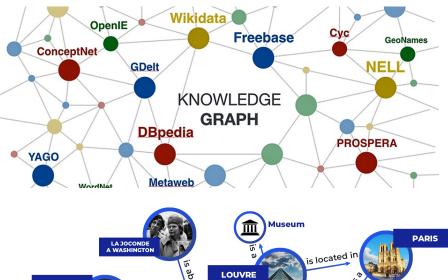
Towards Automatic Construction Theme-Specific Knowledge-Bases Assisted with Large Language Models

JIAWEI HAN, MICHAEL AIKEN CHAIR PROFESSOR COMPUTER SCIENCE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN AUGUST 8, 2023

What Kinds of KBs Are Badly Needed: Theme-Specific Ones!

- General vs. domain/theme/doc- specific knowledge bases
 - General knowledge-bases and knowledge graphs
 - Ex. Wikipedia, DBPedia, Freebase, Yago, ...
 - Specific KBs: Domain-/theme-/topic-/corpus- specific
 - Domain-specific: biomedical, NLP, ML, ...
 - Theme-specific: on Ukraine War, EV battery, or LLM
 - Corpus-specific: A KB from one or a few papers
- Theme-specific KBs
 - Facilitating theme-specific problem solving
 - Mitigating semantic ambiguity problem
- General KBs: constructed by millions of experts
- Theme-specific KBs: Unrealistic to be constructed by labor-intensive human annotations!



IONA LISA

Persor

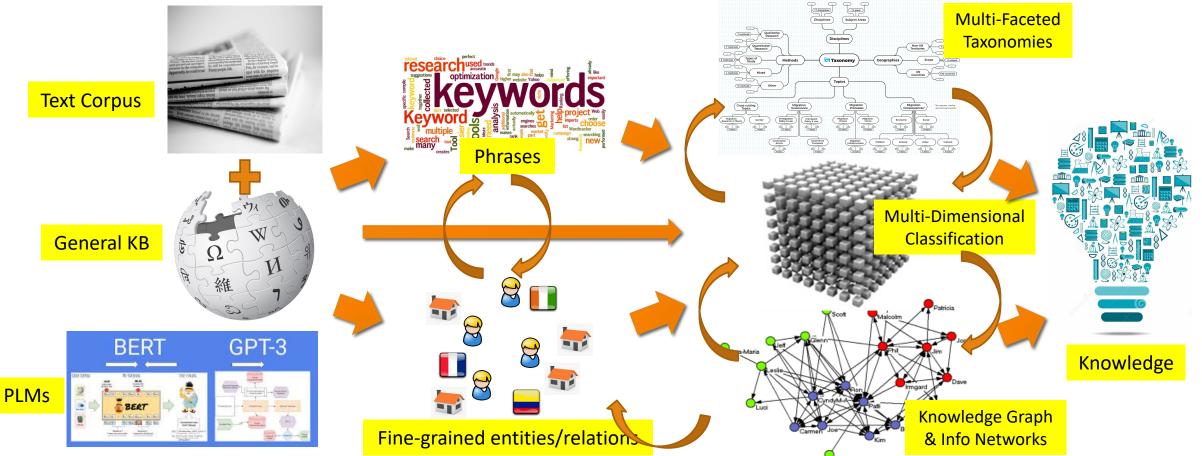
is a friend of

TOUR EIFFEL

is born on

Construction of Specific KBs: Mining Unstructured Text

- PLMs + Embeddings (knowledge-enhanced semantic computation)
- Taxonomy-guided information extraction (using both LM and domain-knowledge)
- □ KB construction (using taxonomy, text classification, LM and KGs)



Can We Rely on GPT-x to Construct Specific KBs?

ChatGPT may generate hallucinated answers

- Example: "List the title, venue and authors of a highly cited paper on heterogeneous information network"
- ChatGPT generates faked answers: Ex. There is no paper titled "Heterogeneous information network analysis and mining: A comprehensive survey ", written by the mentioned authors or published at the mentioned venue.
- Theme-specific KBs (or structured knowledge) will help detect, explain & correct such hallucinations
- LLMs will still be valuable to help construct such theme-specific KBs automatically

4

Please list the title, venue and authors of a highly cited paper on heterogeneous information network

One highly cited paper on heterogeneous information network is:

Title: Heterogeneous Information Network Analysis and Mining: A Comprehensive Survey Authors: Han, Jiawei; Kamber, Micheline; Pei, Jian

Venue: ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2011

This paper has been cited over 4,300 times according to Google Scholar as of March 2023, making it one of the most influential works in the field of heterogeneous information network analysis and mining.

Investigating Methods for Automated Specific KB Construction

Intelligent Information Retrieval and Text Classification

- Topic Discovery: Unsupervised or Weakly Supervised Topic Mining
- Weakly Supervised Text Classification
- Open-domain Information Extraction
- □ Theme-specific Knowledge-base Construction

Relevant Data Collection: Intelligent Information Retrieval

- Intelligent information retrieval for relevant data/text collection
- Typical information retrieval method requires large training data sets
 - "Learning to rank" vs. neural approach "deep passage retrieval"
- Intelligent information retrieval based on "few" or "no" training data
 - "Automated" (unsupervised) in-depth text classification for document/passages
 - Extremely weakly supervised text classification
 - □ Fine-grained, taxonomy-based, multiclass classification
 - Query analysis: Fine-grained, taxonomy-based, multiclass classification
 - Matching and ranking queries and documents for information retrieval

Bottleneck:

Extremely weakly supervised, fine-grained, taxonomy-based, multiclass classification

Investigating Methods for Automated Specific KB Construction

□ Intelligent Information Retrieval and Text Classification

Topic Discovery: Unsupervised or Weakly Supervised Topic Mining

Weakly Supervised Text Classification

Open-domain Information Extraction

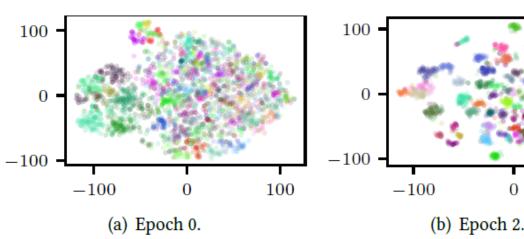
□ Theme-specific Knowledge-base Construction

