebook, so that others can
construct the same dataset following the steps.
Pretrained Models. For Ogb-Products and Books dataset, since
their node features are raw text descriptions, we use the 12-layer

BERT-base-uncased3 to generate the pretrained feature embed-
ding [9]. For Ogb-Arxiv, we use SciBERT4 [1]. For both BERT and
SciBERT, the last layer is dropped for both generating feature em-
beddings and finetuning using TouchUp-G. For Amazon-CP dataset,
we adapt the ViT-b-16 model5 [11] trained on ImageNet [8] to gen-
erate the pretrained visual feature embedding. The BERT, SciBERT
and ViT models used here are also the pretrained and touchup mod-
els we use in TouchUp-G. For ViT, we drop the last layer and add a
linear layer to project the embeddings from 768 to 256 dimensions.
TouchUp-G Variants. As shown in Tab. 4, for all four datasets
we used, the feature homophily score using PMs directly is smaller
than 0.5, thus we adapt TouchUp-G on all of the four datasets. In
the experiment part, we mainly test TouchUp-G using two types
of models: language models and vision models. When the raw node
features are text, BERT is used as the pretrained and touchup model.
When the raw node features are images, ViT is used as the pre-
trained and touchup model. We also consider three GNN backbones:
SAGE [14], GCN [25] and GATv2 [2] as GAE-based models. Differ-
ent from the conventional full-batch GCN, here we use a mini-batch
GCN model that follows the same message passing functions as
GCN [25]. As a result, we mainly test the property of TouchUp-G
for the following five variants: TouchUp-G (BERT-GCN),TouchUp-
G (BERT-SAGE), TouchUp-G (ViT-SAGE), and TouchUp-G (ViT-
GATv2), TouchUp-G (SciBERT-SAGE).
Evaluations.Wemainly evaluate the effectiveness of our finetuned
feature embedding in two ways. First, we compute the Feature Ho-
mophily scores for different feature representations, before using it
in the downstream graph tasks. The higher the Feature Homophily
score is, the more consistent the features and structures are, and as
a result, it’s more likely for GNNs to achieve good performance in
the downstream graph task. Second, we evaluate the feature em-
beddings by using them as features for GNNs to do link prediction.
We report MRR, Hits@10, and Hits@1, the three most commonly-
used evaluation metrics for link prediction [18, 43, 54]. Hits@K
counts the ratio of positive edges ranked at the K-th place or above
against all negative edges. MRR (Mean Reciprocal Rank) computes
the reciprocal rank of the true target node against 1,000 negative
candidates, averaged over all the true source nodes. For all evalua-
tion metrics, the higher the number is, the better. We don’t report
Hits@1 for Amazon-CP because it’s 0 for all methods.

3https://huggingface.co/bert-base-uncased
4https://huggingface.co/allenai/scibert_scivocab_uncased
5https://pytorch.org/vision/main/models/generated/torchvision.models.vit_b_16.
html

https://huggingface.co/bert-base-uncased
https://huggingface.co/allenai/scibert_scivocab_uncased
https://pytorch.org/vision/main/models/generated/torchvision.models.vit_b_16.html
https://pytorch.org/vision/main/models/generated/torchvision.models.vit_b_16.html

TouchUp-G: Improving Feature Representation through Graph-Centric Finetuning Conference’17, July 2017, Washington, DC, USA

+20pp

+10pp

(a) GCN

+20pp

+5pp
+5pp

(b) SAGE

Figure 5: TouchUp-G is Effective. Link Prediction performance on Ogb-Products. GCN [25] and SAGE [14] are used as GNN

backbones. TouchUp-G performs best against all baselines, by more than 20% of performance increase in MRR.

+20pp

+20pp

+15pp

+25pp

(a) GCN

+20pp

+25pp

+15pp

+25pp

(b) SAGE

Figure 6: TouchUp-G is Effective. Link Prediction performance on Books. GCN [25] and SAGE [14] are used as GNN backbones.

TouchUp-G performs best against all baselines, by more than 25% of performance increase in MRR.

