£ OctoTools: An Agentic Framework with Extensible Tools for
Complex Reasoning

Pan Lu*‘, Bowen Chen*‘, Sheng Liu*‘, Rahul Thapa‘, Joseph Boen‘, James Zou*
* Equal contribution 4Stanford University

Website: https://octotools.github.io

) Code

Abstract

Solving complex reasoning tasks may involve vi-
sual understanding, domain knowledge retrieval,
numerical calculation, and multi-step reasoning.
Existing methods augment large language models
(LLMs) with external tools but are restricted to
specialized domains, limited tool types, or require
additional training data. In this paper, we intro-
duce OctoTools, a training-free, user-friendly, and
easily extensible open-source agentic framework
designed to tackle complex reasoning across di-
verse domains. OctoTools introduces standardized
tool cards to encapsulate tool functionality, a plan-
ner for both high-level and low-level planning, and
an executor to carry out tool usage. We validate Oc-
toTools’ generality across 16 diverse tasks (includ-
ing MathVista, MMLU-Pro, MedQA, and GAIA-
Text), achieving substantial average accuracy gains
of 9.3% over GPT-40. Furthermore, OctoTools
also outperforms AutoGen, GPT-Functions and
LangChain by up to 10.6% when given the same
set of tools. Through comprehensive analysis and
ablations, OctoTools demonstrates advantages in
task planning, effective tool usage, and multi-step
problem solving. Code and interactive demos are
available at https://octotools.github.io/.

1 Introduction

Large language models (LLMs) (Brown et al., 2020;
Chowdhery et al., 2022; OpenAl, 2023b) have made
rapid progress on tasks such as summarization, transla-
tion (Thoppilan et al., 2022), code generation (Nakano
et al., 2021), and math problem solving (Shuster et al.,
2022). However, complex reasoning tasks that involve
multiple steps, logical decomposition, or specialized
domain knowledge remains challenging. For example,
solving a visual riddle may require fine-grained image
understanding and text-based reasoning, while a math
or chemistry question can require thorough computa-
tions or domain expertise. Existing prompting meth-
ods often fail to orchestrate these varied processes into
a coherent chain of reasoning (Yao et al., 2022).

A promising direction to address these challenges is
to augment LLMs with external tools. By offloading
specialized subtasks (e.g., web queries, Python-based

% Demo $ Tool Cards

£ Visualization @ Video

60 1

551

501

45 4

Average Accuracy on 16 Tasks (%)

40 -

O QA Q L0 A N
(,D« o 2 ‘\0(\ " ‘(00
AV SRR o S
& " & b ©

Figure 1: Performance comparison across 16 benchmarks. Our
OctoTools framework achieves an average accuracy gain of 9.3%
over GPT-40 without function plugins and 7.3% over LangChain,
under the same configuration.

calculations, and specialized scientific tools) to dedi-
cated modules, LLLMs can focus on higher-level plan-
ning and synthesis. Several frameworks have explored
such tool usage, from those relying on extensive su-
pervised data and fine-tuning (Schick et al., 2023; Liu
et al., 2023), to static solutions without refinement (Lu
et al., 2023), and those limited to one specialized do-
main of tools (Nakano et al., 2021; Tao et al., 2023; Hu
et al., 2024). Although these methods perform well on
specific tasks, they still face challenges that hinder gen-
eral widespread use. Many require substantial training
with curated data, which limits their adaptability to
new domains. Others are designed for a particular
domain (Bran et al., 2023; Kang and Kim, 2024; Li
et al., 2024a; Schmidgall et al., 2024) or cannot easily
support multi-step problem-solving (Lu et al., 2023),
restricting their generality.

In this paper, we propose OctoTools, a training-free
(i.e., it does not require updating model weights), user-
friendly, and extensible agentic framework for tackling
complex reasoning tasks across diverse domains (Fig-
ure 2). A key feature of OctoTools is the concept of
tool cards, standardized wrappers that encapsulate het-
erogeneous tools (e.g., Python calculators, web search
APIs, and domain-specific modules), along with meta-
data such as input-output formats, usage constraints,

https://octotools.github.io
https://github.com/octotools/octotools
https://huggingface.co/spaces/OctoTools/octotools
https://octotools.github.io/#tool-cards
https://octotools.github.io/#visualization
https://www.youtube.com/watch?v=4828sGfx7dk
https://octotools.github.io/

Query

k Action
Analyzer 02 Predlctor

Q Solution
Summanzer ’

Q Context

Venf ier Answer

Image: "baseball.png"

QOO
O

w many baseballs are there?

Task-specmc

(2) Planner
Actlon k J Context

The image shows
four blue buckets,
each containing

Toolset five baseballs.
Optimizati Therefore, there
ptimization are a total of 20
baseballs.
j g ¥ Command Command
N Generator /L, Executor o4

OctoTools

(3) Executor
(1) Tool cards

Figure 2: The framework of OctoTools. (1) Tool cards define tool-usage metadata and encapsulate tools, enabling training-free integration
of new tools without additional training or framework refinement. (2) The planner governs both high-level and low-level planning to
address the global objective and refine actions step by step. (3) The executor instantiates tool calls by generating executable commands
and save structured results in the context. The final answer is summarized from the full trajectory in the context. Furthermore, the
task-specific toolset optimization algorithm learns to select a beneficial subset of tools for downstream tasks. See Figure 3 for an example.

Image Captioner Tool

tool_description="A tool that generates
captions for images."
inputs={image, prompt}
outputs={str: "The generated caption."}

demos=tool.execute(image="image.png"
prompt="Describe the image."

user_metadata={"limitation”: "May make
mistakes in complex scenes & (ounting:‘}

Object Detector Tool
tool_description="A tool that detects
and saves objects in an image"
inputs={image, labels, threshold}
outputs={list: objects, scores, boxes}

demos=tool.execute(image="car.png",
labels=["car"])

user_metadata={"limitation":
detect objects accurately."}

“"May not

'Step 0: Query Analyzer)

f Step 1: Action Predictor

f Step 2: Action Predictor

Summary: determine the total
number of baseballs in the image.

Required skills:

1. understanding and interpreting
visual content.

