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ABSTRACT
Commonsense fact verification, as a challenging branch of com-
monsense question-answering (QA), aims to verify through facts
whether a given commonsense claim is correct or not. Answering
commonsense questions necessitates a combination of knowledge
from various levels. However, existing studies primarily rest on
grasping either unstructured evidence or potential reasoning paths
from structured knowledge bases, yet failing to exploit the bene-
fits of heterogeneous knowledge simultaneously. In light of this,
we propose DecKeR, a commonsense fact verification model that
is capable of bridging heterogeneous knowledge by uncovering
latent relationships between structured and unstructured knowl-
edge. Experimental results on two commonsense fact verification
benchmark datasets, CSQA2.0 and CREAK demonstrate the effec-
tiveness of our DecKeR and further analysis verifies its capability
to seize more precious information through reasoning. The official
implementation of DecKeR is available at https://github.com/Anni-
Zou/Decker.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning.

KEYWORDS
commonsense fact verification, heterogeneous knowledge, knowl-
edge bases

1 INTRODUCTION
Commonsense question answering is an essential task in question
answering (QA), which requires models to answer questions that
entail rich world knowledge and everyday information. The ma-
jor challenge of commonsense QA is that it not only requires rich
background knowledge about how the world works, but also de-
mands the ability to conduct effective reasoning over knowledge
of various types and levels [14]. Recently, there emerges a challeng-
ing branch of commonsense QA: commonsense fact verification,
which aims to verify through facts whether a given commonsense
claim is correct or not [27, 37]. Different from previous multiple-
choice settings which contain candidate answers [35], common-
sense fact verification solely derives from the question itself and
implements reasoning on top of it (Figure 1). Therefore, it poses
a novel issue of how to effectively seize the useful and valuable
knowledge to deal with commonsense fact verification.
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Figure 1: An example from CSQA2.0 [37]. Given the ques-
tion, we perform a double check between the heterogeneous
knowledge (i.e., KG and facts) and aim to derive the answer
by seizing the valued information through reasoning.

One of the typical methods is to make direct use of knowledge
implicitly encoded in pre-trained language models (PLMs) [6, 10,
24], which have proved to be useable knowledge bases [3, 28]. The
knowledge in PLMs is gained during the pre-training stage through
mining large-scale collection of unstructured text corpora. Never-
theless, the sore spot lies in that it is natural for human brains to
project our prior world knowledge onto the answers facing the
commonsense questions [4, 21], whereas it is tough for PLMs to
learn commonsense knowledge that is implicitly stated in plain
texts from corpora [8].

To strengthen PLMs to perform commonsense QA, there is a
surging trend of methods equipping language models with differ-
ent levels of external knowledge, encompassing structured knowl-
edge such as knowledge graphs (KG) [21, 41, 42, 47] and unstruc-
tured knowledge such as text corpus [22, 43]. While the KG-based
methods yield remarkable performances on commonsense QA re-
cently, they are more suitable and adaptive for multiple-choice set-
tings because they lay emphasis on discovering connected patterns
between the question and candidate answers. For example, to an-
swer a question crabs live in what sort of environment? with candi-
date answers saltwater, galapagos and fish market, the KG-based
methods manage to capture the path crab–sea–saltwater in KG,
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leading to a correct prediction. Nonetheless, they encounter a bot-
tleneck when dealing with commonsense fact verification. Figure
1 shows an example: when asked whether july always happens in
the summer around the worlds, the KG-based methods have a ten-
dency to detect a strong link between july and summer, which may
persuade the model to deliver the wrong prediction.

In general, there are two major limitations in previous studies.
On one hand, structured knowledge abounds with structural infor-
mation among the entities but suffers from sparsity and limited
coverage. On the other hand, unstructured knowledge provides
rich and broad context-aware information but undergoes noisy is-
sues. These two kinds of knowledge can be naturally complemen-
tary to each other. However, most existing works focus on either
structured or unstructured external knowledge but fail to exploit
the benefits of heterogenous knowledge simultaneously. As the ex-
ample in Figure 1 shows: if we rely only on the structured knowl-
edge in KG, we tend to derive that july and summer are strongly
correlated, with an extremely weak relationship between summer
and winter. Similarly, if we focus only on the textual facts, we are
more inclined to focus on the fact in grey, as it describes more
information about summer in july. As a consequence, uncovering
latent relationships among heterogeneous knowledge helps bridge
the gap and yield more valuable and useful information.

