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Towards Automatic Construction 
Theme-Specific Knowledge-Bases 

Assisted with Large Language Models
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What Kinds of KBs Are Badly Needed: Theme-Specific Ones!

q General vs. domain/theme/doc- specific knowledge bases
q General knowledge-bases and knowledge graphs
q Ex.  Wikipedia, DBPedia, Freebase, Yago, …
q Specific KBs: Domain-/theme-/topic-/corpus- specific  
q Domain-specific: biomedical, NLP, ML, …
q Theme-specific: on Ukraine War, EV battery, or LLM
q Corpus-specific: A KB from one or a few papers

q Theme-specific KBs 
q Facilitating theme-specific problem solving
q Mitigating semantic ambiguity problem

q General KBs: constructed by millions of experts
q Theme-specific KBs: Unrealistic to be constructed by 

labor-intensive human annotations!
Ack. Figures are from Google images
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Construction of Specific KBs: Mining Unstructured Text

q PLMs + Embeddings (knowledge-enhanced semantic computation)
q Taxonomy-guided information extraction (using both LM and domain-knowledge)
q KB construction (using taxonomy, text classification, LM and KGs)

Multi-Faceted 
Taxonomies

Phrases

Fine-grained entities/relations

Text Corpus

Knowledge 

General KB
Multi-Dimensional 

Classification

Knowledge Graph 
& Info Networks

PLMs
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Can We Rely on GPT-x to Construct Specific KBs? 
q ChatGPT may generate hallucinated answers
q Example:  “List the title, venue and authors of a highly cited paper on heterogeneous 

information network”
q ChatGPT generates faked answers:  Ex. There is no paper titled “Heterogeneous 

information network analysis and mining: A comprehensive survey ”, written by the 
mentioned authors or published at the mentioned venue.

❑ Theme-specific KBs (or 
structured knowledge) will 
help detect, explain & 
correct such hallucinations  

❑ LLMs will still be valuable 
to help construct such 
theme-specific KBs 
automatically
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Investigating Methods for Automated Specific KB  Construction

q Intelligent Information Retrieval and Text Classification 

q Topic Discovery: Unsupervised or Weakly Supervised Topic Mining

q Weakly Supervised Text Classification

q Open-domain Information Extraction

q Theme-specific Knowledge-base Construction
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Relevant Data Collection: Intelligent Information Retrieval

q Intelligent information retrieval for relevant data/text collection 
q Typical information retrieval method requires large training data sets
q “Learning to rank” vs.  neural approach “deep passage retrieval”

q Intelligent information retrieval based on “few” or “no” training data
q “Automated” (unsupervised) in-depth text classification for document/passages
q Extremely weakly supervised text classification
q Fine-grained, taxonomy-based, multiclass classification

q Query analysis: Fine-grained, taxonomy-based, multiclass classification
q Matching and ranking queries and documents for information retrieval

q Bottleneck: 
q Extremely weakly supervised, fine-grained, taxonomy-based, multiclass 

classification
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Investigating Methods for Automated Specific KB  Construction

q Intelligent Information Retrieval and Text Classification 

q Topic Discovery: Unsupervised or Weakly Supervised Topic Mining

q Weakly Supervised Text Classification

q Open-domain Information Extraction

q Theme-specific Knowledge-base Construction
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Topic Discovery: Weakly- or Un- Supervised Topic Mining

q Topic discovery/understanding: Group terms in certain context into the right topics
q Unsupervised:  TopClus [WWW’22]
q Weakly supervised: CatE [WWW’20],  SeedTopicMine [WSDM’23]

q Language models (e.g., BERT) may not 
uncover good term clustering structures

q TopClus uncovers such structures via 
latent spherical space remapping and 
clustering
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TopClus: The Latent Space Model
q Preservation of original PLM embeddings:  Encourage the latent space to preserve the 

semantics of the original pre-trained LM induced embedding space
q Topic reconstruction of documents: Ensure the learned latent topics are meaningful 

summaries of the documents
q Clustering: Enforce separable cluster structures in the latent space for distinctive topic 

learning
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Topics Discovered by Different Topic Clustering Methods
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q Traditional text embedding (e.g., Word2Vec, GloVe, fastText) 
q Not imposing particular assumptions on user vision (task) (e.g., seeds/categories) 

Discriminative Topic Mining: Seed-Guided Embedding

q SeedTopicMine [WSDM:23]: Integrating multiple types of contexts

q Category name-guided embedding [CatE: WWW’20]

q Weak guidance: leverages category names to learn 
word embeddings with discriminative power over 
the specific set of categories
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category names and three examples from the expertsCategory representative phrases generated automatically

Text Analysis of Russia-Ukraine Conflicts @ 2014+
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SeedTopicMine

Comparing with 
all the related 

methods on NYT 
(location & Topic) 
and Yelp (food & 

sentiment)