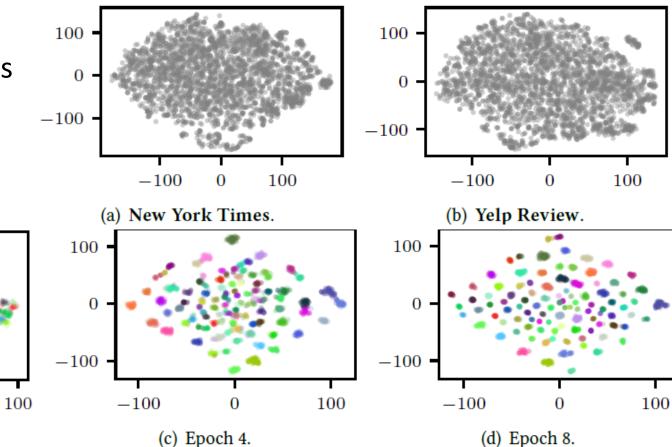
7

Topic Discovery: Weakly- or Un- Supervised Topic Mining

□ Topic discovery/understanding: Group terms in certain context into the right topics

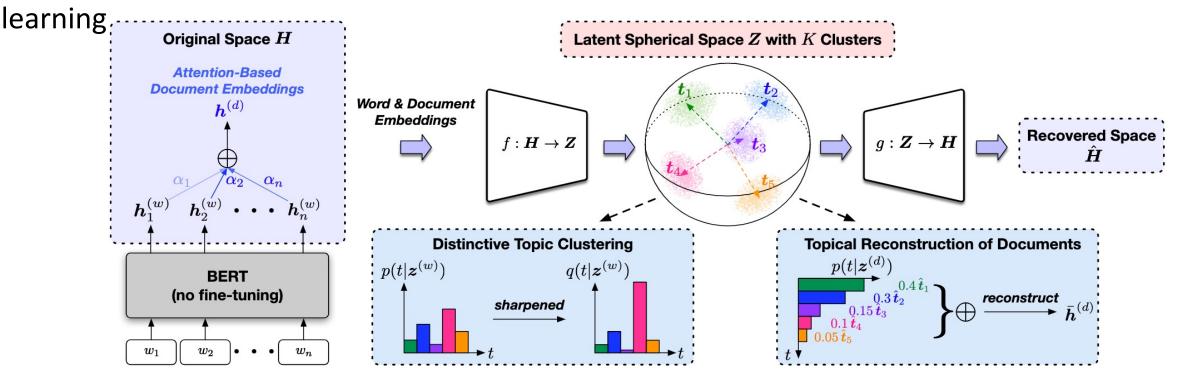
- Unsupervised: TopClus [WWW'22]
- □ Weakly supervised: CatE [WWW'20], SeedTopicMine [WSDM'23]
- Language models (e.g., BERT) may not uncover good term clustering structures
- TopClus uncovers such structures via latent spherical space remapping and clustering





TopClus: The Latent Space Model

- Preservation of original PLM embeddings: Encourage the latent space to preserve the semantics of the original pre-trained LM induced embedding space
- Topic reconstruction of documents: Ensure the learned latent topics are meaningful summaries of the documents
- **Clustering:** Enforce separable cluster structures in the latent space for distinctive topic



Topics Discovered by Different Topic Clustering Methods

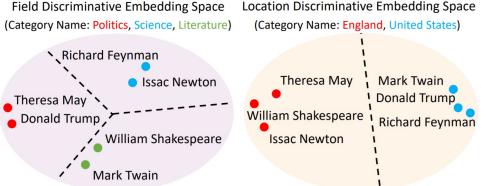
			NYT				Yelj	p		
Methods	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5
	(sports)	(politics)	(research)	(france)	(japan)	(positive)	(negative)	(vegetables)	(fruits)	(seafood)
	olympic	mr	said	french	japanese	amazing	loud	spinach	mango	fish
	year	bush	report	union	tokyo	really	awful	carrots	strawberry	roll
LDA	said	president	evidence	germany	year	place	sunday	greens	vanilla	salmon
	games	white	findings	workers	matsui	phenomenal	like	salad	banana	fresh
	team	house	defense	paris	said	pleasant	slow	dressing	peanut	good
	baseball	house	possibility	french	japanese	great	even	garlic	strawberry	shrimp
	championship	white	challenge	italy	tokyo	friendly	bad	tomato	<u>caramel</u>	beef
CorEx	playing	support	reasons	paris	index	atmosphere	mean	onions	sugar	crab
	fans	groups	give	francs	osaka	love	cold	toppings	fruit	dishes
	league	member	planned	jacques	electronics	favorite	literally	slices	mango	salt
	olympic	government	approach	french	japanese	nice	disappointed	avocado	strawberry	fish
	league	national	problems	students	agreement	worth	cold	greek	mango	shrimp
ETM	national	plan	experts	paris	tokyo	lunch	review	salads	sweet	lobster
	basketball	public	move	german	market	recommend	experience	spinach	soft	crab
	athletes	support	give	american	european	friendly	bad	tomatoes	flavors	chips
	swimming	bush	researchers	french	japanese	awesome	horrible	tomatoes	strawberry	lobster
	freestyle	democrats	scientists	paris	tokyo	atmosphere	quality	avocado	mango	crab
BERTopic	popov	white	cases	lyon	ufj	friendly	disgusting	soups	cup	shrimp
	gold	bushs	genetic	minister	company	night	disappointing	kale	lemon	oysters
	olympic	house	study	billion	yen	good	place	cauliflower	banana	amazing
	athletes	government	hypothesis	french	japanese	good	tough	potatoes	strawberry	fish
	medalist	ministry	methodology	seine	tokyo	best	bad	onions	lemon	octopus
TopClus	olympics	bureaucracy	possibility	toulouse	osaka	friendly	painful	tomatoes	apples	shrimp
	tournaments	politicians	criteria	marseille	hokkaido	cozy	frustrating	cabbage	grape	lobster
	quarterfinal	electoral	assumptions	paris	yokohama	casual	brutal	mushrooms	peach	crab

10

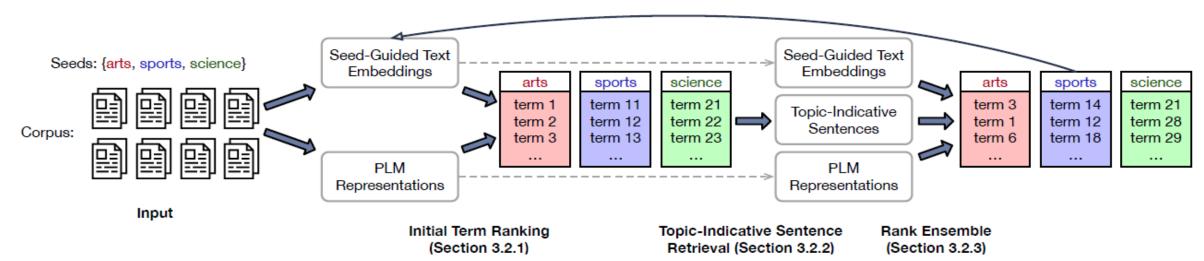
Discriminative Topic Mining: Seed-Guided Embedding

