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Abstract

Large Language Models (LLMs) have shown
remarkable performance in various natural lan-
guage processing tasks but face challenges
in mathematical reasoning, where complex
problem-solving requires both linguistic un-
derstanding and mathematical reasoning skills.
Existing approaches to address this challenge
often rely on ensemble methods and suffer from
the problem of data scarcity in target domains.
In this work, we present a novel method to
enhance the capabilities of LLMs in mathemat-
ical reasoning tasks. Motivated by the need to
bridge this gap, our approach incorporates a
question paraphrase strategy, which aims to
diversify the linguistic forms of mathemati-
cal questions to improve generalization. Ad-
ditionally, specialized training objectives are
employed to guide the model’s learning pro-
cess, focusing on enhancing its understand-
ing of mathematical concepts and reasoning
processes. We conduct experiments on four
datasets using different LLMs, and demonstrate
the effectiveness of our approach in improving
LLMs’ performance on mathematical reason-
ing tasks. Our findings underscore the signifi-
cance of our methodology in advancing LLMs
and their potential implications for real-world
applications that require mathematical reason-
ing abilities.

1 Introduction

In recent years, Large Language Models (LLMs)
(Touvron et al., 2023b; Team et al., 2023) have
emerged as powerful tools in the field of machine
learning, demonstrating remarkable performance
in a wide range of downstream benchmarks. Their
ability to understand and generate natural language
text has revolutionized various applications, from
language translation (Costa-jussà et al., 2022; Bar-
rault et al., 2023) to question answering systems
(Chowdhery et al., 2023; Chen et al., 2023). Cen-
tral to their success is their ability to perform com-

plex reasoning, enabling them to tackle complex
problems with impressive accuracy and efficiency.

However, while LLMs excel in many domains,
they face challenges when it comes to solving math-
ematical problems. Mathematical reasoning of-
ten requires intricate logical operations and a deep
understanding of mathematical concepts (Saxton
et al., 2019; Lightman et al., 2023), posing signif-
icant hurdles for conventional LLM architectures.
Moreover, the scarcity of data in the mathemati-
cal domain (Liu et al., 2021; Kumar et al., 2022)
further compounds these challenges, limiting the
performance and generalization of these LLMs.

Some existing methods (Shen et al., 2023; Jiang
et al., 2024) attempt to address these challenges
by employing ensemble techniques, where multi-
ple LLMs collaboratively solve mathematical prob-
lems. However, these methods can still be fur-
ther improved, particularly in enhancing the perfor-
mance of individual LLMs and mitigating perfor-
mance degradation over extended reasoning steps.
A major challenge when applying LLMs to com-
plex mathematical problems is error propagation,
especially in tasks requiring long reasoning chains.
Figure 1 illustrates this issue with an example from
the GSM8K dataset (Cobbe et al., 2021), solved
by the Llama2-7B model (Touvron et al., 2023b).
The problem involves multiple intermediate steps
to reach the correct solution. However, the model
makes an error in the initial steps, which cascades
through subsequent stages of reasoning. This oc-
curs because each reasoning step depends on the
accuracy of preceding steps; even a minor initial
error can compound, ultimately leading to signif-
icant deviations from the correct solution. This
phenomenon highlights the limitations of current
LLMs in maintaining accuracy across long reason-
ing sequences and underscores the need for im-
proved methodologies to mitigate error propagation
and enhance performance in mathematical tasks.