Comparing with 
CatE on more fine-

grained terms
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Investigating Methods for Automated Specific KB  Construction

q Intelligent Information Retrieval and Text Classification 

q Topic Discovery: Unsupervised or Weakly Supervised Topic Mining

q Weakly Supervised Text Classification

q Open-domain Information Extraction

q Theme-specific Knowledge-base Construction
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LOTClass: Label-Name-Only Text Classification

q Extremely weakly supervised: Inputs: A set of label names representing each class + 
unlabeled documents 

q Method: Make good use of pre-trained language model (e.g., BERT)
q Category understanding via label name replacement: Learn topic vocabulary
q Ex. “sports” → {“soccer”, “basketball”, …} (use pretrained LM to replace category name)

• Learn topic vocabulary using 
label name only

• Make good use of pretrained 
LM (e.g., BERT)

• Result from AGNews dataset

Yu Meng, et al., “Text Classification Using Label Names Only: A Language Model Self-Training Approach” [EMNLP’20]
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Contextualized Word-level Supervision + Self-Training 

q Masked topic prediction: Create contextualized word-level supervisions to train the 
model for predicting a word’s implied topic

Different contexts leads to 
different BERT language 

model prediction

q Self-training: Generalize the model via self-training on abundant unlabeled data to 
make document-level topic prediction

Label-name only 
is equiv. to 48 
labels in 
Supervised BERT
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Recent Progress on Extremely Weakly Supervised Text Classifcation

q X-Class (Wang, Z., Mekala, D., & Shang, J. “X-Class: Text Classification with Extremely Weak 
Supervision”, NAACL’21)

q ClassKG (L. Zhang, et al. “Weakly-supervised Text Classification Based on Keyword Graph”, 
EMNLP’21) 

q Prompt-Class (Y. Zhang, et al, 2023): Exploring the power of prompting using PLM

q Ex. It is to die for!  
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PromptClass: A Two-Stage Framework 

q Zero-shot prompting for pseudo 
label acquisition

q Iterative classifier training and 
pseudo label expansion
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TaxoClass: A Weakly-Supervised Classification Method 
based on Taxonomy [NAACL’21]

q Shrink the label search space with top-down exploration
q Use a relevance model to filter out completely irrelevant classes for each document

q Relevance model: BERT/RoBERTa fine-tuned on the NLI task

Document Candidate Class

Relevance Model
(e.g., BM25, doc2vec, BERT-NLI)

Document-class Relevance

Di
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Methods
Amazon DBPedia

Example-F1 P@1 Example-F1 P@1

WeSHClass (Meng et al., AAAI’19) 0.246 0.577 0.305 0.536

SS-PCEM (Xiao et al., WebConf’19) 0.292 0.537 0.385 0.742

Semi-BERT (Devlin et al., NAACL’19) 0.339 0.592 0.428 0.761

Hier-0Shot-TC (Yin et al., EMNLP’19) 0.474 0.714 0.677 0.787

TaxoClass (NAACL’21) 0.593 0.812 0.816 0.894

TaxoClass: Performance Comparison

Semi-supervised methods 
using 30% of training set 

Weakly-supervised multi-
class classification method

Amazon: 49K product reviews (29.5K training + 19.7K testing), 531 classes
DBPedia: 245K Wiki articles (196K training + 49K testing), 298 classes

• vs. WeSHClass: better model document-class relevance

• vs. SS-PCEM, Semi-BERT: better leverage supervision signals from taxonomy

• vs. Hier-0Shot-TC: better capture domain-specific information from core classes

Zero-shot method

Example-F1 =!
"
∑#$!" %|'()*! ∩ ,(*-!|

'()*! .|,(*-!|
, P@1 = #-012 3#'4 '0,5! ,(*- -0((*1'

#'0'67 -012
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Investigating Methods for Automated Specific KB  Construction

q Intelligent Information Retrieval and Text Classification 

q Topic Discovery: Unsupervised or Weakly Supervised Topic Mining

q Weakly Supervised Text Classification

q Open-domain Information Extraction

q Theme-specific Knowledge-base Construction



22

ChemNER: Fine-Grained Chemistry Named Entity Recognition 
with Ontology-Guided Distant Supervision [Wang et al, 2021]
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q Key idea: the entities in the same sentence, paragraph or document usually follow a 
focused topic

Ontology-Guided Multi-Type Disambiguation

Although it was necessary to employ a stoichiometric quantity of palladium , 
it is noteworthy that the cross-coupling proceeded in the presence of a wide 
array of functional groups.

CHEMICAL 
REACTION

CATALYST TRANSITION 
METAL

…

…

Context Type

CHEMICAL 
ELEMENT

Candidate Types

…

…

CATALYST, TRANSITION METAL

FUNCTIONAL GROUPS

CATALYSIS ORGANIC
REACTION

… … COUPLING
REACTION

CHEMISTRY

COUPLING REACTIONS
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ChemNER Outperforms Supervised Methods