- Traditional text embedding (e.g., Word2Vec, GloVe, fastText)
 - Not imposing particular assumptions on user vision (task) (e.g., seeds/categories)
- Category name-guided embedding [CatE: WWW'20]
 - Weak guidance: leverages category names to learn word embeddings with discriminative power over the specific set of categories

11



SeedTopicMine [WSDM:23]: Integrating multiple types of contexts



Text Analysis of Russia-Ukraine Conflicts @ 2014+

Category representative phrases generated automatically category names and three examples from the experts

POLITICAL	MILITARY	ECONOMIC	SOCIAL	INFORMATION	CIVILIAN
Political power	Military forces	Employment	Demographic	Infowars	Urban areas
Dictator	Infantry	Economic activity	Ethnic	Information warfare	Residential area
Anarchy	Insurgents	Market	Population	Radio	Utilities
Pro government	Combatants	Finance	Language	Information security	Transportation
Neo nazi	National guard	European union	Ethnic russians	Ekho moskvy	Nuclear power plants
Viktor yanukovych	Armored vehicles	Foreign policy	Soviet union	Ukraine http empr	Power plants
Right sector	Special forces	Sergei ivanov	Western ukraine	Social media	Nuclear fuel
Pro russian	Self defense	Interior ministry	Russian language	News media	Crash site
Opposition politicians	Armored personnel	Economic sanctions	Police state	Novaya gazeta	Civil aviation
Maidan movement	Pro russian separatists	Rinat akhmetov	Anglo zionist empire	Ria novosti	Surface to air missile
Pro western	Donetsk oblast	Billion dollars	Maidan supporters	Rfe rl	Contaminated water
Kulikovo pole	Heavy fighting	Right sector	The vast majority	Mainstream media	Main entrance
Communist party	Peoples militia	Closer ties	Social media	Main stream	Emergency services
Civil war	Automatic rifles	Magnitsky act	Martial law	Intelligence community	Drinking water

			Method	N	YT-Topic	NYT-	Location	Yelp-F	Food	Yelp-Se	ntiment
			Method	health	business	france	canada	sushi	desserts	good	bad
				said (×)	said (×)	said (×)	new (×)	roll	food (×)	place (×)	food (×)
Se	edTop	ICMI	le	dr (×)	percent (×)	new (×)	city (×)	good (×)	us (×)	food (×)	service (×)
			SeededLDA	new (×)	company	state (×)	said (×)	place (×)	order (×)	great	us (×)
				would (×)	year (×)	would (×)	building (×)	food (×)	service (×)	like (×)	order (×)
				hospital	billion (×)	dr (×)	mr (×)	rolls	time (×)	service (×)	time (×)
C	omparing with	n		case (×)	employees	school (×)	market (×)	rolls	also (×)	definitely (\times)	one (×)
			Anchored	court (×)	advertising	students (×)	percent (×)	roll	really (×)	prices (×)	would (×)
i i	all the related		CorEx	patients	media (×)	children (×)	companies (×)	sashimi	well (×)	strip (×)	like (×)
m	ethods on NY	ТК	COLLX	cases (×)	businessmen	education (×)	billion (×)	fish (×)	good (×)	selection (\times)	could (×)
		L /		lawyer (×)	commerce	schools (\times)	investors (×)	tempura	try (×)	value (×)	us (×)
(10	cation & Topi	C) (team (×)	percent (×)	city (×)	people (×)	sashimi	food (×)	great	food (×)
a	and Yelp (food & sentiment)			game (×)	japan (×)	state (×)	year (×)	rolls	great (×)	delicious	place (×)
			KeyETM	players (×)	year (×)	york (×)	china (×)	roll	place (×)	amazing	service (×)
				games (×)	japanese (×)	school (×)	years (×)	fish (×)	good (×)	excellent	time (×)
				play (×)	economy	program (×)	time (×)	japanese	service (×)	tasty	restaurant (×)
				public health	diversifying (×)	french	alberta	freshest fish (×)	delicacies (×)	tasty	unforgivable
				health care	clients (×)	corsica	british columbia	sashimi	sundaes	delicious	frustrating
Co	omparing with		CatE	medical	corporate	spain (\times)	ontario	nigiri	savoury (×)	yummy	horrible
Cat	E on more fine	- _		hospitals	investment banking	belgium (×)	manitoba	ayce sushi	pastries	chilaquiles (×)	irritating
		-		doctors	executives	de (×)	canadian	rolls	custards	also (×)	rude
g	rained terms			medical	companies	french	canadian	maki rolls	cheesecakes	great	terrible
	\sim			hospitals	businesses	paris	quebec	sashimi	croissants	excellent	horrible
			SeedTopicMine	hospital	corporations	philippe (×)	montreal	ayce sushi	pastries	fantastic	awful
				public health patients	firms corporate	french state frenchman	toronto ottawa	revolving sushi nigiri	breads (×) cheesecake	delicious amazing	lousy shitty
	Method	Dataset		natients	сополяте		r-ranked Tern		спеезесике		Shiriy
			stoole prima ril	machad not	atoes (×), porter, ba	kad natata (s	() bordalaisa sk	irt stool 1207 ((v) haarnaisa	(\sim)	
		Yelp-Food	-	· •	hes, octopus, musse	- '	F	III SIEak, 1202 (×), bear naise	(^)	
	CatE		· •	nnis, coaches, amat	r r	· •	ockey				
		NYT-Topic	-		vitriolic (×), passivi			-	ophically (x)	worldview (×) apathetic (X)
			-				- · · -				,, -paneae (x)
		Yelp-Food	· 1	r	aked potato (×), ha	0 /	L 1 //	1 1 1 1	t, skirt steak		
	SeedTopicMine	-		2 2	od, crawfish, blue c	*		1			
		NYT-Topic	-	-	ayers, championshi			_			
13		_	pontics: democ	ratic, parties,	conservative coalit	lion, elected, l	iberal, electoral	, leaders (x), po	nitcai alliance	;	

Investigating Methods for Automated Specific KB Construction

Intelligent Information Retrieval and Text Classification

□ Topic Discovery: Unsupervised or Weakly Supervised Topic Mining

Weakly Supervised Text Classification

Open-domain Information Extraction

□ Theme-specific Knowledge-base Construction

LOTClass: Label-Name-Only Text Classification

- Extremely weakly supervised: Inputs: A set of label names representing each class + unlabeled documents
- Method: Make good use of pre-trained language model (e.g., BERT)
 - Category understanding via label name replacement: Learn topic vocabulary
 - □ Ex. "sports" \rightarrow {"soccer", "basketball", ...} (use pretrained LM to replace category name)