In this paper, we propose novel approaches to ad-



Figure 1: Llama2-7B model prediction on an example from the GSM8K dataset.

dress the limitations of existing methods in solving
mathematical problems with LLMs. Our contri-
butions include the introduction of new training
objectives designed to uncover underlying patterns
in data, thus improving model performance. Addi-
tionally, we leverage data augmentation techniques
to maximize the utility of existing datasets to fine-
tune LLMs, enhancing their effectiveness in math-
ematical reasoning tasks. To evaluate the efficacy
of our proposed methods, we conduct experiments
using four open-source LLMs—Llama (Touvron
et al., 2023a), Llama2 (Touvron et al., 2023b), Mis-
tral (Jiang et al., 2023), and Mixtral (Jiang et al.,
2024)—on four widely used mathematical reason-
ing datasets: GSM8K (Cobbe et al., 2021), MATH
(Hendrycks et al., 2021), GSM8K_Hard (Gao et al.,
2022), and SVAMP (Patel et al., 2021). Our re-
sults demonstrate significant performance improve-
ments, underscoring the effectiveness of our meth-
ods in advancing the mathematical reasoning capa-
bilities of LLMs.

In summary, this paper presents novel contribu-
tions towards improving the performance of LLMs
in solving mathematical problems, addressing the
challenges posed by complex reasoning and data
scarcity. Our findings have implications for advanc-
ing the field of machine learning and expanding the
applicability of LLMs to various problem domains.

2 Background

The intersection of machine learning and mathe-
matical reasoning has received significant attention
from researchers seeking to enhance the capabil-

ities of LLMs in solving complex mathematical
problems. In this section, we review the previ-
ous literature exploring various approaches and
methodologies to address the challenges posed by
mathematical reasoning tasks and highlight the ad-
vances made in this domain.

2.1 Recent Advances in LLMs

The evolution of LLMs represents a significant
milestone in the field of natural language process-
ing (NLP) and machine learning. Over the past
decade, advances in neural network architectures,
coupled with the availability of large amounts of
text data, have driven the development of increas-
ingly complex and capable LLMs. Beginning with
seminal works such as Google’s BERT (Bidirec-
tional Encoder Representations from Transformers)
(Devlin et al., 2018) and OpenAI’s GPT (Genera-
tive Pre-trained Transformer) (Radford et al., 2019),
researchers have made substantial progress in en-
hancing LLMs’ language understanding and gen-
eration capabilities (Liu et al., 2019; Raffel et al.,
2020). These models leverage transformer archi-
tectures and self-attention mechanisms to capture
long-range dependencies and contextual informa-
tion, enabling them to generate coherent and con-
textually relevant text.

Further refinements, such as the introduction of
GPT-3 (Brown et al., 2020) with significantly larger
parameter sizes and more sophisticated training
regimes, have pushed the limits of LLM perfor-
mance to unprecedented levels. These advance-
ments have paved the way for LLMs to excel in



a wide range of NLP tasks, including language
translation (Costa-jussà et al., 2022; Kudugunta
et al., 2024), text summarization (Lewis et al., 2019;
Zhang et al., 2020), and question answering (Sanh
et al., 2019; He et al., 2020).

2.2 LLMs for mathematics

The application of LLMs to mathematical reason-
ing tasks represents a recent and growing area of re-
search within the machine learning community. Al-
though LLMs have demonstrated remarkable pro-
ficiency in natural language understanding, their
performance in mathematical reasoning tasks has
historically lagged behind.

However, recent studies (Gou et al., 2023; Shao
et al., 2024) have shown promising results in us-
ing LLMs to solve mathematical problems. Trans-
fer learning techniques, particularly fine-tuning
pretrained LLMs on mathematical datasets, have
emerged as effective strategies for enhancing
LLMs’ mathematical reasoning capabilities. By
leveraging the knowledge encoded in pre-trained
language models and adapting it to mathematical
domains, researchers have achieved remarkable re-
sults on mathematical tasks.

Moreover, novel adaptation techniques, such as
question paraphrase methods (Yu et al., 2023) and
tailored training objectives (Liu et al., 2023) aimed
at enhancing LLMs’ understanding of mathemat-
ical reasoning processes, have further advanced
LLMs in mathematical applications. These tech-
niques enable LLMs to effectively leverage existing
data and develop robust reasoning abilities, thus
expanding their utility in mathematical problem
solving scenarios. However, these existing meth-
ods suffer from the problem of error propagation
over long reasoning paths.