Motivated by the above ideas, we propose DecKeR, a common-
sense fact verifier that bridges heterogeneous knowledge and per-
forms a double check based on interactions between structured and
unstructured knowledge. Our proposed DecKeR works in the fol-
lowing steps: (i) firstly, it retrieves heterogeneous knowledge in-
cluding a KG subgraph and several relevant facts following prior
works [15, 47]; (ii) secondly, it constructs an integral graphwith en-
coded question and facts and then employs relational graph convo-
lutional networks (R-GCN) to reason and filter over the heteroge-
nous knowledge; (iii) lastly, it adopts a multi-head attention pool-
ing mechanism to obtain a final refinement of enriched knowledge
representation and combines it with the question representation
for downstream tasks.

Our contributions are summarized as follows:
(1) For the concerned commonsense fact verification task, we

initialize the research that simultaneously takes heteroge-
neous knowledge into account.

(2) We propose a novel method in terms of R-GCN to construct
an integral graph that executes a double check between struc-
tured and unstructured knowledge and better uncovers the
latent relationships between them.

(3) Experimental results on two commonsense fact verification
benchmarks show the effectiveness of our approach, verify-
ing the necessity and benefits of heterogeneous knowledge
integration.

2 RELATEDWORK
2.1 Commonsense QA
CommonsenseQA is a long-standing challenge in natural language
processing as it calls for intuitive reasoning about real-world events
and situations [5]. As a result, recent years havewitnessed a plethora
of research on developing commonsenseQA tasks, including SWAG
[44], Cosmo QA [12], HellaSwag [45], CSQA [35], SocialIQa [31]

and PIQA [1]. However, these tasks primarily attend to multiple-
choice settings, so that there usually exist potential reasoning paths
which explicitly connect the questionwith candidate answers.This
may cause the models to be susceptible to shortcuts during reason-
ing [47]. Therefore, a novel branch of commonsense QA: common-
sense fact verification has emerged to further exploit the limits of
reasoning models, such as CREAK [27] and CSQA2.0 [37]. Unlike
previous multiple-choice settings, commonsense fact verification
needs the models to be granted richer background knowledge and
higher reasoning abilities based on the question alone. Hence, our
work dives into commonsense fact verification and conducts ex-
periments on two typical benchmarks: CREAK and CSQA2.0.

2.2 Knowledge-enhanced Methods for
Commonsense QA

Despite the impressive performance of PLMs on many common-
sense QA tasks, they struggle to capture sufficient external world
knowledge about concepts, relations and commonsense [48].There-
fore, it is of crucial importance to introduce external knowledge for
commonsense QA. Currently, there are twomajor lines of research
based on the property of knowledge: structured knowledge (i.e.,
knowledge graphs) and unstructured knowledge (i.e., text corpus).

The first research line strives to capitalize on distinct forms of
knowledge graphs (KG), such as Freebase [2], Wikidata [38], Con-
ceptNet [33], ASCENT [26] and ASER [46]. Commonsense knowl-
edge is thus explicitly delivered in a triplet form with relation-
ships between entities. An initial thread of works endeavors to
discover potential reasoning paths between the question and can-
didate answers under multiple-choice settings, which have shown
remarkable advances in structured reasoning and question answer-
ing. For example, KagNet [21] utilizes a hierarchical path-based
attention mechanism and graph convolutional networks to cope
with relational reasoning. MHGRN [7] modifies from graph neu-
ral networks to make it adaptable for multi-hop reasoning while
HGN [41] conducts edge generation and reweighting to find suit-
able paths more efficiently. JointLK [34] performs joint reasoning
between LM and GNN and uses the dynamic KGs pruning mecha-
nism to seek effective reasoning. Furthermore, other research opti-
mizes by enhancing the interaction between raw texts of questions
and KG to achieve better performance and robustness. QA-GNN
[42] designs a relevance scoring to make the interaction more ef-
fective, whereas GreaseLM [47] leverages multiple layers of modal-
ity interaction operations to achieve deeper interaction. Neverthe-
less, the scope of commonsense knowledge is infinite, far beyond
a knowledge graph defined by a particular pattern.