2. ability to operate and execute
commands using the tools.

3. evaluating tool outputs and
making decisions.

Relevant tools:
Image_Captioner_Tool

Object_Detector_Tool

A

Context: Image path: "baseball.png"

Sub-goal: Generate a description of the image to identify
baseballs and relevant objects.

Tool name: Image_Captioner_Tool

Context: Image path: "baseball.png”
Sub-goal: Detect and count the number of baseballs.
Tool name: Object_Detector_Tool

(Step 1: Command Generator

Step 2: Command Generator

Analysis: The task requires using Image Captioner Tool to
generate a description of an image to identify The

Analysis: The task requires detecting baseballs using Object
Detector Tool. It needs an image path and a 'baseball’ label.

Ci tool.execute(image="baseball.png",

metadata specifies that it needs an image path and a prompt.
Command: tool.execute(image="baseball.png",

prompt="Describe this image.")

labels=["baseball"])

Step 2: Command Executor

(Step 1: Command Executor

The image shows four blue buckets, each containing five
baseballs. Each bucket has a handle on the side.

Consider the limitations of each
tool, e.g., potential inaccuracies in
object detection in complex
scenes or object detection. Verify
results and be aware of the need
for supplementary tools for
precise counting.

f Step 1: Context Verifier

{
"label" baseball
"confldence score":’0.69,
"box": [558, 48, 615 1071,

; ”saved |_path": baseball 1.png"

(2N
sjiejie]

O

)]
onoQa

9]

Completeness Context provndes a descnptlon of the image.
ies: There are no ir

Verification: Given limitations of Image Captioner Tool in

counting, verify the count using Object Detector Tool.

f Step 2: Context Verifier

Completeness: Context addresses the query using tools.
Inconsistencies: There are no inconsistencies in outputs.
Verification: Consistent results reduce need for verification.

Ambiguities: There are no ambiguities.
Conclusion: CONTINUE °

Ambiguities: There are no ambiguities in the results.
Conclusion: STOP Q

Figure 3: The demonstration of a self-contained example from Figure 2. We visualize the tool cards for selected tools, the initial plan
generated by the planner, and two steps in which the planner and the executor orchestrate low-level planing and tool usage before
arriving at the final answer. See §F.1 for details and §F for more examples. An interactive visualization of these examples is available at

https://octotools.github.io/#visualization.

and best practices that delineate ideal use cases. This
standardized design enables easy integration, replace-
ment, or expansion of tools—unlike approaches requir-
ing painstaking re-engineering for each new tool (Lu
et al., 2023; Hu et al., 2024).

Building on these tool cards, OctoTools employs
a dedicated planner that governs both high-level and
low-level planning. Given a user query, the planner
proposes a tentative global plan for how various tools
might be employed. At each step, it generates a text-
based action (including sub-goals and tool selection)
conditioned on the evolving confext. A separate ex-
ecutor instantiates tool calls by converting this textual
action into an executable command, running the cor-
responding tool, and updating the context with the re-
sults. By separating strategic planning from command
generation, OctoTools reduces errors and increases
transparency, making the system more reliable and
easier to maintain.

An additional challenge in agentic systems is de-

termining which subset of tools to enable for a given
domain. Although providing many tools can be bene-
ficial, enabling them all may introduce noise or slow
performance (Lumer, 2024; Fore et al., 2024; Para-
manayakam et al., 2024). To address this, we propose
a lightweight foolset optimization algorithm that iden-
tifies a more useful subset of tools for each task based
on validation performance, ultimately improving both
accuracy and efficiency.

While recent general agent frameworks also allow
LLMs to use external tools autonomously, they often
focus on high-level abstractions (LangChain, 2024),
limited observability of intermediate decisions (Ope-
nAl, 2023a), or multi-agent collaboration features
(AutoGen, 2024), with less emphasis on enhancing
complex reasoning and guantitatively benchmarking
downstream task performance. In contrast, we system-
atically evaluate the entire agentic workflow of Octo-
Tools across diverse tasks, providing in-depth analyses
of when and how tool-based reasoning succeeds or

https://octotools.github.io/#visualization

fails in complex reasoning scenarios.

We conduct large-scale experiments across 16 di-
verse reasoning benchmarks, spanning general vision,
mathematical, scientific, medical, and agentic domains.
As summarized in Figure 1, OctoTools substantially
outperforms other baselines, achieving an average ac-
curacy gain of 9.3% over zero-shot prompting by GPT-
40 and 7.7% over chain-of-thought (CoT) prompting,
as well as up to 10.6% improvement compared to
existing agentic frameworks when given the same
tools (AutoGen, 2024; OpenAl, 2023a; LangChain,
2024). Detailed analyses show that OctoTools effec-
tively combines multi-step planning and specialized
tool usage, with each dimension providing distinct
improvements. For tasks requiring intricate calcula-
tions or specialized knowledge, we found tool usage
is particularly beneficial; for tasks requiring reasoning
decomposition, we found multi-step planning offers
significant gains.

Furthermore, our ablation studies offer insights into
OctoTools’s performance under different conditions.
Overall, the average accuracy tends to improve as the
maximum number of steps increases. Without any
toolset optimization, simply enabling all tools in the
toolset yields 57.4% accuracy, which still surpasses
the setup with only the base tool by 3.5%, suggest-
ing a degree of generalization as the toolset expands.
Learning the optimal toolset for specific tasks raises
the overall performance to 58.9%, indicating the bene-
fit of further optimization. Additionally, when using a
weaker LLM (GPT-40-mini) as the base engine, Octo-
Tools maintains a strong average gain of 7.1% across
16 tasks.

Our contributions are as follows: (1) We pro-
pose OctoTools, a training-free, extensible agentic
framework that enables LLM:s to call external tools in
multiple steps, without the need for additional train-
ing or fine-tuning. (2) We introduce a comprehen-
sive planner-executor paradigm with standardized too!
cards, which can be easily customized or expanded for
new domains. (3) We conduct large-scale experiments
on 16 diverse benchmarks and show that OctoTools
improves performance by a sizable margin compared
to baseline prompting and other agentic frameworks.
(4) We provide in-depth analyses and ablations on how
multi-step reasoning and tool usage contribute to per-
formance, offering practical guidance for future agent
development.