Overall, the application of LLMs in mathemat-
ics has immense potential to revolutionize the way
mathematical problems are approached and solved.
As research in this area continues to evolve, we can
expect further advancements in LLMs’ mathemati-
cal reasoning capabilities and their integration into
diverse mathematical domains.

3 Methodology

The motivation for our methodology arises from the
observation that while LLMs excel in various natu-
ral language processing tasks, their performance in
mathematical reasoning remains suboptimal. This
gap is primarily due to the inherent complexity of

mathematical problems, which often requires intri-
cate reasoning and logical deduction (Saxton et al.,
2019; Lightman et al., 2023). Furthermore, the
limited availability of annotated data in the math-
ematical domain (Liu et al., 2021; Kumar et al.,
2022) presents a significant obstacle to effectively
training LLMs for such tasks.

To overcome these challenges, we propose a
novel approach that combines question paraphras-
ing techniques with tailored training objectives to
strengthen the mathematical reasoning capabilities
of LLMs. An overview of our proposed pipeline is
illustrated in Figure 2.

3.1 Question Paraphrase

Question paraphrasing is a crucial technique em-
ployed to augment existing data and enhance the
model’s ability to generalize across different lin-
guistic forms of mathematical problems. This pro-
cess involves leveraging the powerful generative ca-
pabilities of the GPT-4 model (Brown et al., 2020)
to produce diverse paraphrases for each question
in the dataset. By generating multiple variations
of the same question while preserving its semantic
meaning, we aim to enrich the training data and
expose the model to a wider range of linguistic
structures and expressions commonly encountered
in mathematical problem-solving scenarios.

Paraphrasing Questions The GPT-4 model is
utilized to generate the paraphrases for each ques-
tion in the data set. Given a mathematical ques-
tion, the model generates alternative phrasings that
convey the same underlying mathematical concept.
This step significantly enhances the diversity of the
training data by presenting questions in various lin-
guistic forms, such as synonyms, paraphrases, and
syntactic variations.

To ensure the quality and semantic coherence of
the paraphrased questions, each paraphrase, along
with its corresponding answer, is inputted into the
GPT-4 model. The model is then tasked with deter-
mining whether the paraphrased question-answer
pairs match or not. This iterative validation pro-
cess helps filter out the inconsistencies or semantic
distortions, ensuring that only high-quality para-
phrases are retained for training.

3.2 Special Training Objectives

Effective training objectives are critical for guiding
a model’s learning process and fostering a deeper
understanding of mathematical concepts and rea-



Figure 2: The overview of our proposed pipeline.

soning. Our approach incorporates specialized
training objectives designed to address the unique
challenges of mathematical reasoning tasks.

During training, we start with a pretrained LLM
and apply a supervised fine-tuning (SFT) objec-
tive on a carefully curated dataset of mathematical
problems. This data set includes a diverse range of
questions and solutions to ensure a comprehensive
coverage of mathematical concepts and problem
types. In the SFT phase, the model is trained to
minimize the loss between its predicted answers
and the correct solutions provided in the dataset,
effectively aligning its outputs with the desired re-
sponses.

Rationale Re-Ranking (RR) The Rationale Re-
Ranking (RR) objective aims to improve the
model’s ability to identify and reconstruct the cor-
rect reasoning path for solving mathematical prob-
lems. This objective involves shuffling the rea-
soning steps associated with a given problem and
reordering the models to reconstruct the proper so-
lution sequence. By training the model to recognize
and organize the logical progression of mathemati-
cal solutions, the RR objective fosters a more struc-
tured, coherent, and accurate reasoning process.

Mistake Identification (MI) The MI objective
focuses on improving the robustness and error toler-
ance of the model by training it to differentiate be-
tween correct and erroneous reasoning steps. Dur-
ing training, random modifications are introduced
to induce errors in the reasoning process, such as
changing numerical values or altering logical oper-
ators. The model is then trained to distinguish be-
tween correct and erroneous reasoning steps, thus
learning to identify and rectify potential mistakes.
This objective helps mitigate the risk of erroneous

predictions and enhances the model’s overall per-
formance on mathematical reasoning tasks:

Integrating these training objectives into the fine-
tuning process equips LLMs with enhanced ca-
pabilities for mathematical reasoning, thereby ad-
dressing the challenges posed by complex problem-
solving scenarios.