The second research line attempts to make use of unstructured
knowledge with either prompting methods [18, 29] or information
retrieval techniques [20]. Maieutic prompting [16] infers a tree of
explanations through abductive and recursive prompting fromgen-
erations of large language models (LLMs), which incurs high infer-
ence costs due to paywalls imposed by LLMs providers. DrFact [22]
retrieves the related facts step by step through an iterative process
of differentiable operations and further enhances the model with
an external ranker. Talmor et al. [36] employs regenerated data to
train the model to reliably perform systematic reasoning. RACo
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Figure 2: Overview of our approach, which consists of three components: Knowledge Retrieval Module (left), Double Check
Module (middle), and Knowledge Fusion Module (right). Given an input question, KG retriever and fact retriever extract rele-
vant local KG and facts (Knowledge Retrieval Module); then heterogeneous knowledge including entities in KG and facts are
enhanced (Double Check Module); finally, heterogeneous knowledge is merged to deduce the final answer prediction (Knowl-
edge Fusion Module).

[43] utilizes a retriever-reader architecture as the backbone and re-
trieves documents from a large-scale mixed commonsense corpus.
Xu et al. [40] extracts descriptions of related concepts as additional
input to PLMs. However, these works mainly focus on homoge-
neous knowledge and reason on top of it, ignoring the need to fuse
multiple forms of knowledge. Unlike previous works, our model is
dedicated to intuitively modeling the relations between heteroge-
neous knowledge, bridging the gap between them, and filtering
the more treasured knowledge by exploiting their complementary
nature, in an inference-cost-free pattern.

Besides, there are someworks taking heterogeneous knowledge
into account to deal with commonsense reasoning. For instance,
Lin et al. [23] mines various types of knowledge (including event
narrative knowledge, entity semantic knowledge and sentiment
coherent knowledge) and encodes them as inference rules with
costs to tackle commonsense machine comprehension. Neverthe-
less, this work is principally based on semantic or sentiment analy-
sis at the sentence level, seeking knowledge enrichment at various
levels of granularity. Our approach, however, is more concerned
with extending external sources of knowledge and creating con-
nections between heterogeneous knowledge from distinct sources
so that they may mutually filter each other.

3 METHODOLOGY
This section presents the details of our proposed approach. Fig-
ure 2 gives an overview of its architecture. Our approach, DecKeR,
consists of three major modules: (i) Knowledge Retrieval Module
which retrieves heterogeneous knowledge based on the input ques-
tion; (ii) Double Check Module which merges information from

structured and unstructured knowledge and makes a double check
between them; (iii) Knowledge FusionModulewhich combines het-
erogeneous knowledge together to obtain a final representation.

3.1 Knowledge Retrieval Module
3.1.1 KGRetriever. Given a knowledge graphG and an input ques-
tion 𝑞, the goal of the KG Retriever is to retrieve a question-related
sub-graph G𝑞

𝑠𝑢𝑏
from G. Following previous works [21, 42, 47], we

first execute entity linking to G to extract an initial set of nodes
V𝑖𝑛𝑖𝑡 . We then obtain the set of retrieved entities V𝑠𝑢𝑏 by adding
any bridge entities that are in a 2-hop path between any two linked
entities inV𝑖𝑛𝑖𝑡 . Eventually, the retrieved subgraph G𝑠𝑢𝑏 is formed
by retrieving all the edges that join any two nodes in V𝑠𝑢𝑏 .

3.1.2 Fact Retriever. Given a large corpus of texts containing 𝐾
facts and an input question 𝑞, the objective of the fact retriever
is to retrieve the top-𝑘 facts relevant to 𝑞. Following Contriever
[15] which is an information retrieval model pre-trained using the
MoCo contrastive loss [9] and unsupervised data only, we employ
a dual-encoder architecture where the question and facts are en-
coded independently by a BERT base uncased model [13, 17]. For
each question and fact, we apply average pooling over the outputs
of the last layer to obtain its corresponding representation. Then a
relevance score between a question and a fact is obtained by com-
puting the dot product between their corresponding representa-
tions.