2 Related Work

Tool-Augmented and Knowledge-Augmented
LLMs. A promising direction for enhancing
large language models (LLMs) involves offloading

specialized subtasks to external tools such as search
engines (Komeili et al., 2022; Thoppilan et al., 2022;
Lazaridou et al., 2022; Shuster et al., 2022; Yao
et al., 2022), web browsers (Nakano et al., 2021),
calculators (Cobbe et al., 2021; Thoppilan et al.,
2022), translation systems (Thoppilan et al., 2022),
or Python interpreters (Gao et al., 2023). Broadly,
these methods either rely on large-scale fine-tuning or
human supervision to teach LLMs how to invoke tools
(Schick et al., 2023; Komeili et al., 2022; Nakano
et al., 2021; Thoppilan et al., 2022) or use few-shot
prompts for single tools in narrowly defined tasks (Yao
et al., 2022; Lazaridou et al., 2022; Gao et al., 2023).
In contrast, OctoTools is a training-free framework
that integrates diverse tools through standardized fool
cards and employs a planner-executor paradigm to
manage multi-step reasoning. Because new tools can
be introduced without re-training, OctoTools offers a
more extensible and modular approach to tool usage.

LLM Agents. A growing body of work leverages
LLMs as autonomous agents that make decisions and
invoke tools in multi-step workflows. Some agents use
closed-source models with hand-engineered prompts
(Chen et al., 2023; Wang et al., 2024a), while others
fine-tune LLMs on curated data that learn when and
how to call tools (Liu et al., 2023; Tao et al., 2023;
Zhang et al., 2024). These frameworks often face
limitations. For example, although specialized agent
frameworks achieve strong performance in particular
domains (e.g., chemistry (Bran et al., 2023), vision (Li
et al., 2024a; Hu et al., 2024), materials science (Kang
and Kim, 2024), or medical imaging (Schmidgall
et al., 2024)), they typically lack generality across
diverse tasks. Additionally, some systems are con-
strained by narrow capabilities with static planning
(Lu et al., 2023) and multi-step reasoning (Hu et al.,
2024). Recently, general-purpose agent platforms such
as AutoGen (AutoGen, 2024), GPT-Functions (Ope-
nAl, 2023a), and LangChain (LangChain, 2024) have
emerged, but they have seen less emphasis on complex
reasoning and rigorous benchmarking across diverse
downstream tasks. In contrast, OctoTools combines
the flexibility of such platforms with a dedicated plan-
ner and executor to handle multi-step decision-making.

Complex Task Reasoning. When faced with multi-
step problems, a common strategy is to break down
a question into simpler sub-questions and solve them
step by step. Early work approached decomposition
with unsupervised or weakly supervised models (Perez
et al., 2020; Khot et al., 2022), and more recent re-
search has explored prompting techniques for step-
by-step reasoning, including Chain-of-Thought (Wei
et al., 2022), Least-to-Most (Zhou et al., 2022), ReAct

(Yao et al., 2022), Pearl (Sun et al., 2023), Forest-
of-Thought (Bi et al., 2024), and rStar-Math(Guan
et al., 2025). While these methods significantly im-
prove LLMs’ single-model reasoning capabilities, they
primarily rely on the latent capacity of an LLM with-
out external validation or targeted tool usage. In con-
trast, OctoTools systematically combines multi-step
decomposition (via an iterative planner) with special-
ized tools (encapsulated by fool cards) and an execu-
tor for reliable, context-aware function calling. This
design makes it easy to incorporate domain-specific
functionalities and check intermediate steps with ex-
ternal modules, thus improving both correctness and
versatility in tackling challenging tasks.

3 The OctoTools Framework

We propose OctoTools, an open-source, versatile, and
user-friendly agent-toolbox framework for complex
reasoning tasks, as illustrated in Figure 2. Given a
user query ¢ € Q and a pretrained language model
LLMgy(-), a naive approach would generate an out-
put directly as y ~ LLMjy(q), providing a single-step
response. In contrast, our OctoTools framework intro-
duces a structured, multi-step process that leverages
external tools to tackle queries effectively.

Specifically, OctoTools contains a set of fools D =
{d;}?_, and associated metadata M = {m;}!',,
where n is the number of available tools. Given a
query, a planner (based on a language model) first
generates a tentative plan from a high-level perspec-
tive, indicating how these tools can be used to address
the query, which forms the initial context sy. From
this plan, the planner determines the initial action a;
for tool usage, specifying which tool d; to use, the
relevant context, and a sub-goal. An executor (also
powered by a language model) then converts the plan-
ner’s text-based action a4 into a machine-executable
command o;, which is run to obtain intermediate re-
sults 1. These results, along with the original action,
update the context to s; := (a1, 01,71). This process
constitutes one step in our framework.

This process repeats, with the planner iteratively
refining its actions based on the evolving context until
it either finds a complete solution or inference limits
(e.g., time or steps) are reached. After T' steps, the
framework produces a full trajectory (so, s1, ..., ST),
which is stored in a structured manner in the context.
The planner then uses this trajectory to generate the
final solution to the original query.

OctoTools provides a robust and effective frame-
work for solving complex tasks through sub-goal de-
composition and systematical tool usage. Standardized
tool cards encapsulate functionality (§3.1), the planner

orchestrates both high-level and low-level task plan-
ning (§3.2), and the executor instantiates tool calls for
each sub-goal (§3.3). The following sections detail the
logic of each component, with implementation details
provided in §C.

3.1 Tool Cards

To enable seamless interaction among tools, the plan-
ner, and the executor, the toolbox serves as a funda-
mental building block of OctoTools. In contrast to
previous work (Lu et al., 2023; Hu et al., 2024) that
rely on careful adaptions and tuning to support new
tools, OctoTools leverages tool cards, which encapsu-
late the specifications of tools in a structured manner.

Each rool card represents a tool d alongside its es-
sential metadata m (as illustrated in Figure 3). This
metadata includes the tool’s name, version, input and
output types, and command demonstrations. It may
also contain additional usage constraints (e.g., user-
defined “limitations” and “best practices”), which pro-
vide developers’ insights to guide the planner and
executor. For example, Image_Captioner_Tool in-
cludes “it may make mistakes in complex scenes” and
“consider using other tools for context/verification” in
the user metadata (§D.4). See §D for details for fea-
tured tools.