Baselines. We mainly compare against various ways of generating
feature embeddings as baselines to show that the embeddings gener-
ated from TouchUp-G is most effective across tasks and modalities.
For link prediction, the main idea is to show that structure-fused
feature embeddingsworks better than embeddings that captures fea-
ture or embeddings that captures topology alone. Following [6], we
use degree to capture nodes’ structure embedding and deepwalk to
capture nodes’ proximity embedding. For Ogb-Products and Books,
we mainly consider BERT+ [9], Degree+ [6], Deepwalk+ [6, 37]
as baselines. For Amazon-CP, we mainly consider ViT+ [11], De-
gree+ [6] and Deepwalk+ [6, 37] as baselines. BERT+indicates using
BERT to obtain feature embeddings directly and the feature embed-
dings are then trained and evaluated on GNNs, and similarly for
Degree+ and Deepwalk+.

For node classification, since Ogb-Arxiv and Ogb-Products are
both text-rich graphs, we mainly compare against using various

language representations to generate feature embeddings. We com-
pare against Ogb+: the original feature embedding that the Ogb
benchmark uses [18], BERT+for Ogb-Products, and SciBERT+for
Ogb-Arxiv: the two language models we use as pretrain models,
without any touchup enhancement. Following [55], we also report
performance on DeBERTa+ [15].
Implementation Details. For PMs, we conduct extensive hyper-
parameter tuning using grid search. We search on the learning
rates = {1e-1, 1e-2, 1e-3, 1e-4, 5e-4, 5e-5}. The training batch size
is set to 64 for all datasets. We use gradient clipping and early
stopping to prevent overfitting on the training edges [29, 41] We
used four Nvidia A40 GPU to train the model. Due to the fact that
validating on the full validation split for one epoch is extremely
time-consuming, we subsample a small set from the full validation
test (1% of the edges in the validation set), and use MRR over 5

Conference’17, July 2017, Washington, DC, USA Jing Zhu, Xiang Song, Vassilis N. Ioannidis, Danai Koutra, and Christos Faloutsos

+20pp

+25pp

+15pp

+25pp

+5pp

(a) MRR

+20pp

+25pp

+15pp

+25pp

(b) H@10

Figure 7: TouchUp-G is Multi-modal: Link Prediction performance on Amazon-CP. GATv2 [2] and SAGE [14] are used as GNN

backbones. TouchUp-G performs well on image features, indicating TouchUp-G can work well on both text and image features.

negative examples to select the best checkpoint. The touchup model
weights from the best performing epoch are then used to generate
the finetuned feature embeddings. The full evaluation of how well
the feature embeddings perform is done using GNNs.

For GNNs, we also do grid search of hyperparameters. We search
on the learning rates = {1e-1, 1e-2, 1e-3, 1e-4, 5e-4, 1e-4, 5e-5} and
the number of layers = {1, 2, 3}. The training batch size and hidden
dimension is set to 512 for all datasets. For GATv2, the number of
heads is 8. We report the best performing hyperparameters for each
setting. We used one Nvidia v100 GPU to train the model and repeat
our experiments with three different random seeds. The test results
are reported on the epoch with the best validation performance.

5.2 RQ1 - Effective: Text Feature Enhancement

Setup & Evaluation. To evaluate TouchUp-G’s effectiveness on
enhancing features from a pretrained model (PM), we evaluate the
performance of using TouchUp-G on text-rich graphs for link pre-
diction. Link prediction has been widely recognized as foundations
of other graphs tasks and can be leveraged to solve the insufficient
label problem in tasks like node classification or graph classifica-
tion [19, 20]. We report the link prediction performance of two
widely-used GNN backbones: GCN and SAGE. For each dataset,
the three most commonly-used evaluation metrics: MRR, H@10,
H@1 are reported. For Ogb-Products, for each positive example,
we use 100 negatives during evaluation and for Books, we use 1000
negatives for evaluation.
Results. The results are shown in Fig. 5 and Fig. 6. We can see that
TouchUp-G consistently yields better performance across datasets,
and with different GNN backbones. Especially, we can see more
than 20 % MRR boost on Ogb-products when GCN is used as the
backbone, and on Books datasets, in the case of both SAGE and GCN
are used. This indicates that structure-fused text features is more
effective than any text features or structure features alone, and
justifies the effectiveness of TouchUp-G. Additionally, we can see
that at all times, BERT+performs significantly better than baselines
that focuses on structure information only Degree+and Deepwalk+.