More precisely, given a question𝑞 and a fact 𝑓𝑖 ∈ {𝑓1, 𝑓2, . . . , 𝑓𝐾 },
we encode each of them independently using the same model. The
relevance score 𝑟 (𝑞, 𝑓𝑖 ) between a question 𝑞 and a fact 𝑓𝑖 is the dot
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Figure 3: An example of the constructed integral graph.

product of their resulting representations:
𝑟 (𝑞, 𝑓𝑖 ) = ⟨𝐸𝜃 (𝑞), 𝐸𝜃 (𝑓𝑖 )⟩ , (1)

where ⟨, ⟩ denotes the dot product operation and 𝐸𝜃 denotes the
model parameterized by 𝜃 .

After obtaining the corresponding relevance scores, we select
𝑘 facts F =

{
𝑓 1𝑞 , 𝑓

2
𝑞 , . . . , 𝑓

𝑘
𝑞

}
, whose relevance scores 𝑟 (𝑞, 𝑓 ) are

top-𝑘 highest among all 𝐾 facts for each question 𝑞.

3.2 Double Check Module
3.2.1 Language Encoding. Given a question𝑞 and a set of retrieved
facts F =

{
𝑓 1𝑞 , 𝑓

2
𝑞 , . . . , 𝑓

𝑘
𝑞

}
, we deliver their corresponding sets of

tokens Q =
{
𝑞1, 𝑞2, . . . , 𝑞𝑡

}
and 𝑓 𝑖𝑞 =

{
𝑡1𝑖 , 𝑡

2
𝑖 , . . . , 𝑡

𝑜𝑖
𝑖

}
into a PLM,

where 𝑡 and 𝑜𝑖 are the lengths of the question and fact sequence
𝑓 𝑖𝑞 , respectively. We obtain their representations independently by
extracting [CLS] inserted at the beginning:

𝑞𝑒𝑛𝑐 = Encoder
({
𝑞1, 𝑞2, . . . , 𝑞𝑡

})
∈ R𝑑 ,

𝑓 𝑖𝑒𝑛𝑐 = Encoder
({
𝑡1𝑖 , 𝑡

2
𝑖 , . . . , 𝑡

𝑜𝑖
𝑖

})
∈ R𝑑 ,

F𝑒𝑛𝑐 =
{
𝑓 1𝑒𝑛𝑐 , 𝑓

2
𝑒𝑛𝑐 , . . . , 𝑓

𝑘
𝑒𝑛𝑐

}
∈ R𝑘×𝑑 ,

(2)

where 𝑑 denotes the hidden size defined by PLM.

3.2.2 Graph Construction. Figure 3 gives an example of the con-
structed graph, which is dubbed as integral graph. Given a question
𝑞, a sub-graph G𝑞

𝑠𝑢𝑏
extracted from KG and several retrieved facts

F =
{
𝑓 1𝑞 , 𝑓

2
𝑞 , . . . , 𝑓

𝑘
𝑞

}
, we construct an integral graph denoted as

G = (V, E,R). Here V = V𝑞 ∪V𝑐 ∪V𝑓 is the set of entity nodes,
where V𝑞 , V𝑐 and V𝑓 denote the question node (orange in Figure
3), concept nodes (green in Figure 3) and fact nodes (purple in Fig-
ure 3), respectively; E is the set of edges that connect nodes in V;
R is a set of relations representing the type of edges in E. In the
integral graph, we define four types of edges2:

• concept-to-fact edges: (𝑛𝑐 , 𝑟𝑐2𝑓 , 𝑛𝑓 );
2We ignore fact-to-fact edges due to the reason that if a fact-to-fact edge is addedwhen
the two facts link to the same concept node, a performance drop will be observed on
the CREAK dev set (89.5% -> 87.3%).

• concept-to-concept edges: (𝑛𝑐 , 𝑟𝑐2𝑐 , 𝑛𝑐 );
• question-to-fact edges: (𝑛𝑞, 𝑟𝑞2𝑓 , 𝑛𝑓 );
• question-to-concept edges: (𝑛𝑞, 𝑟𝑞2𝑐 , 𝑛𝑐 ),
where 𝑛𝑞 ∈ V𝑞 , 𝑛𝑐 ∈ V𝑐 , 𝑛𝑓 ∈ V𝑓 ,

{
𝑟𝑐2𝑓 , 𝑟𝑐2𝑐 , 𝑟𝑞2𝑓 , 𝑟𝑞2𝑐

}
⊆ R.