To ensure consistent interactions, every tool card
implements two standard functions. The function
execute () encapsulates the tool’s primary functional-
ity, e.g., generating code snippet or performing object
detection. Executed results are stored in a structured
format to support different output types, e.g., gener-
ated code, detected objects, stored files (see §D). The
function get_metadata() allows the planner and ex-
ecutor to dynamically evaluate the tool’s capabilities
and understand usage constraints.

The design of each tool card is modular relative
to the framework, enabling users to integrate diverse
tools without modifying the underlying framework or
agent logic. New tool cards can be added, replaced,
or updated with low effort. Consequently, OctoTools
remains robust and extensible, even as tasks grow in
complexity or scope.

3.2 Planner Module

Planner initialization. The planner inspects the
toolbox and loads each tool card as defined in §3.1.
Formally, it constructs a set {d;}" ; of n available
tools, each with metadata m that describes its input-
output schema and usage constraints. Rather than
enabling the full toolset, one might enable a subset
D" = {d;}¥_, chosen based on expert insights or opti-
mized with a small set of examples (See §3.4 and §5.2
for details and experimental study).

Query analysis and action prediction. Given a
query q, the planner formulates a high-level, tenta-
tive plan for tool usage based on its initialization. As
shown in Figure 2, the high-level plan summarizes the
query objective, analyzes the required skills, identifies
relevant tools, and includes additional considerations
to highlight the need for verification. The high-level
task plan provides a global perspective on the final
objective, ensuring that each subsequent sub-goal re-
mains aligned with the original query.

Subsequently, at step ¢, an action predictor pro-
duces an action a; that combines the planner-suggested
sub-goal (e.g., “detect baseballs in the image”), the
selected tool d (e.g. Object_Detector), and the rele-
vant context. This low-level plan refines and executes
each sub-goal in real time, adapting to new informa-
tion or feedback at each step.

Context verification and solution summarization.
After each command is executed, a context verifier
checks whether the problem can be solved given the
current context. It verifies completeness (e.g., whether
all sub-goals are satisfied) and identifies any ambigui-
ties. If the problem remains incomplete, the planner
continues the next iteration of the cycle by predicting
the next action a;1.

Once the verifier concludes that the query has been
solved, a separate solution summarizer compiles the
final answer from the trajectory (sg, $1,. .., $7). This
stage integrates intermediate tool outputs, traces rea-
soning steps, and presents a concise, user-friendly sum-
mary as the final solution.

3.3 Executor Module

Command prediction. Prior work (Lu et al., 2023;
Hu et al., 2024) often expects a single language model
both for planning each step (i.e., which tool to use) and
for generating the corresponding executable command.
This dual responsibility can overload the model and
lead to errors, especially when dealing with complex
or environment-specific code (Bran et al., 2023; Li
et al., 2024b; Ji et al., 2024). To mitigate these issues,
OctoTools introduce a command generator that inter-
prets the planner’s text-based actions and produces
executable code.

Given the action a; predicted by the planner, the
command generator (powered by a language model)
creates a low-level command o; in the form of an
executable Python script, which calls the tool d; with
necessary inputs and performs any required data prepa-
ration. This step bridges the abstract action specified
in a; and the concrete tool call. By separating decision-
making from code generation, each component of the
system can concentrate on its specialized role.

Command execution. Once an executable com-
mand is generated, it must be run in an environment
that may involve dependencies, external libraries, or
resource access (e.g., file systems). Directly coupling
execution with planning poses security and maintain-
ability challenges, especially if the planner is not ca-
pable of managing code execution details.

In OctoTools, an command executor runs the gener-
ated command o, in a Python environment, obtaining a
result ;. This may include tool outputs, logs, or error
messages. The executor then adds the current context
of this step s; := (a¢, o4, 7¢) to the agent’s current tra-
jectory (so, s1,...,St—1). The trajectory preserves a
clear history of the actions taken, the code produced,
and the results obtained.

3.4 Task-specific Toolset Optimization

The OctoTools toolbox contains a diverse set of tools
covering different modalities and skills. By leveraging
structured tool cards and robust planning capabilities,
OctoTools demonstrates strong generality when all
available tools are enabled across different tasks (see
§3.4). However, when a small set of validation exam-
ples are available for a task, configuring a task-specific
subset of tools can further enhance efficiency and ef-
fectiveness.

To this end, we propose an automated algorithm to
optimize the toolset configuration for each task. Given
n available tools in the toolbox, the total number of
possible subsets is O(2™), which is prohibitively large.
To make this tractable, we employ a greedy search
strategy that reduces the complexity to O(n). Our
approach proceeds in three stages.

Algorithm 1 Task-specific Toolset Optimization

: Input: Toolbox D = {d;}i—,, base toolset Dpase
: Output: Optimized toolset D*
: # Stage 1: Baseline setup
Accbaseline — ACC(Dbase)
: # Stage 2: Individual tool evaluation
: for each d; in D such that d; ¢ Dy do
Di <~ Dbase U {dz}
Acc; + Acc(D;)
Adi — ACC'L - ACCbaseline
if Ag; > 0 then
Dbeneﬁcial <~ Dbeneﬁcial) {dz}
end if
: end for
: # Stage 3: Select optimized toolset
¢ D < Drencficial U Doase
: Return D*

O S G SR S —

Stage 1: Baseline setup. We first establish a base-
line performance by enabling the base toolset in the
toolbox, denoted Dy,se. This base set represents a min-
imal starting toolset, which can be pre-defined by the
user.

Stage 2: Individual tool evaluation. Next, we mea-
sure each candidate tool d; by enabling it alongside
the base toolset. For each d;, we form an augmented
subset D; = Dhase U {d; } and compute the accuracy
difference on the set of validation examples

Ag; = Acc(D;) — Acc(Doase)- (1)

If A4, > 0, we consider the tool d; beneficial for the
target task.