		Label Name	Category Vocabulary
•	Learn topic vocabulary using	politics	politics, political, politicians, government, elections, politician, democracy, democratic, governing, party, leadership, state, election, politically, affairs, issues, governments, voters, debate, cabinet, congress, democrat, president, religion,
•	label name only Make good use of pretrained LM (e.g., BERT)	sports	sports, games, sporting, game, athletics, national, athletic, espn, soccer, basketball, stadium, arts, racing, baseball, tv, hockey, pro, press, team, red, home, bay, kings, city, legends, winning, miracle, olympic, ball, giants, players, champions, boxing,
•	Result from AGNews dataset	business	business, trade, commercial, enterprise, shop, money, market, commerce, corporate, global, future, sales, general, international, group, retail, management, companies, operations, operation, store, corporation, venture, economic, division, firm,
		technology	technology, tech, software, technological, device, equipment, hardware, devices, infrastructure, system, knowledge, technique, digital, technical, concept, systems, gear, techniques, functionality, process, material, facility, feature, method,

Yu Meng, et al., "Text Classification Using Label Names Only: A Language Model Self-Training Approach" [EMNLP'20]

Contextualized Word-level Supervision + Self-Training

Masked topic prediction: Create contextualized word-level supervisions to train the model for predicting a word's implied topic

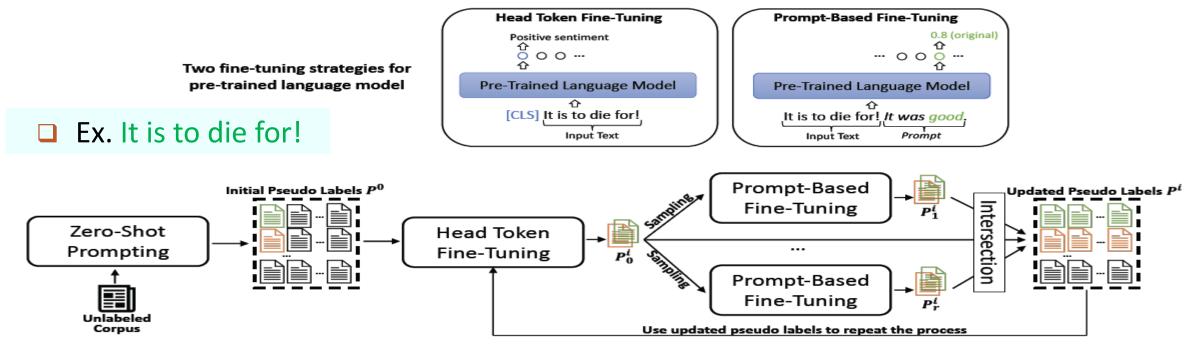
	Sentence	Language Model Prediction
Different contexts leads to different BERT language	 The oldest annual US team sports competition that includes professionals is not in baseball, or football or basketball or hockey. It's in soccer.	sports, baseball, handball, soccer, basketball, football, tennis, sport, championship, hockey,
model prediction	Samsung's new SPH-V5400 mobile phone sports a built-in 1-inch, 1.5-gigabyte hard disk that can store about 15 times more data than conventional handsets, Samsung said.	has, with, features, uses, includes, had, is, contains, featured, have, incorporates, requires, offers,

Self-training: Generalize the model via self-training on abundant unlabeled data to make document-level topic prediction

Supervision Type	Methods	AG News	DBPedia	IMDB	Amazon			(50, 0.867)		
Weakly-Sup.	Dataless (Chang et al., 2008) WeSTClass (Meng et al., 2018) BERT w. simple match LOTClass w/o. self train LOTClass	0.696 0.823 0.752 0.822 0.864	0.634 0.811 0.722 0.860 0.911	0.505 0.774 0.677 0.802 0.865	0.501 0.753 0.654 0.853 0.916	- 6.84 Best Acc - 0.80	(20, 0.822)			Label-name only is equiv. to 48 labels in
Semi-Sup.	UDA (Xie et al., 2019)	0.869	0.911	0.887	0.910	0.76	/	Sup. BERT LOTClass		Supervised BERT
Supervised	char-CNN (Zhang et al., 2015) BERT (Devlin et al., 2019)	0.872 0.944	0.983 0.993	0.853 0.945	0.945 0.972	0.10	20 40	60 80 : Documents / Class	100	

Recent Progress on Extremely Weakly Supervised Text Classifcation

- X-Class (Wang, Z., Mekala, D., & Shang, J. "X-Class: Text Classification with Extremely Weak Supervision", NAACL'21)
- ClassKG (L. Zhang, et al. "Weakly-supervised Text Classification Based on Keyword Graph", EMNLP'21)
- **Prompt-Class** (Y. Zhang, et al, 2023): Exploring the power of prompting using PLM



(1) Zero-Shot Prompting for Pseudo Label Acquisition

(2) Iterative Classifier Training and Pseudo Label Expansion

PromptClass: A Two-Stage Framework

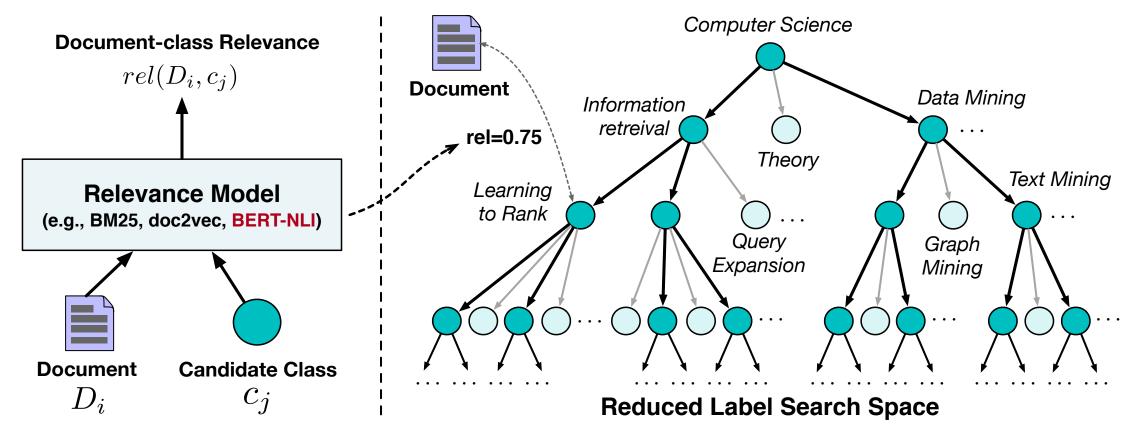
- Zero-shot prompting for pseudo label acquisition
- Iterative classifier training and pseudo label expansion

Dataset	Classification Type	# Docs	# Classes	Label Names	Prompt
AGNews	News Topic	120,000	4	politics, sports, business, technology	[MASK] News: <doc></doc>
20News	News Topic	17,871	5	computer, sports, science, politics, religion	[MASK] News: <doc></doc>
Yelp	Business Review Sentiment	38,000	2	good, bad	<doc> It was [MASK].</doc>
IMDB	Movie Review Sentiment	50,000	2	good, bad	<doc> It was [MASK].</doc>

