





# **PV2TEA:** Patching Visual Modality to Textual-Established Information Extraction

Hejie Cui<sup>1\*</sup>, Rongmei Lin<sup>2</sup>, Nasser Zalmout<sup>2</sup>, Chenwei Zhang<sup>2</sup>, Jingbo Shang<sup>3</sup>, Carl Yang<sup>1</sup>, Xian Li<sup>2</sup> <sup>1</sup> Emory University, GA, USA <sup>2</sup> Amazon.com Inc, WA, USA <sup>3</sup> University of California, San Diego, CA, USA {hejie.cui, j.carlyang}@emory.edu,jshang@ucsd.edu {linrongm, nzalmout, cwzhang, xianlee}@amazon.com

> Presented by **Jingbo Shang** Assistant Professor at UC San Diego Visiting Academics at Amazon

# Outline

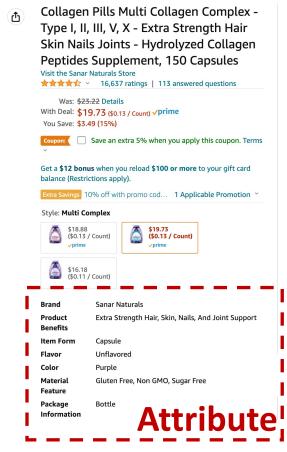
**1.** Introduction and Motivation **(** 

- **2.** Proposed Method: PV2TEA
- **3.** Experiment Results

### **Multimodal Attribute Extraction**

- Attribute value extraction: extract structed knowledge triples, i.e., (*sample\_id, attribute, value*), from unstructured information, e.g., text descriptions and images
- Existing automatic attribute value extraction methods work well when prediction targets are <u>inferrable from text</u>





### **Visual Information Can Potentially Help in Improving Recall**

Good Earth Sensorial Blends Tropical Moringa & Mango Herbal Tea, 15Count Visit the Good Earth Store

#### Price: \$3.85 (\$0.26 / Count)

đ

- Earn 5% back on this purchase (worth \$0.19 when redeemed) with your Prime Store Card. SNAP EBT eligible
- Brand
   Good Earth

   Item Form
   Tea Bags

   Flavor
   Tropical Mango and Moringa Herbal Tea

   Tea Variety
   Green

   Number of Items
   1

#### About this item

- BORN TO BE BOLD: Not your ordinary English breakfast tea, our blend tantalizes your taste buds for an early morning lift
- ALL NATURAL: No artificial flavors, colors or preservatives
- REFRESHINGLY GOOD: Our flavored teas create a cup of effortless character and depth that is sure to leave you blushing
- ETHICAL TEA: Sustainability is at the core of everything Good Earth does with Rainforest Alliance ingredients on our Sensorial Blends
- Born in the 70s 1972, to be exact and inspired by sunny Santa Cruz we came up with tantalizing teas to give your days a little lift

#### Scenario 1: Attribute value not in text

• The provided images may contain the

#### missing attribute information

Improving Recall

#### **Itemform**: tea bag

### **Visual Information Can Potentially Help in Improving Precision**

Best Price Mattress 10 Inch Memory Foam Mattress, Calming Green Tea Infusion, Pressure-Relieving, Bed-in-a-Box, CertiPUR-US Certified, Twin Visit the Best Price Mattress Store ★★★★☆ ≤ 22,391 ratings

#### \$**166**<sup>32</sup>

✓prime & FREE Returns ∽ Or \$27.72/month for 6 months with 0% interest financing on your Prime Store Card

Size: 10 Inch

| 6 Inch            | 8 Inch  | 10 Incl | 12 In | ch | 14 Inch    |      |
|-------------------|---------|---------|-------|----|------------|------|
| Style: <b>Twi</b> | n       |         |       |    |            |      |
| Twin              | Twin XL | Full    | Queen | S  | hort Queen | King |
| e 110             |         |         |       |    |            |      |

#### Scenario 2: Distracting information

• The provided images may

potentially help to distinguish noisy

labels

Improving Precision

#### Color: white

#### Task Illustration and Challenges in Cross-Modality Integration



Image

Textual Descriptions: "Best Price Mattress 12 Inch Memory Foam Mattress, Calming <u>Green Tea</u>-Infused Foam, Pressure Relieving, Bed-in-a-Box, Queen" Question: What is the *color* of the mattress? Weakly Supervised Label: green True Value: white