For question-to-concept and question-to-fact edges which are
bidirectional, we connect the question nodewith all the other nodes
in the integral graph with regard to enhancing the information
flow between the question and its related heterogeneous knowl-
edge. For concept-to-concept edges which are directional, we keep
the structured knowledge extracted from KG and do not distin-
guish the multiple relations inside the sub-graph, as our approach
mainly concentrates on effective reasoning over heterogeneous
knowledge. For concept-to-fact edges, we use string matching and
add a bidirectional edge (𝑛𝑐 , 𝑟𝑐2𝑓 , 𝑛𝑓 ) between 𝑛𝑐 ∈ V𝑐 and 𝑛𝑓 ∈
V𝑓 with 𝑟𝑐2𝑓 ∈ R if the concept 𝑛𝑐 can be captured in the fact
𝑛𝑓 . For instance, there should exist an edge between the concept
soup and the fact soup is primarily a liquid food. In this way, the
noisy and peripheral information is filtered whereas the relevant
and precious knowledge is intensified.

Afterward, we initialize the node embeddings in the integral
graph G. For the concept nodes, we follow the method of prior
work [7, 47] and employ pre-trained KG embeddings for the match-
ing nodes, which is introduced in Section 4.2.2.Then the pre-trained
embeddings go through a linear transformation to align the dimen-
sion:

C𝑒𝑚𝑏 =
{
𝑐1, 𝑐2, . . . , 𝑐𝑚

}
∈ R𝑚×𝑑𝑐 ,

C𝑔𝑟𝑎𝑝ℎ = C𝑒𝑚𝑏𝑊𝑐 + 𝑏𝑐 ∈ R𝑚×𝑑 ,
(3)

where 𝑚 denotes the number of concept nodes in the sub-graph,
𝑑𝑐 denotes the hidden size of pre-trained KG embeddings,𝑊𝑐 ∈
R𝑑𝑐×𝑑 and 𝑏𝑐 ∈ R𝑑 are trainable transformation matrices and bias
vectors respectively.

For the question nodes and fact nodes, we inject the correspond-
ing encoded results from PLM in Equation 2. Consequently, we
obtain the initial node embeddings N (0) ∈ R (1+𝑘+𝑚)×𝑑 for the
integral graph:

N (0) =
[
𝑞𝑒𝑛𝑐

(0) ;F𝑒𝑛𝑐 (0) ;C𝑔𝑟𝑎𝑝ℎ (0)
]
. (4)

3.2.3 Graph Reasoning. As our integral graphG is amulti-relational
graph where distinct edge types serve as varied information ex-
change between disparate knowledge, the message-passing pro-
cess from a source node to a target node should be aware of its rela-
tionship, i.e., relation type of the edge. For example, the concept-to-
fact edges help to implement a double check and filtering between
concepts and facts whereas the concept-to-concept edges assist in
discovering the structured information. To this end, we adopt rela-
tional graph convolutional network (R-GCN) [32] to perform rea-
soning on the integral graph.

In each layer of R-GCN, the current node representations N (𝑙 )

are fed into the layer to perform a round of information propaga-
tion between nodes in the graph and yield novel representations:

N (𝑙+1) = R-GCN
(
N (𝑙 )

)
. (5)

More precisely, the R-GCN computes the updated node repre-
sentations ℎ (𝑙+1)𝑖 ∈ N (𝑙+1) for each node 𝑛𝑖 ∈ V by accumulating
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Table 1: Experimental results on the CREAK and CSQA2.0 datasets. The evaluation metric is accuracy (acc).

Model #Total Single-task CREAK CSQA2.0
Params. Training Test Contra Test

Human [27] - 92.2 -
GreaseLM [47] ∼359M 3 77.5 - -
UNICORN [25] ∼770M 7 79.5 - 54.9
T5-3B [30] ∼ 3B 7 85.1 70.0 60.2
RACo [43] ≥ 3B 7 88.6 74.4 61.8
DecKeR (Ours) ∼449M 3 88.4 79.2 68.1

and inducing features from neighbors via message passing:

ℎ
(𝑙+1)
𝑖 = 𝜎 ©­«

∑
𝑟 ∈R

∑
𝑗∈𝑁 𝑟

𝑖

1
𝑐𝑖,𝑟

𝑊
(𝑙 )
𝑟 ℎ

(𝑙 )
𝑗 +𝑊 (𝑙 )

0 ℎ
(𝑙 )
𝑖

ª®¬ , (6)

where R is the set of relations, which corresponds to four edge
types in our integral graph.𝑁 𝑟𝑖 denotes the set of neighbors of node
𝑛𝑖 , which are connected to 𝑛𝑖 under relation 𝑟 , and 𝑐𝑖,𝑟 is a normal-
ization constant.𝑊 (𝑙 )

𝑟 and𝑊 (𝑙 )
0 are trainable parameter matrices

of layer 𝑙 . 𝜎 is an activated function, which in our implementation
is GELU [11].