Methods	AG	News	20N	lews	Ye	elp	IM	DB
Methods	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1
WeSTClass	0.823	0.821	0.713	0.699	0.816	0.816	0.774	-
ConWea	0.746	0.742	0.757	0.733	0.714	0.712	-	-
LOTClass	0.869	0.868	0.738	0.725	0.878	0.877	0.865	-
XClass	0.857	0.857	0.786	0.778	0.900	0.900	-	-
ClassKG [†]	0.881	0.881	0.811	0.820	0.918	0.918	0.888	0.888
RoBERTa (0-shot)	0.581	0.529	0.507 [‡]	0.445 [‡]	0.812	0.808	0.784	0.780
ELECTRA (0-shot)	0.810	0.806	0.558	0.529	0.820	0.820	0.803	0.802
PromptClass								
ELECTRA+BERT	0.884	0.884	0.789	0.791	0.919	0.919	0.905	0.905
RoBERTa+RoBERTa	0.895	0.895	0.755 [‡]	0.760‡	0.920	0.920	0.906	0.906
ELECTRA+ELECTRA	0.884	0.884	0.816	0.817	0.957	0.957	0.931	0.931
Fully Supervised	0.940	0.940	0.965	0.964	0.957	0.957	0.945	-

TaxoClass: A Weakly-Supervised Classification Method based on Taxonomy [NAACL'21]

- □ Shrink the label search space with top-down exploration
 - Use a **relevance model** to filter out completely irrelevant classes for each document
- □ Relevance model: BERT/RoBERTa fine-tuned on the NLI task



TaxoClass: Performance Comparison

	Methods	Amazo	n	DBPedia		
Weakly-supervised multi-		Example-F1	P@1	Example-F1	P@1	
Weakly-supervised multi- class classification method	WeSHClass (Meng et al., AAAI'19)	0.246	0.577	0.305	0.536	
Semi-supervised methods	SS-PCEM (Xiao et al., WebConf'19)	0.292	0.537	0.385	0.742	
using 30% of training set	Semi-BERT (Devlin et al., NAACL'19)	0.339	0.592	0.428	0.761	
Zero-shot method	Hier-OShot-TC (Yin et al., EMNLP'19) 0.474	0.714	0.677	0.787	
	TaxoClass (NAACL'21)	0.593	0.812	0.816	0.894	
	Example-F1 = $\frac{1}{N} \sum_{i=1}^{N} \frac{2}{i}$	$\frac{ true_i \cap pred_i }{true_i + pred_i }$, P@	$\mathfrak{D}1 = \frac{\#docs}{2}$	s with top–1 pred #total docs	dorrect	

- vs. WeSHClass: better model document-class relevance
- vs. SS-PCEM, Semi-BERT: better leverage supervision signals from taxonomy
- vs. Hier-OShot-TC: better capture domain-specific information from core classes

Amazon: 49K product reviews (29.5K training + 19.7K testing), 531 classes **DBPedia**: 245K Wiki articles (196K training + 49K testing), 298 classes

Investigating Methods for Automated Specific KB Construction

Intelligent Information Retrieval and Text Classification

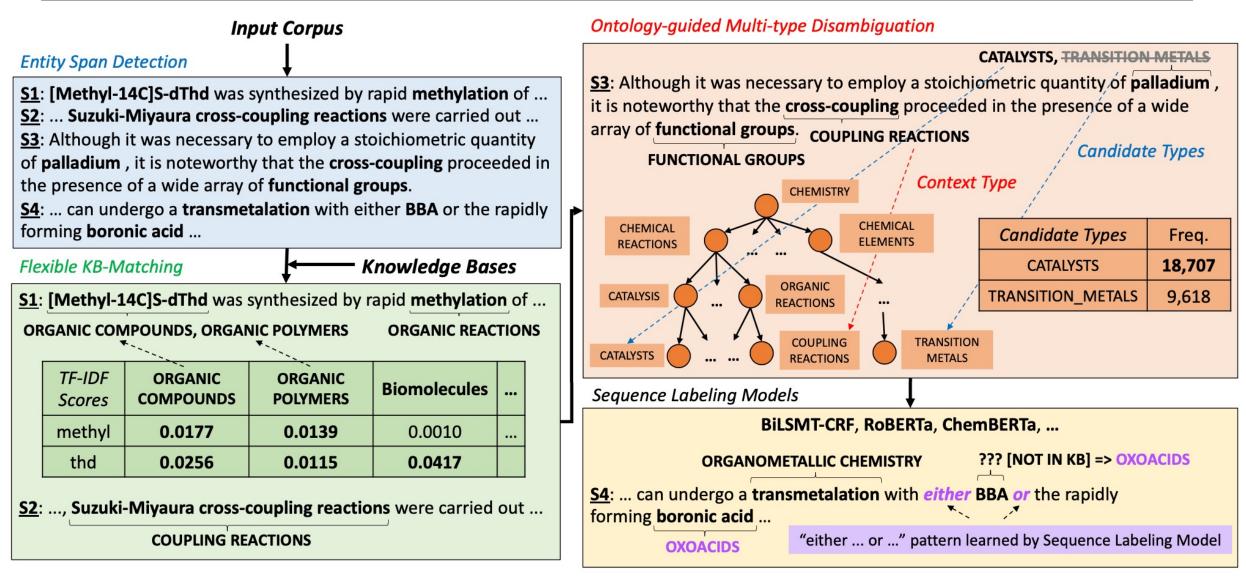
Topic Discovery: Unsupervised or Weakly Supervised Topic Mining

Weakly Supervised Text Classification

Open-domain Information Extraction

Theme-specific Knowledge-base Construction

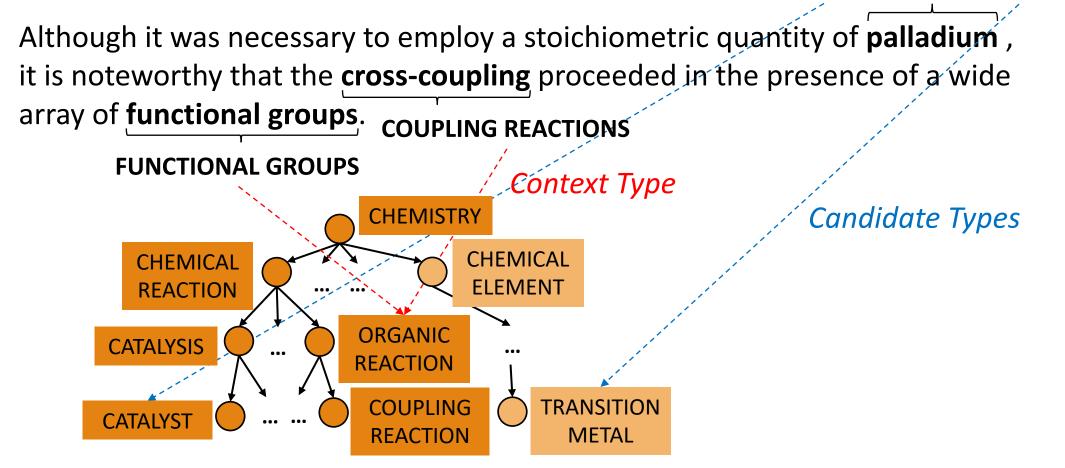
ChemNER: Fine-Grained Chemistry Named Entity Recognition with Ontology-Guided Distant Supervision [Wang et al, 2021]