# **Challenge** Explanations:





## C1 Loosely-aligned product image and textual descriptions:

- <u>intra-sample</u>: weakly related across modalities and difficult to ground;
- <u>inter-samples</u>: images of other products can also pair with the text C2 Visual bias: noisy contextual backgrounds, e.g., pillow, bed frame, etc. C3 Textual bias: the training label is misled/biased by 'green tea' in text

# **Motivating Analysis on the Textual Bias of Attribute Extraction**

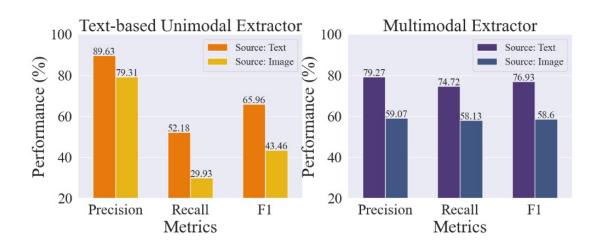


Figure 2: Source-aware evaluation of existing unimodal and multimodal models on the textual-biased issue.

**Source: Text** indicates the gold value is present in the text; **Source: Image** indicates the gold value is absent from the text and must be inferred from the image

- Two representative unimodal and multimodal methods: **OpenTag** and **PAM**
  - Both achieve impressive results when the gold value is contained in the text
  - When the gold value is not contained in the text and must be derived from visual input, the performance drops dramatically
- Model trained with textual-shifted labels will result in a learning ability gap between modalities
   → strong textual bias and dependence

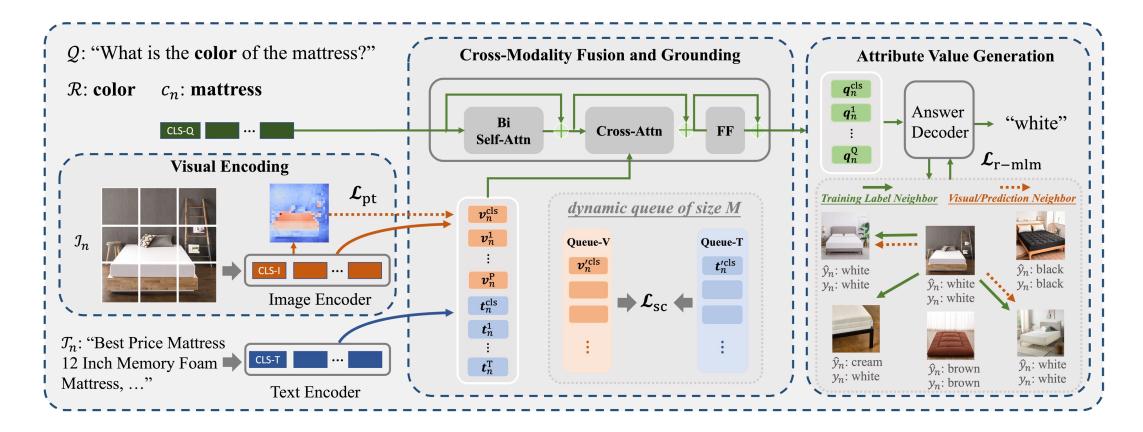
# Outline

- **1.** Introduction and Motivation
- 2. Proposed Method: PV2TEA 🗲
- **3.** Experiment Results

### **Problem Definition**

- Task: automatic attribute extraction from multimodal input
- Input: a query attribute  $\mathcal{R}$  and a text-image dataset  $\mathcal{D} = {\mathcal{X}_n}_{n=1}^N = {(\mathcal{I}_n, \mathcal{T}_n, c_n)}_{n=1}^N$  consisting of N samples (e.g., products)
  - $\mathcal{I}_n$  represents the profile image of  $\mathcal{X}_n$
  - $T_n$  represents the textual description
  - $c_n$  is the sample category (e.g., product type)
- **Output**: infer attribute value  $y_n$  of the query attribute  $\mathcal{R}$  for sample  $\mathcal{X}_n$
- Setting: open-vocabulary, the number of candidate values is extensive and  $y_n$  can contain either single or multiple values

## **The Overview of PV2TEA**



The PV2TEA model architecture with three modules, each equipped with a bias reduction scheme