+25%↑ 

q ChemNER achieves .25 absolute F1 score improvement over the best performing baseline model 
RoBERTa

q The four full model variations shows that RoBERTa is the best sequence labeling model that takes 
the output of CHEMNERFM  (Flexible Matching + Multi-type Resolution) as distant supervision
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OntoType: Ontology-Guided Entity Typing
q Fine-grained entity typing (FET): Assigns entities in text with context-sensitive, fine-

grained semantic types
q Ex. Sammy Sosa [Person/Player] got a standing ovation at Wrigley Field [Location/Building/Stadium]

q Challenges of weak supervision based on masked language model (MLM) prompting
q A prompt generates a set of tokens, some likely vague or inaccurate, leading to 

erroneous typing
q Not incorporate the rich structural information in a given, fine-grained type ontology

q OntoType:  Ontology-guided, Annotation-Free, Fine-Grained Entity Typing
q Ensemble multiple MLM prompting results to generate a set of type candidates
q Progressively refine type resolution, from coarse to fine, following the type ontology, 

under the local context with a natural language inference model
q OntoType: Outperforms the SOTA zero-shot fine-grained entity typing methods

Tanay, Komarlu, et al., “ONTOTYPE: Ontology-Guided Annotation-Free Fine-Grained Entity Typing”, 2023
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OntoType: Ontology-Guided Entity Typing
q Ex. Sammy Sosa [Person/Player] got 

a standing ovation at Wrigley Field
[Location/Building/Stadium]

q Candidate type generation
q Multiple MLM prompting + 

ensembled candidate type 
prediction

q Ex. Stadium, venue, location, 
games, things, teams

q High-level type alignment by 
entailment (local context + NLI)

q Progressively refine type resolution, 
from coarse to fine, following the 
type ontology 
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Zero-Shot Entity Typing Leads to High Performance
q Use 3 benchmark FET datasets: NYT, Ontonotes, and FIGER:

q Compare with supervised and 0-shot methods:

Compare with Zoe 
on Ontonotes with 
modified ontology
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OntoType: Case Study

q See how different methods perform on news articles with a modified FIGER type ontology
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RolePred: Argument Role Prediction [EMNLP’22] 

Yizhu Jiao, Sha Li, Yiqing Xie, Ming Zhong, Heng Ji and Jiawei Han “Open-
Vocabulary Argument Role Prediction for Event Extraction”, EMNLP’22

http://hanj.cs.illinois.edu/pdf/emnlp22_yjiao.pdf
http://hanj.cs.illinois.edu/pdf/emnlp22_yjiao.pdf
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RolePred: Candidate Role Generation
q Predict candidate role names for named entities by casting it as a prompt-based in-filling 

task
q Prompt Construction:  (using Generation Model : T5)

q Context. According to this, the ⟨MASK SPAN⟩ of this Event Type is Entity.
q Ex.  The 1964 Alaskan earthquake, also known as the Great Alaskan earthquake, occurred 

at 5:36 PM AKST on Good Friday, March 27.  According to this, the ⟨MASK SPAN⟩ of this 
earthquake is 5:36 PM.

q ⟨MASK SPAN⟩ is expected to be filled with time (or start time) as the argument role
q Considering the entity’s general semantic type: person, location, number, etc., we slightly 

alter the prompt to fluently and naturally support the unmasking argument roles  
Prompt design for different entities
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RolePred: Candidate Argument Extraction
q Formulate the argument extraction problem into question-answering task
q Input: follow a standard BERT-style format (Model: BERT based pretrained QA model)

q [CLS] What is the Event Role in this Event Type event? [SEP] Document [SEP]
q Ex. [CLS] What is the casualty in this pandemic event? [SEP] The COVID-19 pandemic is an 

ongoing global pandemic of coronavirus disease. It’s estimated that the worldwide total 
number of deaths has exceeded five million ... [SEP]

q The argument is expected to be five million

Dataset statistics
Argument Role Prediction
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Investigating Methods for Automated Specific KB  Construction

q Intelligent Information Retrieval and Text Classification 

q Topic Discovery: Unsupervised or Weakly Supervised Topic Mining

q Weakly Supervised Text Classification

q Open-domain Information Extraction

q Theme-specific Knowledge-base Construction
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q Treat event schemas as a form of commonsense knowledge that can be derived from 
large language models (LLMs). 

q Event schemas have complex graph structures, design an incremental prompting and 
verification method INCSCHEMA to break down the construction of a complex event 
graph into three stages

q Event skeleton construction
q Event expansion
q Event-event relation verification
q INCSCHEMA can generate large and complex schemas with 7.2% F1 improvement in 

temporal relations and 31.0% F1 improvement in hierarchical relations. 
q Compared to the previous state-of-the-art closed-domain schema induction model, 

human assessors were able to cover ∼10% more events when translating the schemas 
into coherent stories and rated our schemas 1.3 points higher (on a 5-point scale) in 
terms of readability.

Theme-specific Knowledge-base Construction

Zoey Li, et al., Open-Domain Hierarchical Event Schema 
Induction by Incremental Prompting and Verification, ACL’23
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Conclusions
q Theme-specific KBs are what we need!
q Mine knowledge structures for automated construction 
q Exploring the power of weak supervision plus PLM!

q Knowledge Is Power!? Data Is Power!? → Structured Knowledge from Data Is Power!! 
Multi-Faceted 
Taxonomies

Phrases

Fine-grained entities/relations

Text Corpus

Knowledge 

General KB
Multi-Dimensional 

Classification

Knowledge Graph 
& Info Networks

PLMs
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