Ontology-Guided Multi-Type Disambiguation

Key idea: the entities in the same sentence, paragraph or document usually follow a focused topic

CATALYST, TRANSITION METAL



ChemNER Outperforms Supervised Methods

- ChemNER achieves .25 absolute F1 score improvement over the best performing baseline model RoBERTa
- □ The four full model variations shows that RoBERTa is the best sequence labeling model that takes the output of CHEMNERFM (Flexible Matching + Multi-type Resolution) as distant supervision

Model	Prec	Rec	F1	-	Model	Prec	Rec	F1
KB-Matching	32.26	4.95	8.58	-		<u>69.47</u>	34.34	45.96
KB-Matching (freq)	20.51	11.88	15.05					41.85
BiLSTM-CRF (2016)	21.88	10.40	14.09	-	CHEMNER _F	74.76	29.06	
AutoNER (2018b)	20.51	3.96	6.64		CHEMNER _{FM}	71.90	32.83	45.08
RoBERTa (2019)	23.55	17.74	20.24		CHEMNER _{Bilstm-CRF}	48.65	17.82	26.09
ChemBERTa (2020)	17.54	12.28	14.45		CHEMNER _{RoBERTa}	69.47	34.34	45.96
			15.29	+25%个	CHEMNER _{ChemBERTa}	58.78	29.06	38.89
BOND (2020)	18.84	12.87		-	CHEMNER BOND	52.21	26.79	35.41
CHEMNER	69.47	34.34	45.96					

Sentence # 1	two aryl chlorides <i>ORGANOHALIDES</i> can be coupled to one another without the isolation of the interme- diate boronic acid <i>OXOACIDS</i>
KB-Matching	two aryl AROMATIC COMPOUNDS, SUBSTITUENTS, FUNCTIONAL GROUPS chlorides CHLORIDES can be coupled to one another without the isolation of the intermediate boronic acid OXOACIDS
CHEMNER	two aryl chlorides <i>ORGANOHALIDES</i> can be coupled to one another without the isolation of the interme- diate boronic acid <i>OXOACIDS</i>

OntoType: Ontology-Guided Entity Typing

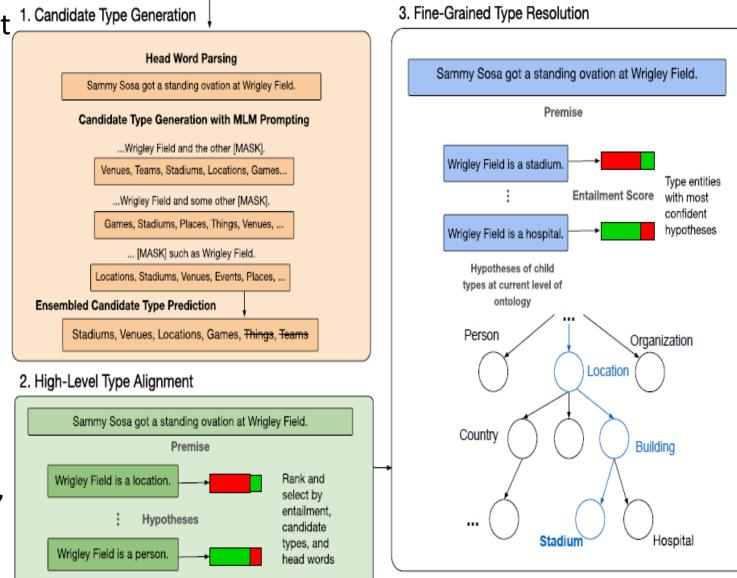
- Fine-grained entity typing (FET): Assigns entities in text with context-sensitive, finegrained semantic types
 - **Ex.** Sammy Sosa [Person/Player] got a standing ovation at Wrigley Field [Location/Building/Stadium]
- Challenges of weak supervision based on masked language model (MLM) prompting
 - A prompt generates a set of tokens, some likely vague or inaccurate, leading to erroneous typing
 - □ Not incorporate the rich structural information in a given, fine-grained type ontology
- OntoType: Ontology-guided, Annotation-Free, Fine-Grained Entity Typing
 - **Ensemble multiple MLM prompting results to generate a set of type candidates**
 - Progressively refine type resolution, from coarse to fine, following the type ontology, under the local context with a natural language inference model
- OntoType: Outperforms the SOTA zero-shot fine-grained entity typing methods

Tanay, Komarlu, et al., "ONTOTYPE: Ontology-Guided Annotation-Free Fine-Grained Entity Typing", 2023

OntoType: Ontology-Guided Entity Typing

Input Sentence and Entity Mention Span

- Ex. Sammy Sosa [Person/Player] got a standing ovation at Wrigley Field [Location/Building/Stadium]
- Candidate type generation
 - Multiple MLM prompting + ensembled candidate type prediction
 - Ex. Stadium, venue, location, games, things, teams
- High-level type alignment by entailment (local context + NLI)
- Progressively refine type resolution, from coarse to fine, following the type ontology



Zero-Shot Entity Typing Leads to High Performance

Use 3 benchmark	FET dataset	s: NYT, O	ntonotes,	and FIGER:	Model	Prec	Re	e Ma	a-F1
Datasets	Ontonotes	FIGER	NYT	-	ONTOTYPE BERT	82.3	77.	1 79.	6
# of Types	89	113	125		ONTOTYPERoBERTa	81.9	76.	9 79.	4
# of Documents	300k	3.1M	295k		ONTOTYPE _{Word2Vec}	84.7	78.	4 81.	5
# of Entity Mentions	242K	2.7M	1.18M						
# of Train Mentions	223K	2.69M	701K	Compare with Zoe	Model		Acc	Mi-F1	Ma-F
# of Test Mentions	8,963	563	1,010	on Ontonotes with	100		57.1	70.7	73.4
Compare with sup	• •			modified ontology	ONTOTYPE + Modified O	ntology	58.9	71.1	78.7

Compare with supervised and 0-shot methods:

