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Time LMs

● TimeLMs is a set of language models specialized 
on diachronic Twitter data. 

● A continual learning strategy for Twitter-based 
language models’ capacity to deal with future and 
out-of-distribution tweets

● We train LM models on new data every 3 months
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TempoWiC

19



TempoWiC

    F       Corona  I love to drink corona                                                    I hate corona and lockdown
    T       Corona  I love to drink corona                                                    A cold corona at the beach   
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TempoWiC
1. Select trending terms
2. Take tweet examples from 

before and after trending date
3. Annotate the examples to see if 

there was a meaning shift
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Topic Classification
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Topic Classification
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NER

https://arxiv.org/pdf/2210.03797.pdf29

https://arxiv.org/pdf/2210.03797.pdf


Can we use recurrent patterns of time?
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Can we use recurrent patterns of time?
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NLP Model Output

Date

Time

Day of week
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Language 
model

Can’t wait to visit #Chicago for the first time next 
Week. What shall I do while I am in town? 
#LaverCup <mask>
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model
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Week. What shall I do while I am in town? 
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Seasons
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Seasons
Comparing 10 Nearest Neighbours of the same emoji 

on different models (seasons)
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model
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Predict emojis using time information
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Language 
model

Can’t wait to visit #Chicago for the first time next 
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Why is location important?

NN from Model trained on 
tweets from USA
● God
● praise
● finally
● thank
● hands
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Why is location important?

NN from Model trained on 
tweets from USA
● God
● praise
● finally
● thank
● hands

NN from Model trained 
on tweets from Spain
● Ibiza
● festival
● hands
● amnesia
● viernes
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Language 
model

Can’t wait to visit #Chicago for the first time next 
Week. What shall I do while I am in town? 
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“Beach day”
state-of-the-art

 sentiment classifier: 
?
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“Beach day”
state-of-the-art

 sentiment classifier: 
NEUTRAL
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“Beach day”

SATURDAY Weather is 
AMAZING 

➕

Contextually-aware classifier:
POSITIVE

☀ 
Los Angeles

state-of-the-art
 sentiment classifier: 

NEUTRAL
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Background

Weather impacts our mood and 
behavior 
(e.g., Howard & Hoffman, 1984)

● Sun => happy

● Too hot => aggressive

● Too humid => irritable

● Rain => depression

It can predict…

● The stock market (Chang et al., 

2008)

● The housing market (Hu & 

Lee, 2020)

● Crime rate (Chen et al., 2015)

● Dating prospects (Guéguen, 

2013)
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Research Questions

RQ2 ANALYSIS: How does weather impact sentiment?

RQ1 MODELING: Does weather improve sentiment 
detection?
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Snapchat data

● 8M Public Snapchat Stories from 2020

○ 3K annotated 
● Textual feature: the caption
● Contextual features: 

location, time, and weather

○ Current weather
○ Historical weather 

Hourly 
(exact)

Daily 
avg 3 days 1 wk 2 wks 4 wks 8 wks

Historically averaged weather prior to the day of the Snap

WEATHER DATA



RQ1 MODELING
Does weather improve sentiment 
detection?
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RQ1: Model



RQ1: Result
Score %

LANGUAGE ONLY
RoBERTa-base 65.07
Snap-RoBERTa (SR) 74.23

LANGUAGE+CONTEXT (from SR)
SR+Weather+Location+Time 76.64 3.2%*

½ F1-Macro + ½ Pearson
Classification Regression

* significant improvement (P<0.05)

RQ1: Result



RQ1: Result
Score %

LANGUAGE ONLY
RoBERTa-base 65.07
Snap-RoBERTa (SR) 74.23

LANGUAGE+CONTEXT (from SR)
SR+Weather+Location+Time 76.64 3.2%*

CONTEXT ABLATION (from SR)

SR+Weather 76.46 3.0%*

SR+Time 75.85 2.2%*

SR+Location 75.77 2.1%*

½ F1-Macro + ½ Pearson
Classification Regression

* significant improvement (P<0.05)

RQ1: Result



Weather ablation

Weather from which timeframe is 
the most important?

How much historical weather info is 
needed for good performance?
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RQ2 Analysis
How does weather impact sentiment?
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RQ2: Weather-induced sentiment

positive

negative

Pearson

Weather timeframe



RQ2: Weather-induced sentiment

positive

negative

Pearson

Weather has a lasting impact on 
sentiment

High temperature and % clear 
weather are positively linked with 
sentiment

Pressure, humidity, rain, and clouds 
are negatively linked with sentiment

Weather timeframe



Weather-induced sentiment

Sentiment declines both 
when the current 
temperature is too hot and 
too cold compared to 
previously.
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Time and sentiment
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Time and sentiment

Sentiment is 
consistently higher 
when the weather is 
warmer controlling for 
time
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RQ2: Location and sentiment

Pearson corr. of temperature and 
sentiment by state

LA has the biggest 
decline in expressed 
sentiment due to 
temperature drops and 
rainfall



RQ2 ANALYSIS: 
● Weather is significantly correlated with expressed sentiment
● Mood sensitivity to changes in weather depends on location but does not vary 

much with time

Conclusion

RQ1 MODELING: 
● Contextual factors improve language modeling
● Weather is the most important contextual factor



Implications

● Large-scale empirical proof of weather’s impact on 
expressed sentiment

● Weather’s effects on expressed sentiment appears 
to be implicit rather than explicit
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Snap research at KDD
CARL-G: Clustering-Accelerated Representation Learning on Graphs
William Shiao, Uday Saini, Yozen Liu, Tong Zhao, Neil Shah, Evangelos Papalexakis
We propose a new framework for graph self-supervised learning by adapting clustering validation indices as loss functions, with over 79x 
training speedup and no performance degradation.

Semi-supervised Graph Imbalanced Regression
Gang Liu, Tong Zhao, Eric Inae, Tengfei Luo, Meng Jiang
We propose a semi-supervised framework for graph regression tasks, which uses pseudo-labeling and latent space augmentation to 
achieve better data balance and reduce model bias, with promising results in 7 benchmarks.

Sketch-based Anomaly Detection in Streaming Graphs
Siddharth Bhatia, Mohit Wadhwa, Kenji Kawaguchi, Neil Shah, Philip Yu, Bryan Hooi
We propose a first-of-its-kind constant-time and constant-space approach for detecting graph anomalies in the streaming setting using 
higher-order sketching.

Balancing Approach for Causal Inference at Scale
Sicheng Lin, Meng Xu, Xi Zhang, Shih-Kang Chao, Ying-Kai Huang, Xiaolin Shi
We present two scalable algorithms for balancing approaches to solve causal inference problems at scale of 10 million units, which are 
deployed in an end-to-end system at Snap and significantly reduce both bias and variance in causal effect estimation.

https://arxiv.org/pdf/2306.06936.pdf
https://arxiv.org/pdf/2305.12087.pdf
https://arxiv.org/pdf/2106.04486.pdf
https://arxiv.org/pdf/2302.05549.pdf