3.3 Training Process

The training process of our proposed method con-
sists of several stages designed to enhance the math-
ematical reasoning capabilities of LLMs. The pro-
cess begins with data augmentation through ques-
tion paraphrasing, where GPT-4 generates various
paraphrases for each mathematical question. To
ensure data set quality and integrity, we verify the
consistency of the paraphrased questions and their
corresponding answers, iterating this process to
achieve high accuracy.

Next, we introduce specialized training objec-
tives to improve the model’s reasoning abilities.
One such objective is Rationale Re-Ranking (RR),
where reasoning steps are shuffled, and the model
is tasked with predicting the correct sequence. This
trains the model to understand and reconstruct log-
ical progressions. Another objective is Mistake
Identification (MI), where the model learns to dis-
tinguish between correct and intentionally altered
reasoning steps, enhancing its ability to detect and
correct errors in complex problem-solving scenar-
ios. These objectives are incorporated within a mul-
titask learning framework, with weighted losses
assigned to each task to ensure balanced and ef-
fective training. This approach enables the model
to optimize simultaneously for various aspects of
mathematical reasoning, resulting in a more robust
and versatile skill set.



By combining data augmentation, targeted train-
ing objectives, and a multitask learning framework,
our method equips LLMs with strong mathemati-
cal reasoning skills, significantly improving their
performance on challenging mathematical tasks.

Final training objective The final training ob-
jective is formulated as the weighted sum of LSFT ,
LRR, and LMI :

Lfinal(θ) = λ1LSFT + λ2LRR + λ3LMI

where λ1, λ2, and λ3 are parameters that weight
the importance of each loss, and LSFT , LRR, and
LMI are cross entropy losses.

4 Experiments

Mathematical reasoning challenges LLMs, requir-
ing both natural language understanding and math-
ematical problem-solving skills. Evaluating the
effectiveness of LLMs in mathematical reasoning
is crucial for advancing state-of-the-art NLP tech-
niques and expanding their applicability across di-
verse problem domains. This study seeks to assess
the performance of various LLMs on mathematical
reasoning tasks through targeted experiments.

4.1 Datasets
We conducted experiments on four datasets specif-
ically designed to assess LLMs’ performance in
mathematical reasoning.

• GSM8K (Cobbe et al., 2021): A comprehen-
sive dataset comprising mathematical prob-
lems covering a wide range of topics and dif-
ficulty levels.

• MATH (Hendrycks et al., 2021): A curated
collection of mathematical questions and so-
lutions, designed to assess LLMs’ ability to
solve mathematical problems in various do-
mains.

• GSM8K-Hard (Gao et al., 2022): A subset
of the GSM8K dataset containing challenging
mathematical problems aimed at evaluating
the robustness of LLMs under difficult scenar-
ios.

• SVAMP (Patel et al., 2021): A specialized
dataset focusing on mathematical reasoning
in the context of symbolic mathematics, pre-
senting unique challenges for LLMs due to its
symbolic nature.

4.2 Base Models

We employed four base models for our experiments,
each representing a distinct architecture or variant
of LLMs:

• LLama (Touvron et al., 2023a): A baseline
LLM model known for its strong performance
in natural language understanding tasks.

• LLama2 (Touvron et al., 2023b): An en-
hanced version of LLama, incorporating im-
provements in model architecture and training
methodology.

• Mistral (Jiang et al., 2023): A state-of-the-art
LLM model specifically designed for mathe-
matical reasoning tasks, leveraging advanced
adaptation techniques.

• Mixtral (Jiang et al., 2024): A high-capacity
LLM model based on the Mixtral architecture,
featuring eight times the parameter size of
LLama for enhanced performance.