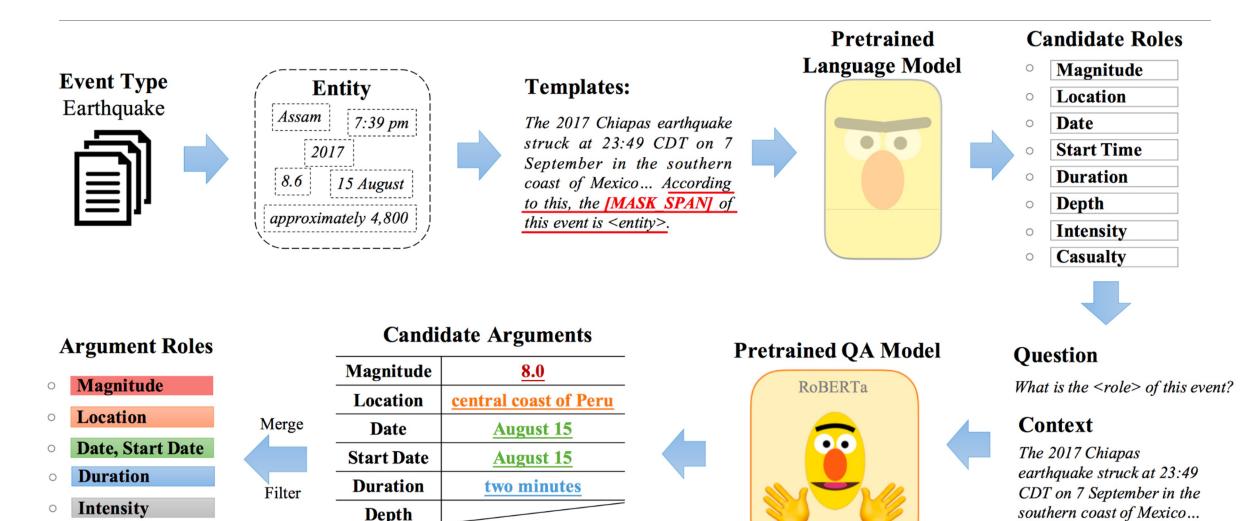
Settings	Model	NYT			FIGER			Ontonotes		
Settings	Widdel		Mi-F1	Ma-F1	Acc	Mi-F1	Ma-F1	Acc	Mi-F1	Ma-F1
	AFET [16]	-	-	-	55.3	66.4	69.3	55.1	64.7	71.1
Supervised	UFET [2]		-	-	-	-	-	59.5	71.8	76.8
	BERT-MLMET [3]	-	-	-	-	-	-	67.44	80.35	85.44
	ZOE [25]	62.1	73.7	76.9	58.8	71.3	74.8	50.7	60.8	66.9
Zero-Shot	OTyper [22]	46.4	65.7	67.3	47.2	67.2	69.1	31.8	36.0	39.1
	DZET [14]		53.1	51.6	28.5	56.0	55.1	23.1	28.1	27.6
	MZET [23]	30.7	58.2	56.7	31.9	57.9	55.5	33.7	43.7	42.3
	ONTOTYPE + Original Ontology (Ours)	-	-	-	49.1	67.4	75.1	65.7	73.4	81.5
	ONTOTYPE + Modified Ontology (Ours)	69.6	78.4	82.8	51.1	68.9	77.2	-	-	-

OntoType: Case Study

MZET	US President Joe Biden \Person\Politician was one of many for- eign leaders to speak with President Zelensky \Person\Politician,	Trailing two games to one in the NBA Finals \Other\Event and facing the doupting task of trying to heat the Boston Calties \Or
	and he "pledged to continue providing Ukraine \Location with	facing the daunting task of trying to beat the Boston Celtics \Or- ganization\Company in the hostile environment of TD Garden
	the support needed to defend itself, including advanced air de-	\Location\Building on Friday night, the Warriors knew they needed
	fence systems", the White House \Location\Building said.	to summon one of the best efforts of their dynastic run in order to
		even the best-of-seven series.
ZOE	US President Joe Biden \Person\Politician was one of	Trailing two games to one in the NBA Finals \Other\Event and
	many foreign leaders to speak with President Zelensky \Per-	facing the daunting task of trying to beat the Boston Celtics \Orga-
	son\Politician, and he "pledged to continue providing Ukraine	nization\Sports_Team in the hostile environment of TD Garden
	\Location\Country with the support needed to defend itself,	\Location\Building\Sports_Facility on Friday night, the Warriors
	including advanced air defence systems", the White House \Loca-	knew they needed to summon one of the best efforts of their dynastic
	tion\Building said.	run in order to even the best-of-seven series.
ΟντοΤγρε	US President Joe Biden \Person\Politician\President was one	Trailing two games to one in the NBA Finals \Other\Event\Finals
	of many foreign leaders to speak with President Zelensky \Per-	and facing the daunting task of trying to beat the Boston Celtics
	son\Politician\President, and he "pledged to continue providing	\Organization\Sports_Team\Basketball_Team in the hostile en-
	Ukraine \Location\Country with the support needed to defend	vironment of TD Garden \Location\Building\Sports_Facility on
	itself, including advanced air defence systems", the White House	Friday night, the Warriors knew they needed to summon one of the
	\Organization\Government said.	best efforts of their dynastic run in order to even the best-of-seven
		series.

See how different methods perform on news articles with a modified FIGER type ontology

RolePred: Argument Role Prediction [EMNLP'22]



Yizhu Jiao, Sha Li, Yiqing Xie, Ming Zhong, Heng Ji and Jiawei Han "<u>Open-</u> Vocabulary Argument Role Prediction for Event Extraction", EMNLP'22

IX

519

Intensity

Casualty

• Casualty

29

RolePred: Candidate Role Generation

- Predict candidate role names for named entities by casting it as a prompt-based in-filling task
- Prompt Construction: (using Generation Model : T5)
 - Context. According to this, the (MASK SPAN) of this Event Type is Entity.
- Ex. The 1964 Alaskan earthquake, also known as the Great Alaskan earthquake, occurred at 5:36 PM AKST on Good Friday, March 27. According to this, the (MASK SPAN) of this earthquake is 5:36 PM.
 - □ 〈MASK SPAN〉 is expected to be filled with *time* (or *start time*) as the argument role
- Considering the entity's general semantic type: person, location, number, etc., we slightly alter the prompt to fluently and naturally support the unmasking argument roles

Entity Type	Prompt	Prompt design for different entities
PERSON	According to this, Entity play the role of (MASK SP	AN in this Event Type.
LOCATION	According to this, the (MASK SPAN) is Entity i	n this Event Type.
NUMBER	According to this, the number of $\langle MASK SPAN \rangle$ of the	is Event Type is Entity.
OTHER TYPES	According to this, the $\langle MASK SPAN \rangle$ of this $Even$	ent Type is Entity.