Stage 3: Optimized toolset selection. Finally, we
aggregate all tools that yield positive improvements
and combine them with the default set to form the
optimized toolset:

D* = Dhase U {d; | Ag, > 0}. 2)

This set contains all tools that individually demonstrate
a performance gain over the baseline, ensuring a cus-
tomized yet efficient configuration for the downstream
task. While this selection does not guarantee global
optima, we observe overall improvements over simply
using all tools (see §5.2).

4 Experiments

4.1 Experimental Setups

To demonstrate the generality of our OctoTools frame-
work, we conduct comprehensive evaluations on 16
diverse benchmarks spanning two modalities, five do-
mains, and four reasoning types, as shown in Table 1.
These benchmarks encompass a wide range of com-
plex reasoning tasks, including visual understanding,
numerical calculation, knowledge retrieval, and multi-
step reasoning.

For general visual reasoning, we include AlgoPuz-
zleVQA (Ghosal et al., 2024), Hallusion-VD (Guan
etal., 2024), PuzzleVQA (Chia et al., 2024), and VQA
2.0 (Goyal et al., 2017). For mathematical reasoning,
we use Game of 24 (Lile, 2024), Omni-MATH (Gao
et al., 2024), CLEVR-Math (Lindstrom and Abra-
ham, 2022), and MathVista (Lu et al., 2024b). For
scientific reasoning, we adopt GPQA (Rein et al.,
2023), MMLU-Pro (Wang et al., 2024b), and Sci-
FIBench (Roberts et al., 2024). To evaluate models in
specialized medical domains, we test on MedQA (Jin
etal., 2021), PathCLS (Sun et al., 2025), PathVQA (He
et al., 2020), and SLAKE (Liu et al., 2021) Addition-
ally, we incorporate GAIA-Text, a textual subset of
the GAIA (Mialon et al., 2023) benchmark designed
to evaluate agentic frameworks with tool-calling ca-
pabilities. See §A.1 for additional details of these
benchmarks.

For each benchmark, we sampled 100 examples
to construct a validation set for toolset optimization

(§3.4) and ablation studies (§5), and set aside a held-
out test set of 200 examples for final evaluation. For
benchmarks with fewer than 300 total samples, the
test set consisted of all remaining samples not used
for validation. To mitigate randomness, we report the
average accuracy with standard deviation across three
trials for all experiments, including ablation studies.
Details on experimental setups are provided in §A.
We created a diverse array of tools in the toolbox
for our experiments. The base toolset consists of
Generalist_Solution_Generator, a tool built on
top of the base LLM that takes as input a specialized
prompt generated by the executor, such as “Describe
the image in detail” or “Generate stepwise solutions
for the math problem”. This tool allows for general
step-by-step reasoning without requiring external tools
but lacks domain specificity. The toolbox also includes
image perception tools such as Image_Captioner,
web search APIs like Google_Search, a code
generator Python_Code_Generator, and special-
ized tools like Path_Generalist_Classifier for
pathology image classification. Among them,
Relevant_Patch_Zoomer is a unique tool that takes
a textual query and returns zoomed-in quarter patches,
which provide localized details for fine-grained visual
reasoning scenarios. See §A.2 and §D for more details.

4.2 Main Results

We compare the performance of our framework after
toolset optimization (denoted as OctoTools) against
three baselines: (1) zero-shot, where the base LLM
directly answers queries without additional prompting,
(2) chain-of-thought (CoT), where the base LLM is
prompted to “Think step by step” to generate step-by-
step reasoning, and (3) OctoToolsp,se, Which uses only
the base tool without external integrations. Unless
otherwise specified, all results presented below use
gpt-40-2024-08-06 as the base model.

Table 1 and Figure 1 summarize performance
across all 16 benchmarks. OctoTools achieves con-
sistent gains, outperforming zero-shot and CoT base-
lines by 9.3% and 7.7% on average, respectively.
OctoToolspyse also demonstrates improvements over
zero-shot (4.2%) and CoT (2.6%), indicating that our
framework’s step-by-step reasoning contributes signif-
icantly to performance, independent of external tool
integration. Figure 16 visualizes gains over zero-shot.
Detailed analyses of these gains are presented in §4.4.

4.3 Comparisons with Other Agent Frameworks

In addition, we compare three commonly used gen-
eral Al agent frameworks: GPT-Functions (OpenAl,
2023a), LangChain (LangChain, 2024), and Auto-
Gen (AutoGen, 2024). GPT-Functions enables GPT-

Datasets Modality Domain =2 8 = \ 0-shot CoT OctoToolspase OctoTools \ A (0-shot) A (CoT)
AlgoPuzzleVQA Vision General 4 v | 413403 427+10 44.0 +0.9 48.7 +0.3 +7.4 +6.0
Hallusion-VD Vision General v 52.0 1.0 533 +21 59.0 +0.0 63.3 29 +11.3 +10.0
PuzzleVQA Vision General v v | 522410 54.0+13 59.3 +0.8 61.0 +05 +8.8 +7.0
VQA 2.0 Vision General v v | 503+10 487 +03 47.2 08 54.5 +0.0 +4.2 +5.8
Game of 24 Text Mathematical v v | 222425 333+15 37.8 +33 44.7 +2.8 +22.5 +11.4
Omni-MATH Text Mathematical v v/ vV | 27.0+00 293+13 30.2 +0.6 32.2 +08 +5.2 +2.9
CLEVR-Math Vision Mathematical v v/ 64.5+30 T752+15 68.8 +0.8 79.0 +0.9 +14.5 +3.8
MathVista Vision Mathematical v v v/ | 593+08 595+15 63.0 £13 64.3 +1.0 +5.0 +4.8
GPQA Text Scientific v V v/ |537+19 523420 53.7 +255 54.7 +13 +1.0 +2.4
MMLU-Pro Text Scientific v o/ | 717403 703406 715 +13 73.7 413 +2.0 +3.4
SciFIBench Vision Scientific v v 72.5+00 75.0+09 77.3 +08 78.3 t0.6 +5.8 +3.3
MedQA Text Medical v 84.5+10 84.8+06 92.8 +0.6 91.5+18 +7.0 +6.7
PathCLS Vision Medical v v 36.0 £09 37.5+18 37.0 £138 58.2+13 +22.2 +20.7
PathVQA Vision Medical v v /| 320+18 27.8+18 435426 49.2 £12 +17.2 +21.4
SLAKE Vision Medical v v/ |593+10 60.3+06 59.2 +138 63.8 £1.4 +4.5 +3.5
GAIA-Text Text Agentic v/ /| 8T7+0s 8.4 +05 9.7 +£0.9 184+12 | +9.7 +10.0
Average (%) - - - - - - 49.2 50.8 53.4 58.5 \ +9.3 +7.7