# Augmented Label-Smoothed Contrast for Multi-modality Loose Alignment (S1)

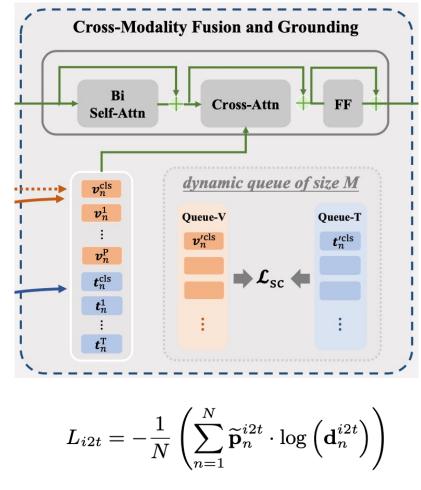
Augment the contrast to include sample comparison from two queues storing the most recent *M* visual and textual representations:

- Intra-sample weak alignment
  - Smooth the one-hot pairing label  $\mathbf{p}_n^{i2t}$  with the pseudo-similarity  $\mathbf{q}_n^{i2t}$

$$\widetilde{\mathbf{p}}_{n}^{i2t} = (1 - \alpha)\mathbf{p}_{n}^{i2t} + \alpha \mathbf{q}_{n}^{i2t}$$
$$\mathbf{q}_{n}^{i2t} = \sigma \left( \mathcal{F'}_{v} \left( \mathcal{I}_{n} \right)^{\top} \mathcal{F'}_{t} \left( \mathcal{T}_{n} \right) \right) = \sigma \left( \boldsymbol{v}_{n}^{' \text{cls}^{\top}} \boldsymbol{t}_{n}^{' \text{cls}} \right)$$

- Potential inter-samples alignment
  - Compare visual representation  $v_n^{\prime cls}$  with all textual representations T' in the queue to augment contrast

$$\mathbf{d}_n^{i2t} = rac{\exp\left(oldsymbol{v}_n^{' ext{cls}^ op} oldsymbol{T}_m^{\prime} / au
ight)}{\sum_{m=1}^M \exp\left(oldsymbol{v}_n^{' ext{cls}^ op} oldsymbol{T}_m^{\prime} / au
ight)}\,,$$



$$L_{\rm sc} = \left(L_{i2t} + L_{t2i}\right)/2$$

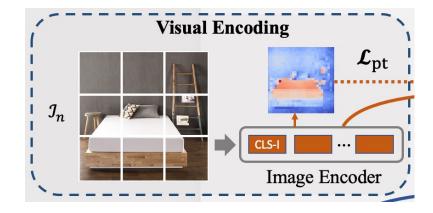
### **Visual Attention Pruning (S2)**

Encourage the ViT encoder  $\mathcal{F}$  focus on task-relevant foregrounds given the input image  $\mathcal{I}_n$  with a product type aware attention pruning, supervised with product type classification,

$$L_{\text{pt}} = -\frac{1}{N} \left( \sum_{n=1}^{N} c_n \cdot \log \left( \mathcal{F}(\mathcal{I}_n) \right) \right)$$

The learned attention mask M is then applied on the visual representation sequences  $v_n$  of the whole image to screen out noisy backgrounds and task-irrelevant patches

$$oldsymbol{v}_n^{pt} = oldsymbol{v}_n \odot \sigma(oldsymbol{M})$$



## Two-level Neighborhood-regularized Sample Weight Adjustment (S3)

In each iteration, sample weight  $s(X_n)$  is updated based on its label reliability

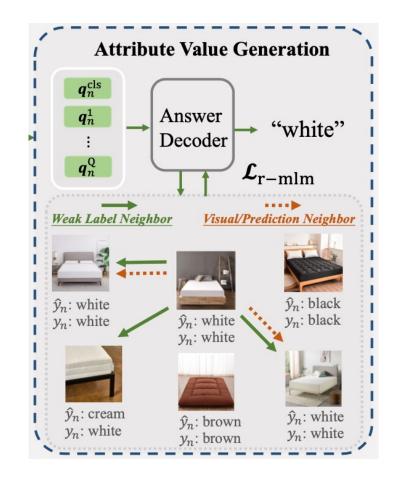
$$\mathcal{L}_{ ext{r-mlm}} = -rac{1}{N} \left( \sum_{n=1}^{N} s\left( \mathcal{X}_{n} 
ight) \cdot g\left( y_{n}, \hat{y}_{n} 
ight) 
ight)$$