RolePred: Candidate Argument Extraction

- **G** Formulate the argument extraction problem into question-answering task
- Input: follow a standard BERT-style format (Model: BERT based pretrained QA model)

[CLS] What is the Event Role in this Event Type event? [SEP] Document [SEP]

Ex. [CLS] What is the <u>casualty</u> in this <u>pandemic</u> event? [SEP] The COVID-19 pandemic is an ongoing global pandemic of coronavirus disease. It's estimated that the worldwide total number of deaths has exceeded five million ... [SEP]

					M 11	Hard Matching			Soft Matching			
Ι	Datasets	# EvTyp.	# RoleTyp.	# Doc.	# ArgScat.	Models	Precision	Recall	F1	Precision	Recall	F1
A	ACE2005	33	35	599	1	LiberalEE	0.1342	0.2613	0.1773	0.3474	0.5340	0.4209
ŀ	KBP2016	18	20	169	1	VASE	0.0926	0.1436	0.1125	0.2581	0.4274	0.3218
ŀ	KBP2017	18	20	167	1	ODEE	0.1241	0.3076	0.1768	0.3204	0.4862	0.3862
Ν	MUC-4	4	5	1,700	4.0	CLEVE	0.1363	0.2716	0.1815	0.3599	0.5712	0.4415
	WikiEvents	50	59	246	2.2		0.0100	0.4500	0.0000	0.4100	0.0000	0.5011
ŀ	RAMS	139	65 3	3,993	4.8	ROLEPRED (BERT)	0.2128	0.4582	0.2906	0.4188	0.6896	0.5211
ŀ	RoleEE	50	143	4,132	7.1	RolePred (T5)	0.2552	0.6461	0.3659	0.4591	0.7079	0.5570
1	COLLE			1,152	7.1	- RoleMerge 0.2233 0.6962 0.33	0.3381	0.4234 0.7677	0.7677	0.5457		
	Dataset	statistics	5			- RoleMerge - RoleFilter	0.1928	0.6582	0.2983	0.4188	0.7084	0.5264
31	1		Argum	Argument Role Prediction		Human	0.6098	0.8270	0.7020	0.7365	0.8732	0.7990

□ The argument is expected to be five million

Investigating Methods for Automated Specific KB Construction

Intelligent Information Retrieval and Text Classification

□ Topic Discovery: Unsupervised or Weakly Supervised Topic Mining

Weakly Supervised Text Classification

Open-domain Information Extraction

Theme-specific Knowledge-base Construction

Theme-specific Knowledge-base Construction

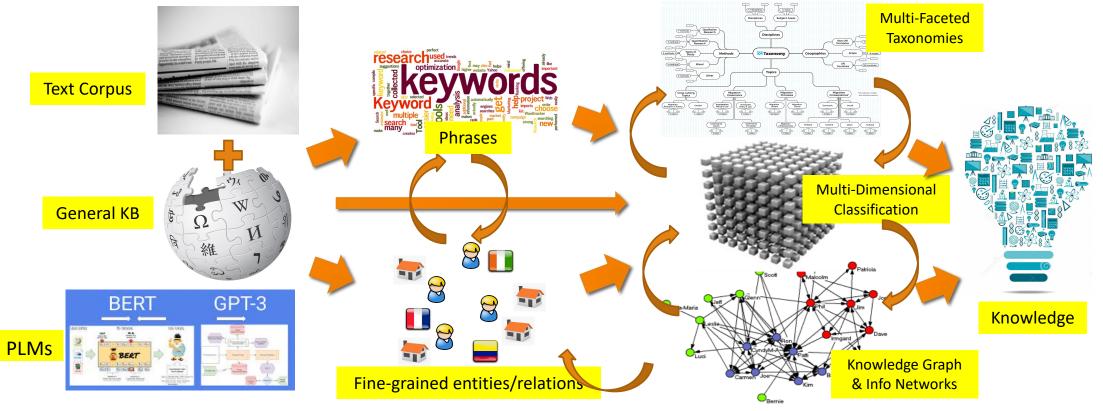
- Treat event schemas as a form of commonsense knowledge that can be derived from large language models (LLMs).
- Event schemas have complex graph structures, design an incremental prompting and verification method INCSCHEMA to break down the construction of a complex event graph into three stages
 - Event skeleton construction
 - Event expansion

Zoey Li, et al., Open-Domain Hierarchical Event Schema Induction by Incremental Prompting and Verification, ACL'23

- Event-event relation verification
- INCSCHEMA can generate large and complex schemas with 7.2% F1 improvement in temporal relations and 31.0% F1 improvement in hierarchical relations.
- Compared to the previous state-of-the-art closed-domain schema induction model, human assessors were able to cover ~10% more events when translating the schemas into coherent stories and rated our schemas 1.3 points higher (on a 5-point scale) in terms of readability.

Conclusions

- □ Theme-specific KBs are what we need!
- Mine knowledge structures for automated construction
 - **Exploring the power of weak supervision plus PLM!**
- □ Knowledge Is Power!? Data Is Power!? → Structured Knowledge from Data Is Power!!



References

- Yu Meng, Jiaxin Huang, Guangyuan Wang, Chao Zhang, Honglei Zhuang, Lance Kaplan and Jiawei Han, "Spherical Text Embedding", NeurIPS'19
- Yu Meng, Yunyi Zhang, Jiaxin Huang, Yu Zhang, Chao Zhang and Jiawei Han, "Hierarchical Topic Mining via Joint Spherical Tree and Text Embedding", KDD'20
- Yu Meng, Jiaxin Huang, Guangyuan Wang, Zihan Wang, Chao Zhang, Yu Zhang and Jiawei Han, "Discriminative Topic Mining via Category-Name Guided Text Embedding", WWW'20
- Yu Meng, Yunyi Zhang, Jiaxin Huang, Chenyan Xiong, Heng Ji, Chao Zhang and Jiawei Han, "Text Classification Using Label Names Only: A Language Model Self-Training Approach", EMNLP'20
- Jiaming Shen, Wenda Qiu, Yu Meng, Jingbo Shang, Xiang Ren and Jiawei Han, "TaxoClass: Hierarchical Multi-Label Text Classification Using Only Class Names", NAACL'21
- Yu Zhang, Yunyi Zhang, Martin Michalski, Yucheng Jiang, Yu Meng, and Jiawei Han, "Effective Seed-Guided Topic Discovery by Integrating Multiple Types of Contexts", WSDM'23
- Yizhu Jiao, Sha Li, Yiqing Xie, Ming Zhong, Heng Ji and Jiawei Han "Open-Vocabulary Argument Role Prediction for Event Extraction", EMNLP'22
- Yunyi Zhang, Minhao Jiang, Yu Meng, Yu Zhang, Jiawei Han: "PromptClass: Weakly-Supervised Text Classification with Prompting Enhanced Noise-Robust Self-Training", Axiv:2305.13723 (2023)