This justifies the fact that the information contained in the raw
features is informative, even for downstream graph tasks. And the
performance increase we get in TouchUp-G is an evidence that
by making the node features and graph structure correlation with
each other, GNNs are able to best utilize the both the features and
the graph structure.

5.3 RQ2 - Multi-modal: Visual Feature

Enhancement

Setup & Evaluation. Section 5.2 shows the effectiveness on text-
rich graphs for link prediction. Besides text features, we are also
interested in understanding TouchUp-G’s multi-modal property, if
TouchUp-G can work on features besides text. Here we focus on
evaluating TouchUp-G on visual features for image-rich graphs.
Due to the unavailability of audio- and tactile-graph datasets, we
leave other modalities for future study.We report the link prediction
performance of two GNNmodels: GATv2 and SAGE on Amazon-CP.
Similar to Sec. 5.2, we also report MRR, H@10, H@1. We generate
one negative per edge during training and 300 negatives during
evaluation.
Results. The quantitative results are shown in Fig. 7. We can see
that TouchUp-G consistently yields better performance onAmazon-
CP. andwith different GNN backbones. This indicates that structure-
fused visual features are more effective than any visual features or
structure features alone, and justifies the effectiveness of TouchUp-
G. In Fig. 1b, we also provide a qualititative analysis. We show a
co-purchasing example that exists in Amazon-CP in the test split.
In Fig. 1b, we know that one customer bought a shower head on
Amazon, and we want to predict what other products the customer
would also buy on Amazon. In the top-2 predictions, ViT+ predicts
the family decorations and parking signs, while TouchUp-G pre-
dicts the bathroom switch and the tissue hanger, both of which
are essentials equipments in the bathroom, just like the shower
head. The ground truth label: tissue hanger is also contained in
TouchUp-G while missing in ViT+. This qualitative example shows
that TouchUp-G yields more meaningful co-purchasing predictions

TouchUp-G: Improving Feature Representation through Graph-Centric Finetuning Conference’17, July 2017, Washington, DC, USA

+5pp

+10pp

Figure 8: TouchUp-G is General: Node classification Results

on Ogb-Arxiv and Ogb-Products. SAGE [14] is used as GNN

backbone. TouchUp-G performs best against all baselines,

indicating the generality of TouchUp-G to extend to down-

stream node classification tasks.

compared with ViT+alone, and justifies the ability of TouchUp-G
to work on pretrained models from any modality.

5.4 RQ3 - General: Node Classification Results

In section 5.3, we evaluated TouchUp-G’s effectiveness on link
prediction tasks. To evaluate TouchUp-G’s ability on generaliz-
ing to different graph downstream tasks, we also report the node
classification performance on Ogb-Arxiv and Ogb-Products dataset.
Setup & Evaluation. Following [18], we use its standard evalua-
tion pipeline and reports the test accuracy on the best performing
epoch on validation set. The DeBERTa+results are directly adapted
from [55], and the Ogb+results are directly adapted from [48].
BERT+ and SciBERT+ indicates the performance of using the fea-
tures from the PM(BERT), PM(SciBERT) directly, without any fine-
tuning [1, 9]. We use SciBERT for Ogb-Arxiv instead of BERT be-
cause Ogb-Arxiv main contains texts from scientific paper and
SciBERT is pretrained on scientific paper. For evaluation metrics,
we follow standard practice and report accuracy.
Results. The results are shown in Fig. 8. We can see that TouchUp-
G consistently yields better performance, comparing against all
baselines. Especially, we can see that TouchUp-G even outper-
forms all SciBERT+ and BERT+ models by 5 % and 10 % respectively.
This indicates that the features obtained from TouchUp-G is Gen-
eral, can be used to any downstream graph tasks. Additionally,
we can see that Ogb+consistently performs better than DeBERTa+,
SciBERT+, BERT+. And this justifies our argument that directly

Table 4: Principled: TouchUp-G wins. Feature Homophily

score before and after TouchUp-G. TouchUp-G gives a much

higher Feature Homophily score. As a result, the correlation

between node features and graph structure, and it’s more

likely for GNNs to make best use of the features in down-

stream graph tasks, and this matches the experiment results

in Fig. 5, 6, 7 8. - means BERT,ViT,SciBERT is not applicable to

this dataset due to lack of original text/image data or better

pretrained model available.