Finally, we access the graph output through an 𝐿-layer R-GCN:

𝑁 (𝐿) =
[
𝑞𝑒𝑛𝑐

(𝐿) ;F𝑒𝑛𝑐 (𝐿) ;C𝑔𝑟𝑎𝑝ℎ (𝐿)
]
. (7)

3.3 Knowledge Fusion Module
3.3.1 Multi-head Attention Pooling. Since the acquired heteroge-
neous knowledge is leveraged to help answer the question, further
interaction between the question and the knowledge is needed to
refine the double-checked knowledge. Following the idea of Zhang
et al. [47], we introduce a multi-head attention pooling mechanism
(MHA) to ulteriorly gather the question-related information:

Attn(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾𝑇√
𝑑𝑘

)
𝑉 ,

head𝑡 = Attn
(
𝐻𝑞𝑊

𝑄
𝑡 , 𝐻𝑘𝑊

𝐾
𝑡 , 𝐻𝑘𝑊

𝑉
𝑡

)
,

MHA(𝐻𝑞, 𝐻𝑘 ) = [head1, . . . , head𝑁 ]𝑊𝑂 ,

(8)

where𝑊𝑄
𝑡 ∈ R𝑑×𝑑𝑞 ,𝑊𝐾

𝑡 ∈ R𝑑×𝑑𝑘 ,𝑊𝑉
𝑡 ∈ R𝑑×𝑑𝑣 ,𝑊𝑂 ∈ Rℎ𝑑𝑣×𝑑

are trainable parametermatrices,ℎ is the number of attention heads.
𝑑𝑞 , 𝑑𝑘 , 𝑑𝑣 denote the hidden sizes of the query vector, key vector
and value vector, respectively.

Specifically, we employ the initial question embedding fromPLM
as the query and feed it intoMHA togetherwith the graph-encoded
representations of facts and concepts 3. We thus derive the pooled
knowledge representation:

𝐾𝑎 = MHA
(
𝑞𝑒𝑛𝑐 ,

[
F (𝐿)
𝑒𝑛𝑐 ;C

(𝐿)
𝑔𝑟𝑎𝑝ℎ

] )
∈ R𝑑 . (9)

3We use the initial question embedding from PLM because it can capture the original
information about the question. To verify this, the query in MHA is replaced with
the post-RGCN representation and a slight performance drop is observed (89.5% ->
89.2%) on the CREAK dev set.

3.3.2 Answer Prediction. In the end, we concatenate the initial ques-
tion embeddings 𝑞𝑒𝑛𝑐 , the pooled knowledge representation 𝐾𝑎

and the enriched question representation 𝑞 (𝐿)𝑒𝑛𝑐 and deliver it into a
predictor to get a final answer prediction:

𝑙 = MLP
(
[𝑞𝑒𝑛𝑐 ;𝐾𝑎 ;𝑞 (𝐿)𝑒𝑛𝑐 ]

)
∈ R, (10)

where the predictor is a two-layer MLP with a tanh activation
of size (3𝑑, 𝑑, 𝑛𝑙𝑎𝑏𝑒𝑙), 𝑛𝑙𝑎𝑏𝑒𝑙 denotes the number of labels, which
equals to 2 in our commonsense fact verification setting.Themodel
is optimized using the cross entropy loss.

4 EXPERIMENTS
4.1 Datasets
We conduct the experiments on two commonsense fact verification
datasets: CommonsenseQA2.0 [37] andCREAK [27].Themetric for
evaluation is accuracy (acc).

CommonsenseQA2.0 is a commonsense reasoning dataset col-
lected through gamification. It includes 14,343 assertions about ev-
eryday commonsense knowledge. We use the original train / dev /
test splits from Talmor et al. [37].

