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Multimodal Attribute Extraction

• Attribute value extraction: extract structed

knowledge triples, i.e., (sample_id, attribute,

value), from unstructured information, e.g., text

descriptions and images

• Existing automatic attribute value extraction

methods work well when prediction targets are

inferrable from text

Attribute
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Scenario 1: Attribute value not in text

• The provided images may contain the

missing attribute information

Ø Improving Recall

Visual Information Can Potentially Help in Improving Recall

Itemform: tea bag
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Visual Information Can Potentially Help in Improving Precision

Scenario 2: Distracting information

• The provided images may

potentially help to distinguish noisy

labels

Ø Improving Precision

Color: white



Task Illustration and Challenges in Cross-Modality Integration

⋯Challenge Explanations:

C1 Loosely-aligned product image and textual descriptions:
• intra-sample: weakly related across modalities and difficult to ground;
• inter-samples: images of other products can also pair with the text
C2 Visual bias: noisy contextual backgrounds, e.g., pillow, bed frame, etc.
C3 Textual bias: the training label is misled/biased by ‘green tea’ in text



6

Motivating Analysis on the Textual Bias of Attribute Extraction

• Two representative unimodal and multimodal

methods: OpenTag and PAM

• Both achieve impressive results when the

gold value is contained in the text

• When the gold value is not contained in the

text and must be derived from visual input,

the performance drops dramatically

• Model trained with textual-shifted labels will

result in a learning ability gap between modalities

→ strong textual bias and dependence

Source: Text indicates the gold value is present in the text;

Source: Image indicates the gold value is absent from the

text and must be inferred from the image
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Problem Definition

• Task: automatic attribute extraction from multimodal input

• Input: a query attribute ℛ and a text-image dataset " = $! !"#$ = ℐ!, '!, (! !"#$

consisting of ) samples (e.g., products)

• ℐ! represents the profile image of $!
• '! represents the textual description

• (! is the sample category (e.g., product type)

• Output: infer attribute value *! of the query attribute ℛ for sample $!
• Setting: open-vocabulary, the number of candidate values is extensive and *! can

contain either single or multiple values
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The Overview of PV2TEA

The PV2TEA model architecture with three modules, each equipped with a bias reduction scheme
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Augmented Label-Smoothed Contrast for Multi-modality Loose Alignment (S1)

Augment the contrast to include sample comparison
from two queues storing the most recentM visual and
textual representations：

• Intra-sample weak alignment
• Smooth the one-hot pairing label !!"#$ with the

pseudo-similarity "!"#$

• Potential inter-samples alignment
• Compare visual representation #!%&'( with all textual

representations $% in the queue to augment contrast

Label Noise in Adversarial Training: A Novel Perspective to Study Robust Overfitting. Chengyu Dong, Liyuan Liu and Jingbo Shang. NeurIPS 2022 (oral).
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Visual Attention Pruning (S2)

Encourage the ViT encoder ℱ focus on task-relevant
foregrounds given the input image ℐ! with a product type
aware attention pruning, supervised with product type
classification,

The learned attention mask# is then applied on the visual
representation sequences $! of the whole image to screen
out noisy backgrounds and task-irrelevant patches
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Two-level Neighborhood-regularized Sample Weight Adjustment (S3)

In each iteration, sample weight %('!) is updated
based on its label reliability

• Visual Neighbor Regularization:
for each sample %! with #!, find its KNN neighbors in visual

feature spaces:

simultaneously, get the set of samples with the same

training labels &" as sample %!:

The reliability of sample %!:

• Prediction Neighbor Regularization
similarly, find the sample set with the same predicted

attribute values with %!
The reliability of sample %!:
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Overall Performance

Observations:

• Comparing the unimodal methods with 

multimodal ones, textual-only models 

achieve impressive results on precision 

while greatly suffering from low recall

• Adding visual information can further im- 

prove recall, especially for the multi-value 

attribute, e.g., Color 

• With the three proposed bias-reduction 

schemes, PV2TEA improves on all three 

metrics over multimodal baselines and 

balances precision and recall compared 

with unimodal models
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Source Aware Evaluation & Case Study

The performance gap between when the gold value is present 

or absent in the text is significantly reduced by PV2TEA

indicates a more balanced and generalized capacity of PV2TEA 

to learn from different modalities. 
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Ablation Studies

Ablation studies for the design modules in S1, S2, and S3 respectively
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Summary, Thank You! Q&A

• PV2TEA is a bias-mitigated visual patching-up model for multimodal information extraction
• Augment label-smoothed contrast promotes accurate & complete cross modal 

alignment
• Visual attention pruning improves precision by masking out task-irrelevant regions 
• neighborhood-regularized sample weight adjustment reduces textual bias from noisy 

samples 
• Generalizable: we anticipate the investigated challenges and solutions can inspire future 

scenarios where the task is first established on the text and then expanded to multiple 
modalities. 

• Limitations:
• multimodal alignment and fusion only consider a single image for each sample 
• attention pruning may filter out helpful text information on the images intentionally 

provided