Training Details We fine-tuned these base mod-
els on the aforementioned datasets with hyperpa-
rameters tailored to each model and dataset. The
parameters are set as default to the ones used during
pre-training. Note that we only experiment with the
version of 7B parameters for each model. We adapt
LoRA (Hu et al., 2022) to make model fine-tuning
more efficient. The rank and alpha are both set as
64. Additionally, we utilized specialized training
objectives, such as Rationale Re-ranking (RR) and
Mistake Identification (MI), to enhance the models’
understanding of mathematical reasoning. We fine-
tune each model with a single Nvidia A100 GPU
and the runtime of each experiment is between 2 to
6 hours.

4.3 Main Results

Our experiments resulted in notable performance
improvements across all four base models. Table 1
presents a summary of the main results. Our pro-
posed special training objectives yielded an average
performance boost of 4.25% on GSM8K, 2.32%
on MATH, 6.21% on GSM_HARD, and 5.15% on
SVAMP datasets. Moreover, combining question
paraphrase with these objectives further enhances
the improvement to 7.32% on GSM8K, 3.63% on
MATH, 7.72% on GSM_HARD, and 6.78% on
SVAMP. Notably, our methods have a more signif-
icant impact on relatively weaker models, likely



Method Dataset

GSM8K MATH GSM_HARD SVAMP

Baselines (SFT Only)

Llama-7B (Touvron et al., 2023a) 32.07 5.60 23.43 38.24
Llama2-7B (Touvron et al., 2023b) 36.92 5.68 26.72 41.07
Mistral-7B (Jiang et al., 2023) 58.68 14.08 55.42 50.25
Mixtral-8x7B (Jiang et al., 2024) 65.44 30.13 64.93 68.73

Proposed Method (SFT + MI + RR)

Llama-7B (Touvron et al., 2023a) 37.15 6.91 29.71 44.22
Llama2-7B (Touvron et al., 2023b) 43.04 7.65 38.74 49.03
Mistral-7B (Jiang et al., 2023) 62.87 15.98 60.02 56.87
Mixtral-8x7B (Jiang et al., 2024) 67.04 34.22 66.86 68.76

Proposed Method + Question Paraphrase

Llama-7B (Touvron et al., 2023a) 41.74 7.64 37.87 46.14
Llama2-7B (Touvron et al., 2023b) 46.86 9.05 32.96 53.04
Mistral-7B (Jiang et al., 2023) 65.82 17.27 63.25 58.03
Mixtral-8x7B (Jiang et al., 2024) 67.96 36.07 67.28 68.19

Table 1: Experimental results of base models on different datasets, respectively. Scores are calculated with the
accuracy metric.

because these models benefit more from structured
reasoning guidance. This aligns with findings in
previous LLM fine-tuning studies, where weaker
models exhibit larger relative improvements when
exposed to specialized training objectives.

These findings underscore the empirical effec-
tiveness of our methodology in improving the rea-
soning efficiency and accuracy of LLMs. By as-
sessing LLMs’ performance in mathematical rea-
soning tasks, we contribute to the ongoing efforts
to advance the state-of-the-art in natural language
processing and pave the way for their application in
diverse problem domains requiring mathematical
reasoning abilities.

5 Analysis and Discussion

In this section, we delve into a comprehensive anal-
ysis and discussion of the experimental results, fo-
cusing on the effectiveness of our proposed method
in enhancing LLMs’ capabilities in mathemati-
cal reasoning tasks. We begin by dissecting the
model’s performance over varying numbers of rea-
soning steps, shedding light on the impact of our
approach on problem-solving efficiency. Subse-
quently, we present findings from an ablation study
aimed at elucidating the importance of individual
components within our proposed methods. Finally,
through a series of case studies, we illustrate both
the successes and limitations of our approach, pro-

viding valuable insights for future research direc-
tions.