CREAK is a dataset for commonsense reasoning about entity
knowledge. It is made up of 13,000 English assertions encompass-
ing 2,700 entities that are either true or false, in addition to a small
contrast set. Each assertion is generated by a crowdworker based
on aWikipedia entity, which can be named entities, commonnouns
and abstract concepts. We perform our experiments using the train
/ dev / test / contrast splits from Onoe et al. [27].

4.2 Experimental Setup
4.2.1 Retrieval Corpus. We leverage the English Wikipedia dump
as the retrieval corpus. For preprocessing Wikipedia pages, we uti-
lize the same method as described in Karpukhin et al. [17], Lewis
et al. [19]. We divide each Wikipedia page into separate 100-word
paragraphs, amounting to 21,015,324 facts in the end.

4.2.2 KnowledgeGraph. WeuseConceptNet [33], a general-domain
knowledge graph, as our structured knowledge source 𝐺 . It has
799,273 nodes and 2,487,810 edges in total. Node embeddings are
initialized using the entity embeddings prepared by Feng et al. [7],
which consists of four steps: (1) it first converts knowledge triples
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in the KG into sentences using pre-defined templates for each re-
lation; (2) it then feeds these sentences into PLM to compute em-
beddings for each sentence; (3) after that, it extracts all token rep-
resentations of the entity’s mention spans in these sentences; (4)
it finally mean pools over these representations and projects this
pooled representation.

4.2.3 Implementation Details. Our model is implemented using
Pytorch and based on the Transformers Library [39]. We fine-tune
DeBERTa-V3-Large as the backbone pre-trained language model
for DecKeR, and the hyper-parameter setting generally follows De-
BERTa [10]. We set the layer number of the R-GCN as 3, with a
dropout rate of 0.1 applied to each layer. The number of retrieved
facts is set to 5 due to the trade-off for computation resources. The
maximum input sequence length is 256. The initial learning rate is
selected in {5e-6, 8e-6, 9e-6, 1e-5} with a warm-up rate of 0.1. The
batch size is selected in {8, 16}. We run up to 20 epochs and select
the model that achieves the best result on the development dataset.

4.3 Main Results
Table 1 presents the detailed results on two commonsense fact
verification benchmarks: CREAK and CSQA 2.0. We compare our
modelwith several baselinemethods, which represent distinct knowledge-
enhanced methods. UNICORN [25] is instilled with external com-
monsense knowledge during the pre-training stage. GreaseLM [47]
integrates structured knowledge intomodels during the fine-tuning
stage. RACo [43] incorporates unstructured knowledge by construct-
ing a commonsense corpus on which its retriever is trained 4. Be-
sides, we also compare our model with strong PLMs such as T5-3B
[30].

The results indicate that our model DecKeR outperforms the
strong baseline methods and achieves comparable results on the
test set of CREAK. Besides, our model surpasses the current state-
of-the-art model RACo on the contrast set of CREAK. Moreover,
we observe that our model is lightweight and competitive without
a considerable number of parameters andmixed data frommultiple
tasks during training, thus showing the strength and superiority of
our model in various dimensions.

5 ANALYSIS
5.1 Ablation Study
We conduct a series of ablation studies under the same set of hy-
perparameters to determine the contributions of key components
in our model. Results in Table 2 demonstrate that the combination
of heterogeneous knowledge and the components in our DecKeR
are both non-trivial. Results in Table 3 indicate that our DecKeR
outperforms the baseline by a large margin.

Knowledge Retrieval. To investigate the effectiveness of knowl-
edge combination, we discard the knowledge graph, facts and both.
The resulting performances drop to 87.8%, 87.9%, and 86.1% respec-
tively, which reveals the necessity of fusing knowledge with dif-
ferent granularity.

4RACo consists of two BERT-base models and T5-3B. The magnitude of the total pa-
rameter number depends largely on the latter, hence the sign of ≥ (greater than
equal) is employed in Table 1.

Table 2: Ablation study of our model for components in
Knowledge Retrieval and Graph Construction modules on
the CREAK development set.

Model Accuracy
DecKeR 89.5
Knowledge Retrieval

w/o facts 87.8(↓ 1.7)
w/o knowledge graph 87.9(↓ 1.6)
w/o both 86.1(↓ 3.4)

Graph Construction
w/o question node 89.3(↓ 0.2)
w/o edge type 87.6(↓ 1.9)
w/o concept-to-fact edges 88.1(↓ 1.4)
w/o question-to-fact edges 88.8(↓ 0.7)
w/o concept-to-concept edges 88.3(↓ 1.2)
w/o question-to-concept edges 89.1(↓ 0.4)

Table 3: Results on the CSQA2.0 and CREAK development
sets. The evaluation metric is accuracy (acc).