Table 1: Main results across 16 benchmarks spanning different modalities, domains, and required reasoning skills: visual understanding
(&9), numerical calculation (ff), knowledge retrieval (&), and multi-step reasoning (82). OctoToolspse uses only the base tool
(Generalist_Solution_Generator), while OctoTools uses the optimal toolset. Performance gains (A) are computed for OctoTools
relative to both zero-shot (0-shot) and chain-of-thought (CoT) baselines, with OctoTools achieving 58.5% average accuracy and
improvements of 9.3% and 7.7% respectively. All results show average accuracy and standard deviation (gray) over three trials.

Datasets AutoGen GPT-Functions LangChain OctoTools
AlgoPuzzleVQA 44.0 £1.0 445 +05 42,7428 48.7+03
Hallusion-VD 52.7 +4.7 57.0+17 53.7 +3.1 63.3 +29
Puzzle VQA 40.0 +2.3 52.5 428 535478 61.0 +05
VQA 2.0 46.0 +1.0 45.5 09 54.0+10 54.5+t00
Game of 24 242 404 345423 18.3 £4.1 44.7 +28
Omni-MATH 28.5 13 228 +18 29.7 +06 322408
CLEVR-Math 69.5 +39 71.2+10 69.2 +46 79.0 £0.9
MathVista 24.7 +2.5 545420 55.7+03 643 +10
GPQA 48.7 +29 458 t26 522+12 547 +13
MMLU-Pro 65.0 £2.5 65.8 +2.4 703 +12 737 +13
SciFIBench 70.0 +2.2 68.8 £32 77.0 £05 78.3 +06
MedQA 83.7 +28 84.8 +0.3 73.7+06 91.5+18
PathCLS 58.0+13 58.2 +0.6 563 +13 58.2+13
PathVQA 42.7 +08 428 +23 457 t44 492412
SLAKE 62.2 +18 59.7 +19 593 +08 63.8+14
GATA-Text 6.3 08 7.9 £0.8 7.6+t12 184 +12
Average (%) 47.9 51.0 51.2 58.5

Table 2: Comparison with other agent frameworks using the same
underlying toolbox. OctoTools achieves superior performance
with an average accuracy of 58.5%, outperforming the next best
baseline by 7.3%. Results are averaged over three trials.

40 to call user-specified tools via function calling.
LangChain is a framework providing multi-agent col-
laboration, long-term memory, and tool usage. Auto-
Gen is a recent agentic framework that creates multiple
autonomous agents with tool usage.

For a standardized comparison of each system’s
ability to plan and use tools over multiple steps, we
configure all agent frameworks, including OctoTools,
to use the same underlying model (GPT-40) and hy-
perparameters. They share the same toolset (with the
same implementations of tools), a maximum reasoning
budget of 10 steps, and a time budget of 300 seconds.
See §A for further details.

Table 2 and Figure 10 show the performance of
OctoTools compared to other agent frameworks across
16 tasks. Overall, OctoTools outperforms other agent

frameworks, achieving an average accuracy gain of
10.6% over AutoGen, 7.5% over GPT-Functions, and
7.3% over LangChain. See §4.4 for detailed analysis.

4.4 Analysis of Performance Gains

Our agent framework includes three aspects for im-
provement in complex reasoning: fask planning, exter-
nal tool calling, and multi-step problem solving. We
include an analysis to disentangle added benefits of
each of these aspects.

Tool usage distribution. Figure 4 (a) shows the tool
usage distribution for OctoTools and the agent base-
lines, averaged over 16 tasks. OctoTools takes advan-
tages of rask planning by calling both a base tool to de-
compose the query into subtasks (32.2%) and external
specialized tools (67.8%) for reasoning skills such as
fine-grained image understanding, domain knowledge
access, precise calculation, and other domain-specific
tasks. In contrast, the other agent baselines exhibit
limitations in task planning for external tool usage,
with external tool usage rates of 10.6% for AutoGen,
23.3% for GPT-Functions, and 10.7% for LangChain.

Figure 4 (b) illustrates the tool usage distribu-
tion of OctoTools across the 16 tasks. OctoTools
adapts to each task by selecting the most suitable
tools. For instance, OctoTools employs five differ-
ent tools to address the diverse challenges in GAIA-
Text. In MathVista, a benchmark featuring multi-
ple diagram-based and mathematical reasoning prob-
lems, it uses Relevant_Patch_Zoomer for local vi-
sion perception, Google_Search for web queries, and
Python_Code_Generator for precise calculations.

OctoTools (ours) AutoGen

J/

Generalist_Solution_Generator
Image_Captioner
Relevant_Patch_Zoomer
Text_Detector
Wikipedia_Knowledge_Searcher
Google_Search
Url_Text_Extractor
Python_Code_Generator
Path_Generalist_Classifier
Pubmed_Search

Others

FE é\%ﬁ@@vq&@vw@ & FA° WS
FF TP CF S ¥ IS Tt S
N 0@ A c‘,§° D N &P O‘y o
GPT-Functions LangChain ®

Figure 4: a. Tool usage distribution in our OctoTools framework and agent baselines by averaging results from 16 tasks. b. Tool usage
distribution across 16 tasks in OctoTools. OctoTools takes advantage of different external tools to address task-specific challenges.