5.1 Analysis on Reasoning Steps

We performed an in-depth analysis of model perfor-
mance across varying reasoning steps to evaluate
the effectiveness of our proposed method in solv-
ing complex mathematical problems. By examin-
ing performance at different depths of reasoning,
we sought to highlight the impact of our approach
on problem-solving efficiency. Figure 3 summa-
rizes the model’s performance on math questions
requiring different reasoning steps. Overall, the
results indicate that model performance declines as
the number of reasoning steps needed to solve the
problems increases. Although the improvement is
minimal for questions requiring only a few reason-
ing steps (fewer than 4 steps), it becomes substan-
tial for questions requiring longer reasoning chains
(4–7 steps). Additionally, we note that the mod-
els struggle with questions that demand extremely
long reasoning paths (more than 8 steps).

Our analysis revealed a clear trend of improved
model performance as the number of reasoning
steps increased. This trend indicates that our pro-
posed method effectively enhances the model’s
ability to solve complex mathematical problems,
leading to more accurate solutions. Specifically, we
observed substantial performance improvements



(a) Llama2-7B on different reasoning steps (b) Mistral-7B on different reasoning steps

Figure 3: Analysis of Llama2 and Mistral on different reasoning steps, respectively. X-axis is the number of
reasoning steps required to solve a math question and Y-axis the accuracy score. We use supervised fine-tuning as
the baseline, and compare it with our proposed method using special training objective. QP stands for question
paraphrase.

Method GSM8K MATH

Llama2-7B Mistral-7B Llama2-7B Mistral-7B

Baseline (SFT) 36.92 58.68 5.68 14.08

+ RR 38.94 59.06 5.83 13.07
+ MI 40.01 61.57 7.83 15.24
+ MI + RR 43.04 62.87 7.65 15.98
+ MI + RR + QP 46.86 65.82 9.05 17.27

Table 2: Ablation Study of our proposed method on
GSM8K and MATH using Llama2-7B and Mistral-7B
as base models, respectively. SFT, RR, MI, and QP
stand for supervised fine-tuning, rationale re-ranking,
mistake identification, and question paraphrase, respec-
tively. Scores are calculated with the accuracy metric.

on problems that involve multiple reasoning steps,
which underscores the effectiveness of our ap-
proach in addressing complex problem-solving sce-
narios.

5.2 Ablation Study

To further evaluate the importance of each compo-
nent in our proposed methods, we performed an
ablation study in which we systematically removed
individual components and evaluated the model
performance. Table 2 presents an ablation study
of our proposed method on GSM8K and MATH
datasets using Llama2 and Mistral as base mod-
els, respectively. Our results demonstrated that all
components of our proposed methods are integral
to improve model performance in mathematical
reasoning tasks.

Specifically, when components such as question

paraphrase techniques and specialized training ob-
jectives were integrated, we observed a marked
increase in model performance, underscoring the
importance of these components in facilitating ef-
fective mathematical reasoning. These findings
emphasize the holistic nature of our proposed ap-
proach, wherein each component synergistically
contributes to overall model performance.

5.3 Case Study

We present a case study in Figure 4 to demonstrate
the effectiveness of our method in solving com-
plex mathematical problems. The case study in-
cludes a positive example showcasing successful
problem-solving outcomes and a negative example
highlighting challenges and limitations.

The positive example illustrates how our method
empowers the model to navigate intricate mathe-
matical problems and arrive at the accurate solution,
even if it does not follow the exact reasoning path
provided in the answer. This example validates the
effectiveness of our approach in addressing real-
world mathematical challenges.

In contrast, the negative example in Figure 4
reveals scenarios where our proposed method en-
counters limitations or fails to produce satisfactory
results. Although the model follows the correct
reasoning path, a common failure mode observed
was arithmetic miscalculations despite correct rea-
soning paths. This suggests that while LLMs
grasp mathematical structure, they struggle with



Figure 4: Case study on the GSM8K dataset using the Mistral-7B Model. The example on the left is positive while
the example on the right is negative.

precise computation—an issue that could be miti-
gated by integrating external calculation modules.
This example identifies areas for improvement and
prompts discussions on potential future research
directions, including refining methodologies, lever-
aging external calculation tools, or exploring math
verification approaches to enhance model perfor-
mance in challenging scenarios.