Dataset BERT [9] SciBERT [1] ViT [11] TouchUp-G

Ogb-Products 0.223 - - 0.762 (3.4x)
Books 0.137 - - 0.579 (4.2x)
Amazon-CP - - 0.173 0.622 (3.6x)
Ogb-Arxiv - 0.194 - 0.408 (2.1x)

using features from a PM without any domain adaption in graphs
actually hurts the performance on downstream graph tasks.

5.5 RQ4 - Principled: Feature Homophily Score

Setup & Evaluation. For each datasets in Tab. 3, we computes
its Feature Homophily scores with embeddings from the PMs, e.g.
BERT, ViT, SciBERT, or with embeddings from our touch-up models
TouchUp-G, before training a GNN model.
Results. The results are shown in Tab 4. Before finetuning, all
datasets’ Feature Homophily scores are low. Since Feature Ho-
mophily is essentially the pearson correlation between the head
and tail node feature embeddings over edges, this indicates that the
correlation is very weak and thus hard to capture and be learnt by
GNNs, resulting in low GNN performance for downstream graph
tasks. However, after TouchUp-G, all datasets exhibits a more than
2× increase in feature homophily score. Thus, GNNs are more likely
to perform well on downstream graph tasks using features from
TouchUp-G.

6 CONCLUSION

We have presented TouchUp-G, a simple touch-up feature enhance-
ment technique for general pretrained models. TouchUp-G has the
following advantages:

• General: can be applied to any downstream graph tasks
• Multi-modal: can improve raw features that come from any
modality (e.g. images, texts);

• Principled: a novel metric, feature homophily is proposed
to measure the correlation between node features and graph
structure

• Effective: outperforms baselines on 4 real datasets, with up
to 2× performance improvement across various tasks and
modalities.

We envision that the finetuning part of TouchUp-G can be done
more efficiently using linear probing or delta finetuning, which
only tunes a gradient of the pretrained model [10]. We leave this
as the next step for this work.
AcknowledgementsWe thank Shengyi Qian on the helpful advice
of vision transformers. We also thank Mark Newman, Andrew
Owens, Yongyi Yang, Kaize Ding, Wei Jin, Puja Trivedi, Ang Cao,
Mohamed El Banani on the helpful discussions of the paper.

Conference’17, July 2017, Washington, DC, USA Jing Zhu, Xiang Song, Vassilis N. Ioannidis, Danai Koutra, and Christos Faloutsos

REFERENCES

[1] Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT: A pretrained language
model for scientific text. arXiv preprint arXiv:1903.10676 (2019).

[2] Shaked Brody, Uri Alon, and Eran Yahav. 2021. How attentive are graph attention
networks? arXiv preprint arXiv:2105.14491 (2021).

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[4] Yihong Chen, Pushkar Mishra, Luca Franceschi, Pasquale Minervini, Pontus
Lars Erik Saito Stenetorp, and Sebastian Riedel. 2022. Refactor gnns: Revisiting
factorisation-based models from a message-passing perspective. Advances in
Neural Information Processing Systems 35 (2022), 16138–16150.

[5] Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Ol-
gica Milenkovic, and Inderjit S Dhillon. 2021. Node Feature Extraction by Self-
Supervised Multi-scale Neighborhood Prediction. arXiv preprint arXiv:2111.00064
(2021).

[6] Hejie Cui, Zijie Lu, Pan Li, and Carl Yang. 2022. On positional and structural node
features for graph neural networks on non-attributed graphs. In Proceedings of
the 31st ACM International Conference on Information & Knowledge Management.
3898–3902.

[7] Tim RDavidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and JakubM Tomczak.
2018. Hyperspherical variational auto-encoders. arXiv preprint arXiv:1804.00891
(2018).

[8] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[10] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su,
Shengding Hu, Yulin Chen, Chi-Min Chan, Weize Chen, et al. 2022. Delta tuning:
A comprehensive study of parameter efficient methods for pre-trained language
models. arXiv preprint arXiv:2203.06904 (2022).