• Visual Neighbor Regularization:

for each sample  $\mathcal{X}_n$  with  $\boldsymbol{v}_n$ , find its KNN neighbors in visual feature spaces:  $\mathcal{N}_n = \{\mathcal{X}_n \cup \mathcal{X}_k \in \text{KNN}(\boldsymbol{v}_n, \mathcal{D}, K)\}$ simultaneously, get the set of samples with the same training labels  $y_i$  as sample  $\mathcal{X}_n$ :  $\mathcal{Y}_n = \{\mathcal{X}_n \cup \mathcal{X}_j \in \mathcal{D}_{y_j = y_n}\}$ The reliability of sample  $\mathcal{X}_n$ :  $s_v(\mathcal{X}_n) = |\mathcal{N}_n \cap \mathcal{Y}_n| / K$ .

• Prediction Neighbor Regularization

similarly, find the sample set with the same predicted attribute values with  $\mathcal{X}_n$ The reliability of sample  $\mathcal{X}_n$ :  $\hat{\mathcal{Y}}_n = \{\mathcal{X}_n \cup \mathcal{X}_j \in \mathcal{D}_{\hat{y}_j = \hat{y}_n}\}$  $s_p(\mathcal{X}_n) = |\hat{\mathcal{Y}}_n \cap \mathcal{Y}_n| / |\hat{\mathcal{Y}}_n \cup \mathcal{Y}_n|$ 



$$s\left(\mathcal{X}_{n}\right) = \begin{cases} s_{v}\left(\mathcal{X}_{n}\right) & e < E, \\ \operatorname{AVG}\left(s_{v}\left(\mathcal{X}_{n}\right), s_{p}\left(\mathcal{X}_{n}\right)\right) & e \geq E. \end{cases}$$

# Outline

- **1.** Introduction and Motivation
- **2.** Proposed Method: PV2TEA
- 3. Experiment Results 🗲

### **Overall Performance**

| Attr      | # PT | Value Type | # Valid | # Train & Val | # Test |
|-----------|------|------------|---------|---------------|--------|
| Item Form | 14   | Single     | 142     | 42,911        | 4,165  |
| Color     | 255  | Multiple   | 24      | 106,176       | 3,777  |
| Pattern   | 31   | Single     | 30      | 119,622       | 2,093  |

Table 1: Statistics of the attribute extraction datasets.

| Туре       | Mathad                 | Dataset: Item Form |        |                | Dataset: Color |        |              | Dataset: Pattern |        |              |
|------------|------------------------|--------------------|--------|----------------|----------------|--------|--------------|------------------|--------|--------------|
|            | Method                 | Precision          | Recall | $\mathbf{F}_1$ | Precision      | Recall | $F_1$        | Precision        | Recall | $F_1$        |
|            | OpenTag <sub>seq</sub> | 91.37              | 44.97  | 60.27          | 83.94          | 24.73  | 38.20        | 79.65            | 19.83  | 31.75        |
| Unimodal   | OpenTag <sub>cls</sub> | 89.40              | 51.67  | 65.49          | 81.13          | 28.61  | 42.30        | 78.10            | 24.41  | 37.19        |
|            | TEA                    | 82.71              | 60.98  | 70.20          | 67.58          | 47.80  | 55.99        | 60.87            | 37.40  | 46.33        |
|            | ViLBERT                | 75.97              | 65.67  | 70.45          | 60.22          | 51.12  | 55.30        | 60.10            | 40.52  | 48.40        |
|            | LXMERT                 | 75.79              | 68.72  | 72.08          | 60.20          | 54.26  | 57.08        | 60.33            | 42.28  | 49.72        |
| Multimodal | UNITER                 | 76.75              | 69.10  | 72.72          | 61.30          | 54.69  | 57.81        | 62.45            | 43.38  | 51.20        |
|            | BLIP                   | 78.21              | 69.25  | 73.46          | 62.70          | 58.23  | 60.38        | 58.74            | 44.01  | 50.32        |
|            | PAM                    | 78.83              | 74.35  | <u>76.52</u>   | 63.34          | 60.43  | <u>61.85</u> | 61.80            | 44.29  | <u>51.60</u> |
| Ours       | PV2TEA w/o S1          | 80.03              | 72.49  | 76.07          | 71.00          | 58.41  | 64.09        | 60.03            | 45.59  | 51.82        |
|            | PV2TEA w/o S2          | 80.48              | 75.32  | 77.81          | 73.77          | 59.37  | 65.79        | 59.01            | 46.74  | 52.16        |
|            | PV2TEA w/o S3          | 80.87              | 72.71  | 76.57          | 74.29          | 59.04  | 65.79        | 59.92            | 44.92  | 51.35        |
|            | PV2TEA                 | 82.46              | 75.40  | 78.77          | 77.44          | 60.19  | 67.73        | 62.10            | 46.84  | 53.40        |