SciFIBench
101 OV cLevr-Math 1 Game of 24
PathCLS VQA 2.0 O
g PathVQA
® SLAKE
£ 0.8+ 1
° MathVista GAIA-Text
s}
}—
T 06 O PuzzlevQA _
—
-g MMLU-P GPROA
-Pro

- v Vo
© 0.4 1 a AlgoPuzzleVQA R
S Omni-MATH
5 © General
© @ Mathematical
— i -
it 0.2 4 © Hallusion-vD ¥V Scientific |

‘ MedQA 0 Medical

O Agentic
0.0 T T T T T T
1.0 1.2 1.4 1.6 1.8 20 3 4 5 6

Average Number of Steps

Figure 5: Benchmark distribution across average number of steps
and fraction of external tool usage (tools that exclude the base tool
Generalist_Solution_Generator) in OctoTools.

External tool usage v.s. multiple steps. Figure 5
shows how tasks are distributed based on the average
number of steps and the fraction of external tool usage
in OctoTools. Tasks with a high average number of
steps indicates that multi-step problem solving is valu-
able, while a high proportion of external tool usage
highlight the benefits of external tool calling. Notably,
two tasks score highly on both dimensions: Game of
24, which frequently calls Python_Code_Generator
to explore and verify arithmetic expressions that eval-
uate to 24, and GAIA-Text, which requires multiple
tools to address a variety of underlying skills.

5 Ablation Study

This section explores several factors that affect Octo-
Tools’s performance, using 100 validation samples.

5.1 Number of Maximum Allowed Steps

We explore how the behavior and performance of Oc-
toTools change under different maximum step limits.
We report the average over three trials, with results
summarized in Figure 6. Overall, performance tends
to improve as the maximum number of steps increases,
highlighting the benefit of longer chains of multi-step
reasoning. Detailed results and analysis for individ-
ual tasks are provided in §B. Additionally, we found
that averaged across 16 tasks, running OctoTools with
GPT-4o typically takes less than $5 for 100 queries
with 10 maximum allowed steps.

60

59 A1

58 A

57 A

56 1

Average Accuracy on 16 Tasks (%)

55

12 4 6 8 10
Maximum Steps

Figure 6: Average accuracy across 16 benchmarks with respect to
maximum allowed reasoning steps in OctoTools.

5.2 Toolset Optimization

To investigate the benefits of our toolset optimiza-
tion algorithm (presented in §3.4 and Algorithm 1),
we evaluate OctoTools under three toolset strategies:
(1) OctoToolspase, i.€., the setup with only the base
Generalist_Solution_Generator tool, (2) Octo-
Tools with the full toolset, where all possible tools
are enabled, and (3) OctoTools with the optimized
toolset. Figure 7 presents results across all 16 tasks
and different reasoning categories.

On average, the optimized toolset achieves 58.9%
accuracy, outperforming the OctoToolspase (53.9%) by
5.0%. Meanwhile, simply enabling all tools yields
57.4% accuracy, which still outperforms OctoToolspse
by 3.5%. Although toolset optimization provides the
higher overall performance, our framework is suffi-
ciently versatile that enabling all tools also offers a
substantial improvement, helping ensure generaliza-
tion as we scale up the toolset.

While enabling all available tools might appear ad-
vantageous, prior work (Lumer, 2024; Fore et al., 2024,
Paramanayakam et al., 2024) has shown that it can
sometimes degrade performance. Our findings sug-
gest that external feedback (e.g., performance on a
validation set or expert insights) helps identify when a
certain tool improves performance. Additionally, se-
lectively enabling tools avoids unnecessary overhead
and improves efficiency. A promising next step is
to explore a query-based approach that dynamically
refines the toolset for each query.

65
Base toolset
62.5
I Full toolset
- 60.6) B Optimized toolset
Q 4
L 60 w04
> 57.80
57.4

© 56.
—_
o

55 1
b 53 533 533 53.6
0] 52.5
o
o 51.5
—_
Y50
< 48. 48.2

45

6 o)) 1
AT gon oo k\mow\edge O’Mum.step o

Figure 7: Performance under three toolset strategies in OctoTools
across all 16 tasks and various categories (the number in parenthe-
ses indicates the number of tasks in each category).

5.3 Using a Weaker LLM

Additionally, we evaluate our framework using a
weaker LLM (GPT-40-mini) as the base engine. Sim-
ilar to the analysis with GPT-40, we compare Oc-
toTools against the zero-shot and CoT baselines on
the validation sets of 16 benchmarks. As shown in
Figure 8, OctoTools generally outperforms the base-
lines across all 16 tasks and various categories. Task-
specific analyses are provided in §B.

6 Conclusion

In this paper, we introduced OctoTools, a training-
free, extensible agentic framework for complex rea-
soning. OctoTools employs standardized tool cards
to facilitate seamless integration of diverse tools and

(=2}
o

GPT-40-mini
B GPT-40-mini (CoT)

40 A
35 A
30

00

B OctoTools_base
mmm OctoTools

idd

av

w w
o wl
! !

Average Accuracy (%)
ey
w

0)
NE! jon 0O \at\O“ edge e O a-ste?

Figure 8: Performance of OctoTools on 16 tasks and various
categories using a weaker LLM, GPT-40-mini, as the base en-
gine. OctoToolspase is the configuration in which only the base
Generalist_Solution_Generator tool is enabled. The number
in parentheses indicates # tasks in each category.

a dedicated planner-executor workflow that separates
high-level planning over multiple steps from low-level
planning and command generation within each step.
Through extensive experiments on 16 diverse bench-
marks, OctoTools consistently outperforms baselines,
achieving average accuracy gains of up to 9.3% over
GPT-40 and up to 10.6% over strong agentic frame-
works. Our in-depth analysis shows that OctoTools’
improvements stem from dynamic task planning, effec-
tive tool usage, and multi-step problem decomposition.
Ablation studies highlight the benefits of allowing
more step, refining the toolset, and demonstrate the
robustness when deployed with a weaker LLM. By
streamlining the integration of new or specialized mod-
ules through tool cards, OctoTools readily adapts to a
broad range of tasks. We believe our findings open new
ecosystems for building next-generation Al agents that
are more transparent, modular, and effective at solving
real-world problems. Future work includes test-time
inference at the query level, extending multi-agent
collaboration, and exploring specialized domains.

Acknowledgments

This work is partially supported by the Hoffman-Yee
Research Grants program at Stanford HAI and Chan
Zuckerberg Initiative. We thank members of the Zou
group for helpful discussions and insightful feedback.