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[12] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In International
conference on machine learning. PMLR, 1263–1272.

[13] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy,
Doug Downey, and Noah A Smith. 2020. Don’t stop pretraining: Adapt language
models to domains and tasks. arXiv preprint arXiv:2004.10964 (2020).

[14] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[15] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2020. De-
berta: Decoding-enhanced bert with disentangled attention. arXiv preprint
arXiv:2006.03654 (2020).

[16] YifanHou, Jian Zhang, James Cheng, Kaili Ma, Richard TBMa, Hongzhi Chen, and
Ming-Chang Yang. 2022. Measuring and improving the use of graph information
in graph neural networks. arXiv preprint arXiv:2206.13170 (2022).

[17] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure
Leskovec. 2021. Ogb-lsc: A large-scale challenge for machine learning on graphs.
arXiv preprint arXiv:2103.09430 (2021).

[18] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[19] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. 2019. Strategies for pre-training graph neural networks. arXiv
preprint arXiv:1905.12265 (2019).

[20] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.
Gpt-gnn: Generative pre-training of graph neural networks. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 1857–1867.

[21] Vassilis N Ioannidis, Xiang Song, Da Zheng, Houyu Zhang, JunMa, Yi Xu, Belinda
Zeng, Trishul Chilimbi, and George Karypis. 2022. Efficient and effective training
of language and graph neural network models. arXiv preprint arXiv:2206.10781
(2022).

[22] Bowen Jin, Yu Zhang, Qi Zhu, and Jiawei Han. 2022. Heterformer: A Transformer
Architecture for Node Representation Learning on Heterogeneous Text-Rich
Networks. arXiv preprint arXiv:2205.10282 (2022).

[23] Di Jin, Xiangchen Song, Zhizhi Yu, Ziyang Liu, Heling Zhang, Zhaomeng Cheng,
and Jiawei Han. 2021. Bite-gcn: A new GCN architecture via bidirectional convo-
lution of topology and features on text-rich networks. In Proceedings of the 14th

ACM International Conference on Web Search and Data Mining. 157–165.
[24] Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fa-

had Shahbaz Khan, and Mubarak Shah. 2022. Transformers in vision: A survey.
ACM computing surveys (CSUR) 54, 10s (2022), 1–41.

[25] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[26] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

[27] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al.
2023. Segment anything. arXiv preprint arXiv:2304.02643 (2023).

[28] Chaozhuo Li, Bochen Pang, Yuming Liu, Hao Sun, Zheng Liu, Xing Xie, Tianqi
Yang, Yanling Cui, Liangjie Zhang, and Qi Zhang. 2021. Adsgnn: Behavior-graph
augmented relevance modeling in sponsored search. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 223–232.

[29] Mingchen Li, Mahdi Soltanolkotabi, and Samet Oymak. 2020. Gradient descent
with early stopping is provably robust to label noise for overparameterized neural
networks. In International conference on artificial intelligence and statistics. PMLR,
4313–4324.

[30] David Liben-Nowell and Jon Kleinberg. 2003. The link prediction problem for so-
cial networks. In Proceedings of the twelfth international conference on Information
and knowledge management. 556–559.

[31] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. Comput. Surveys 55, 9 (2023),
1–35.

[32] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[33] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. 2021. Swin transformer: Hierarchical vision transformer us-
ing shifted windows. In Proceedings of the IEEE/CVF international conference on
computer vision. 10012–10022.

[34] Mark EJ Newman. 2002. Assortative mixing in networks. Physical review letters
89, 20 (2002), 208701.

[35] Mark EJ Newman. 2003. Mixing patterns in networks. Physical review E 67, 2
(2003), 026126.

[36] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying recommendations
using distantly-labeled reviews and fine-grained aspects. In Proceedings of the
2019 conference on empirical methods in natural language processing and the 9th
international joint conference on natural language processing (EMNLP-IJCNLP).
188–197.

[37] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[38] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. 2021. Vision transformers
for dense prediction. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 12179–12188.