#### **Observations:**

- Comparing the unimodal methods with multimodal ones, textual-only models achieve impressive results on precision while greatly suffering from low recall
  - Adding visual information can further improve recall, especially for the multi-value attribute, e.g., *Color*
- With the three proposed bias-reduction schemes, PV2TEA improves on all three metrics over multimodal baselines and balances precision and recall compared with unimodal models

Table 2: Performance comparison with different baselines (%). The performance gains over the baselines have passed the t-test with a p-value < 0.05. The best performance is in bold, and the second runner baseline is underlined.

#### **Source Aware Evaluation & Case Study**

| Method                 | Gold Value Source         | e Precision | Recall | F <sub>1</sub> |
|------------------------|---------------------------|-------------|--------|----------------|
|                        | Text 🗸                    | 89.78       | 52.13  | 65.96          |
| OpenTag <sub>cls</sub> | Text 🗶 Image 🗸            | 78.95       | 31.25  | 44.78          |
|                        | $\mathbf{GAP}\downarrow$  | 10.83       | 20.88  | 21.18          |
|                        | Text 🗸                    | 79.16       | 74.53  | 76.78          |
| PAM                    | Text 🗶 Image 🗸            | 66.67       | 58.33  | 62.22          |
|                        | $\mathbf{GAP} \downarrow$ | 12.50       | 16.20  | 14.56          |
|                        | Text 🗸                    | 82.64       | 75.71  | 79.02          |
| <b>PV2TEA</b>          | Text 🗶 Image 🗸            | 75.00       | 62.50  | 68.18          |
|                        | $\mathbf{GAP}\downarrow$  | 7.64        | 13.21  | 10.84          |

Table 3: Fine-grained source-aware evaluation of different methods. The *gold value source* indicates whether the gold value is contained in the text, or is not contained in the text and must be inferred from the image.

The performance gap between when the gold value is present or absent in the text is significantly reduced by PV2TEA indicates a more balanced and generalized capacity of PV2TEA to learn from different modalities.



Milumia Women Casual 2 Piece Outfits Tie Back Cami Crop Top Belted Pants Sets Navy Medium Material: 100% Polyester. Fabric is Non-stretch. Feature: Cami Crop Top with Pants Sets, Tie Hem, Bow, Spaghetti Strap, Sleeveless, Knot, Belted Pants, Striped Occasion: Perfect for Summer Beach, Vacation, Traveling, Holiday, Party, Weekend Casual, Going Out, Weekend Daily, Shopping and Dating wear. Season: Suitable for Spring, Summer

#### Q: what is the pattern of the one-piece outfit? PV2TEA Prediction: striped



WSERE 3 Pack Plastic Flip Top Bird Small Poultry Feeder for Pigeon Quails Ducklings Birds, No Mess No Waste Multihole Birds Feeding Dish Dispenser Chick Feeder

#### **PV2TEA Prediction: red,**

Q: what is the *color* of the *wildlife feeder*?

yellow, green



URATOT Glittered Christmas Tree Topper Metal Christmas Treetop Hallow Wire Star Topper for Christmas Home Decoration; Product material: this Christmas tree topper is made of quality plastic

#### Q: what is the *color* of the *decoration*?

#### **PV2TEA Prediction: silver**



Sugar in the raw 500 packets 4 lbs 15 4 ounces cooking raw sugar. A natural unrefined sugar made from sugar cane grown in each packet holds approximately one teaspoon and has five grams of carbohydrates and 20 calories flavor: original; packing type: packets; premeasured: yes; capacity weight : 0 18 oz

Q: what is the *item form* of the *sugar*?