Model CSQA2.0 CREAK
DeBERTa𝑙𝑎𝑟𝑔𝑒 67.9 86.1
DecKeR 70.2(↑ 2.3) 89.5(↑ 3.4)

Table 4: Results of different poolingmethods on the CREAK
development set, MHA pooling denotes multi-head atten-
tion pooling for short.

Model Interaction Accuracy
DeBERTaLARGE 86.1

w/ max pooling 7 87.5
w/ mean pooling 7 86.7
w/ attention pooling 3 88.9
w/ MHA pooling 3 89.5

GraphConstruction. One of the crucial components of ourmodel
is graph construction, where the integral graph contains three types
of nodes and four types of edges. We ablate the question node and
remove all the edges connectedwith it.The results show that the re-
moval hurts the performance. Furthermore, we dive into the edge
analysis. We first treat all edges as the same type instead of four
types, which witnesses a significant drop in performance. Our in-
tuition is that effective reasoning among heterogenous knowledge
should attend to edge types because they symbolize the distinct em-
phases during reasoning. We then erase each kind of edge respec-
tively. Notably, the absence of concept-to-fact edges degrades the
performance badly, suggesting the necessity of double-checking
between heterogeneous knowledge.

5.2 Methods of Pooling
During the period of aggregating the graph output, we analyze
the influence of different pooling methods, including max pooling,
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Figure 4: An example showing how ourmodel works to achieve the correct answer, in which our baseline fails. Texts in purple
denote facts and texts in green denote concepts.

mean pooling, attention pooling and multi-head attention pooling.
These poolingmethods can be divided into two categories: those in-
volving and those ignoring the interaction with the question. We
compare the models with the same hyper-parameters on the de-
velopment set of CREAK. Results in Table 4 demonstrate that the
interaction process promotes the model performance, which may
reveal that the graph reasoning executes more on the information
flow between different levels of knowledge and the augmented in-
quiry about the initial question implements a final refinement of
enriched knowledge. As shown in Table 4, employing multi-head
attention pooling presents the best performance.

5.3 Interpretability: Case Study
In order to further explore the mechanism and get more intuitive
explanations of our model, we select a case from CREAK in which
the baseline model fails but our model succeeds. In addition, we an-
alyze the node attention weights related to the question induced in
MHAmechanism. Figure 4 shows that our DecKeR can well bridge
the reasoning between heterogeneous knowledge, thus leading to
better filtering the noisy material and maintaining the beneficial
information. Concretely, given the claim whales can breathe un-
derwater, our model first extracts relevant structured and unstruc-
tured knowledge and then conducts reasoning over them. After
reasoning, our model pays close attention to the concepts includ-
ing breathe,whale, air, surface and the factwhales are air-breathing
mammals who must surface to get the air they need, as shown in the

attention heatmap. We can see that our model has the capability of
manipulating heterogeneous knowledge to answer the questions.

6 CONCLUSION
In this work, we propose DecKeR, a commonsense fact verifica-
tion model that bridges heterogeneous knowledge and performs
a double check based on the interactions between structured and
unstructured knowledge. Our model not only uncovers latent re-
lationships between heterogeneous knowledge but also conducts
effective and fine-grained knowledge filtering of the knowledge.
Experiments on two commonsense fact verification benchmarks
(CSQA2.0 and CREAK) demonstrate the effectiveness of our ap-
proach. While most existing works focus on fusing one specific
type of knowledge, we open up a novel perspective to bridge the
gap between heterogeneous knowledge to gain more comprehen-
sive and enriched knowledge in an intuitive and explicit way.

LIMITATIONS
There are three limitations. First, our model requires the retrieval
of relevant structured and unstructured knowledge from different
knowledge sources, which can be time-consuming. Using cosine
similarity over question and fact embeddings can be a bottleneck
for the model performance. Second, our model focuses on rich
background knowledge but might ignore some inferential knowl-
edge, which can be acquired from other sources such as Atomic.
Third, our model might not be applicable to low resources lan-
guages where knowledge graphs are not available.
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