[39] Emanuele Rossi, Henry Kenlay, Maria I Gorinova, Benjamin Paul Chamberlain,
XiaowenDong, andMichaelMBronstein. 2022. On the unreasonable effectiveness
of feature propagation in learning on graphs with missing node features. In
Learning on Graphs Conference. PMLR, 11–1.

[40] Tara Safavi. 2022. Augmenting Structure with Text for Improved Graph Learning.
PhD Thesis (2022).

[41] Samuel L Smith, Benoit Dherin, David GT Barrett, and Soham De. 2021. On the
origin of implicit regularization in stochastic gradient descent. arXiv preprint
arXiv:2101.12176 (2021).

[42] Komal Teru, Etienne Denis, andWill Hamilton. 2020. Inductive relation prediction
by subgraph reasoning. In International Conference on Machine Learning. PMLR,
9448–9457.

[43] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. 2019.
Composition-basedmulti-relational graph convolutional networks. arXiv preprint
arXiv:1911.03082 (2019).

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[45] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[46] Mengting Wan and Julian McAuley. 2018. Item recommendation on monotonic
behavior chains. In Proceedings of the 12th ACM conference on recommender
systems. 86–94.

[47] Mengting Wan, Rishabh Misra, Ndapa Nakashole, and Julian McAuley. 2019.
Fine-grained spoiler detection from large-scale review corpora. arXiv preprint
arXiv:1905.13416 (2019).

TouchUp-G: Improving Feature Representation through Graph-Centric Finetuning Conference’17, July 2017, Washington, DC, USA

[48] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing
Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al. 2019. Deep graph library: A graph-
centric, highly-performant package for graph neural networks. arXiv preprint
arXiv:1909.01315 (2019).

[49] Yongyi Yang, Tang Liu, Yangkun Wang, Zengfeng Huang, and David Wipf. 2021.
Implicit vs unfolded graph neural networks. arXiv preprint arXiv:2111.06592
(2021).

[50] Yongyi Yang, Tang Liu, Yangkun Wang, Jinjing Zhou, Quan Gan, Zhewei Wei,
Zheng Zhang, Zengfeng Huang, and David Wipf. 2021. Graph neural networks
inspired by classical iterative algorithms. In International Conference on Machine
Learning. PMLR, 11773–11783.

[51] Michihiro Yasunaga, Jure Leskovec, and Percy Liang. 2022. Linkbert: Pretraining
language models with document links. arXiv preprint arXiv:2203.15827 (2022).

[52] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural
networks. Advances in neural information processing systems 31 (2018).

[53] Muhan Zhang and Yixin Chen. 2019. Inductive matrix completion based on graph
neural networks. arXiv preprint arXiv:1904.12058 (2019).

[54] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. 2021. Labeling trick:
A theory of using graph neural networks for multi-node representation learning.

Advances in Neural Information Processing Systems 34 (2021), 9061–9073.
[55] Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and

Jian Tang. 2022. Learning on Large-scale Text-attributed Graphs via Variational
Inference. arXiv preprint arXiv:2210.14709 (2022).

[56] Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, and Philip S Yu. 2022.
Graph neural networks for graphs with heterophily: A survey. arXiv preprint
arXiv:2202.07082 (2022).

[57] Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li, Markus Pelger, Tianqi
Yang, Liangjie Zhang, Ruofei Zhang, and Huasha Zhao. 2021. Textgnn: Improving
text encoder via graph neural network in sponsored search. In Proceedings of the
Web Conference 2021. 2848–2857.

[58] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai
Koutra. 2020. Beyond homophily in graph neural networks: Current limitations
and effective designs. Advances in Neural Information Processing Systems 33
(2020), 7793–7804.

[59] Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. 2021.
Neural bellman-ford networks: A general graph neural network framework for
link prediction. Advances in Neural Information Processing Systems 34 (2021),
29476–29490.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Definitions
	3.2 Problem Statement

	4 Proposed Method
	4.1 Proposed Homophily Measure
	4.2 TouchUp-G

	5 Experiments
	5.1 Experimental Setup
	5.2 RQ1 - Effective: Text Feature Enhancement
	5.3 RQ2 - Multi-modal: Visual Feature Enhancement
	5.4 RQ3 - General: Node Classification Results
	5.5 RQ4 - Principled: Feature Homophily Score

	6 Conclusion
	References