**PV2TEA Prediction: crystal** 

#### Figure 6: Qualitatively case studies.

### **Ablation Studies**

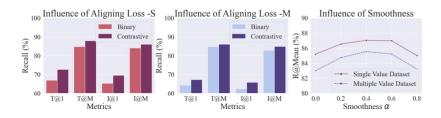


Figure 4: The influence study of alignment objectives, i.e., binary matching v.s. contrastive loss, and the influence of softness  $\alpha$  via the task of image-to-text and text-to-image retrieval. The metric T/I@1 is the recall of text/image retrieval at rank 1, T/I@M means the rank average, and R@Mean further averages T@M and I@M.

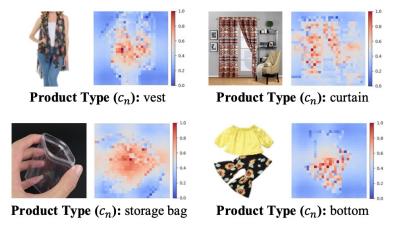


Figure 5: Visualization of learned attention mask with category (e.g., product type) aware ViT classification.

| Mathad              | Single | Value I | Dataset | Multiple Value Dataset |       |       |  |
|---------------------|--------|---------|---------|------------------------|-------|-------|--|
| Method              | Р      | R       | $F_1$   | Р                      | R     | $F_1$ |  |
| w/o L <sub>sc</sub> | 80.03  | 72.49   | 76.07   | 71.00                  | 58.41 | 64.09 |  |
| w/o Smooth          | 81.42  | 74.41   | 77.76   | 75.06                  | 59.99 | 66.68 |  |
| PV2TEA              | 82.46  | 75.40   | 78.77   | 77.44                  | 60.19 | 67.73 |  |

Table 4: Ablation study on the augmented label-<br/>smoothed contrast for cross-modality alignment (%).

|                     | Single Value Dataset |       |       | M  | Multiple Value Dataset |       |                |  |
|---------------------|----------------------|-------|-------|----|------------------------|-------|----------------|--|
| Method              | Р                    | R     | $F_1$ | ]  | P                      | R     | $\mathbf{F}_1$ |  |
| w/o L <sub>ct</sub> | 80.48                | 75.32 | 77.81 | 73 | .77                    | 59.37 | 65.79          |  |
| w/o Attn Prun       | 80.61                | 75.49 | 77.97 | 74 | .60                    | 59.42 | 66.15          |  |
| PV2TEA              | 82.46                | 75.40 | 78.77 | 77 | .44                    | 60.19 | 67.73          |  |

Table 5: Ablation study on the category supervised visual attention pruning (%).

| Method      | Single Value Dataset |       |       |  | Multiple Value Dataset |       |       |  |
|-------------|----------------------|-------|-------|--|------------------------|-------|-------|--|
| Method      | Р                    | R     | $F_1$ |  | Р                      | R     | $F_1$ |  |
| w/o NR      | 80.87                | 72.71 | 76.57 |  | 74.29                  | 59.04 | 65.79 |  |
| w/o Vis-NR  | 81.87                | 73.54 | 77.48 |  | 77.07                  | 59.99 | 67.47 |  |
| w/o Pred-NR | 81.81                | 73.18 | 77.25 |  | 76.71                  | 59.44 | 66.98 |  |
| PV2TEA      | 82.46                | 75.40 | 78.77 |  | 77.44                  | 60.19 | 67.73 |  |

Table 6: Ablation study on the two-level neighborhood-regularized sample weight adjustment (%).

Ablation studies for the design modules in S1, S2, and S3 respectively

## Summary, Thank You! Q&A

- PV2TEA is a bias-mitigated visual patching-up model for multimodal information extraction
  - Augment label-smoothed contrast promotes accurate & complete cross modal alignment
  - Visual attention pruning improves precision by masking out task-irrelevant regions
  - neighborhood-regularized sample weight adjustment reduces textual bias from noisy samples
- Generalizable: we anticipate the investigated challenges and solutions can inspire future scenarios where the task is first established on the text and then expanded to multiple modalities.
- Limitations:
  - multimodal alignment and fusion only consider a single image for each sample
  - attention pruning may filter out helpful text information on the images intentionally provided