5.4 Discussion

Data Efficiency and Generalization Our ques-
tion paraphrase strategy addresses a fundamental
challenge in mathematical reasoning: the scarcity
of diverse high-quality training data. By systemati-
cally transforming existing questions into linguis-
tically varied forms while preserving their math-
ematical essence, we achieve improved general-
ization without requiring additional annotated ex-
amples. This approach is particularly valuable for
specialized mathematical domains where expert
annotation is costly and time-consuming. Our ex-
perimental results demonstrate that models trained
with paraphrased questions exhibit enhanced ro-
bustness to linguistic variations, more closely mir-
roring the diverse ways in which mathematical
problems may be encountered in real-world ap-
plications. This linguistic flexibility, combined
with our specialized training objectives, enables
models to focus on the underlying mathematical
structures rather than become overly sensitive to
specific phrasings. The data efficiency of our ap-
proach makes it particularly applicable to resource-
constrained settings and suggests promising direc-
tions for self-supervised learning techniques that
leverage mathematical invariance across different
problem formulations.

Training-focused V.S. Test-time computational
methods In recent years, the Test-Time Compu-
tation (TTC) paradigm has gained significant trac-
tion as a means to improve the reasoning skills of
LLMs, particularly for complex tasks. Although
training-focused and TTC methods represent differ-
ent strategies, they are not mutually exclusive. In
fact, their synergistic integration holds significant
promise for future advancements in mathematical
reasoning for LLMs. The reasoning abilities that
TTC techniques leverage are fundamentally learned
during the training phase, encompassing both pre-
training and fine-tuning. Training on high-quality
mathematical data, including examples of step-by-
step reasoning, provides the essential knowledge
base that enables TTC methods (e.g., CoT (Wei
et al., 2022) and Self-Refine (Madaan et al., 2023))
to be effective. Furthermore, training processes can
be optimized to produce models that are particu-
larly adept at generating effective reasoning traces,
which can then be further explored or verified dur-
ing test time using TTC techniques. The quality of
the underlying model, shaped by training, signifi-
cantly influences how effectively it can utilize TTC
methods.

6 Conclusion

In this study, we addressed the challenge of en-
hancing LLMs’ capabilities in mathematical rea-
soning tasks. Our proposed method leverages in-
novative techniques to improve LLMs’ understand-
ing of mathematical concepts and reasoning pro-
cesses. Through rigorous experimentation, we
demonstrated the effectiveness of our approach in
improving LLMs’ performance on various mathe-
matical problems.



Our research advances the field of natural lan-
guage processing by providing a comprehensive
approach to enhancing LLMs’ capabilities in math-
ematical reasoning tasks. By identifying key fac-
tors influencing model performance and propos-
ing effective solutions, we bridge the gap between
natural language understanding and mathematical
reasoning. Our study advances LLMs’ reasoning
capabilities, paving the way for broader applica-
tions in automated theorem proving, mathematical
education, and AI-assisted research in scientific
domains. Future work could explore integrating
symbolic computation with LLMs to further en-
hance mathematical reliability.

Limitations

While our study demonstrates promising results
in improving the reasoning efficiency and accu-
racy of LLMs through data enhancement and fine-
tuning, several limitations should be acknowledged.
First, despite efforts to create a diverse data set
through enhancement, inherent biases may persist
in the training data. These biases could poten-
tially skew the model’s performance towards cer-
tain types of mathematical problems or reasoning
patterns. Second, although our fine-tuned model
improves test performance, its generalization to
out-of-distribution mathematical problems remains
uncertain. Future work could explore curriculum
learning strategies or hybrid neural-symbolic ap-
proaches to mitigate this limitation. Further inves-
tigation is needed to assess the model’s capabilities
in tackling advanced mathematical concepts or in-
terdisciplinary problems that deviate significantly
from the training examples.
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