Contribution Statement

PL and RT started the project. PL completed the early
framework. PL, BC refined the framework. PL, BC,
and SL contributed to experiments and paper writing.
Correspondence to: Pan Lu <panlu@stanford.edu>,
James Zou <jamesz @stanford.edu>.

References

AutoGen. 2024. Autogen.
microsoft/autogen.

https://github.com/

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and
Yunhe Wang. 2024. Forest-of-thought: Scaling test-time
compute for enhancing Ilm reasoning. arXiv preprint
arXiv:2412.09078.

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldas-
sari, Andrew D White, and Philippe Schwaller. 2023.
Chemcrow: Augmenting large-language models with
chemistry tools. arXiv preprint arXiv:2304.05376.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. 2020. Language models are few-shot learners.
Advances in Neural Information Processing Systems
(NeurIPS), 33:1877-1901.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin.
2021. Emerging properties in self-supervised vision
transformers. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 9650-9660.

Wei-Ge Chen, Irina Spiridonova, Jianwei Yang, Jianfeng
Gao, and Chunyuan Li. 2023. Llava-interactive: An all-
in-one demo for image chat, segmentation, generation
and editing. arXiv preprint arXiv:2311.00571.

Yew Ken Chia, Vernon Toh Yan Han, Deepanway Ghosal,
Lidong Bing, and Soujanya Poria. 2024. PuzzleVQA: Di-
agnosing multimodal reasoning challenges of language
models with abstract visual patterns. arXiv preprint
arXiv:2403.13315.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian
Gehrmann, et al. 2022. PaLM: Scaling language model-
ing with pathways. arXiv preprint arXiv:2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark
Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al.
2021. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168.

Michael Fore, Simranjit Singh, and Dimitrios Stamoulis.
2024. Geckopt: LIm system efficiency via intent-based
tool selection. In Proceedings of the Great Lakes Sympo-
sium on VLSI 2024, pages 353-354.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao,
Qingxiu Dong, Lei Li, Chenghao Ma, Liang Chen,
Runxin Xu, et al. 2024. Omni-MATH: A universal
olympiad level mathematic benchmark for large lan-
guage models. arXiv preprint arXiv:2410.07985.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei
Liu, Yiming Yang, Jamie Callan, and Graham Neubig.
2023. Pal: Program-aided language models. In Interna-
tional Conference on Machine Learning, pages 10764—
10799. PMLR.

Deepanway Ghosal, Vernon Toh Yan Han, Chia Yew
Ken, and Soujanya Poria. 2024. Are language mod-
els puzzle prodigies? algorithmic puzzles unveil seri-
ous challenges in multimodal reasoning. arXiv preprint
arXiv:2403.03864.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh. 2017. Making the v in vqa
matter: Elevating the role of image understanding in
visual question answering. In Proceedings of the IEEE
Conference on Computer Vision and pattern Recognition,
pages 6904-6913.

Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia
Li, Xiaoyu Liu, Xijun Wang, Lichang Chen, Furong
Huang, Yaser Yacoob, et al. 2024. HallusionBench: an
advanced diagnostic suite for entangled language hal-
lucination and visual illusion in large vision-language
models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14375—
14385.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran
Sun, Yi Zhu, Fan Yang, and Mao Yang. 2025. rstar-math:
Small Ilms can master math reasoning with self-evolved
deep thinking. arXiv preprint arXiv:2501.04519.

Xuehai He, Yichen Zhang, Luntian Mou, Eric Xing, and
Pengtao Xie. 2020. PathVQA: 30000+ questions for
medical visual question answering. arXiv preprint
arXiv:2003.10286.

Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Os-
tendorf, Luke Zettlemoyer, Noah A Smith, and Ranjay
Krishna. 2024. Visual sketchpad: Sketching as a visual
chain of thought for multimodal language models. arXiv
preprint arXiv:2406.09403.

Zhenlan Ji, Daoyuan Wu, Pingchuan Ma, Zongjie Li, and
Shuai Wang. 2024. Testing and understanding erroneous
planning in llm agents through synthesized user inputs.
arXiv preprint arXiv:2404.17833.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng,
Hanyi Fang, and Peter Szolovits. 2021. What disease
does this patient have? a large-scale open domain ques-
tion answering dataset from medical exams. Applied
Sciences, 11(14):6421.

Yeonghun Kang and Jihan Kim. 2024. Chatmof: an arti-
ficial intelligence system for predicting and generating
metal-organic frameworks using large language models.
Nature Communications, 15(1):4705.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2022. Decomposed prompting: A modular
approach for solving complex tasks. arXiv preprint
arXiv:2210.02406.

Mojtaba Komeili, Kurt Shuster, and Jason Weston. 2022.
Internet-augmented dialogue generation. In Proceedings
of the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages
8460-8478, Dublin, Ireland. Association for Computa-
tional Linguistics.

Inc LangChain. 2024. LangChain. https://github.com/
langchain-ai/langchain.

https://github.com/microsoft/autogen
https://github.com/microsoft/autogen
https://doi.org/10.18653/v1/2022.acl-long.579
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain

Angeliki Lazaridou, Elena Gribovskaya, Wojciech
Stokowiec, and Nikolai Grigorev. 2022. Internet-
augmented language models through few-shot prompt-
ing for open-domain question answering. arXiv preprint
arXiv:2203.05115.

Binxu Li, Tiankai Yan, Yuanting Pan, Jie Luo, Ruiyang
Ji, Jiayuan Ding, Zhe Xu, Shilong Liu, Haoyu Dong,
Zihao Lin, et al. 2024a. Mmedagent: Learning to use
medical tools with multi-modal agent. arXiv preprint
arXiv:2407.02483.

Zelong Li, Wenyue Hua, Hao Wang, He Zhu, and Yongfeng
Zhang. 2024b. Formal-LLM: Integrating formal lan-
guage and natural language for controllable llm-based
agents. arXiv preprint arXiv:2402.00798.

Nathan Lile. 2024. Math twenty four (24s game)
dataset. https://huggingface.co/datasets/
nlile/24-game.

Adam Dahlgren Lindstréom and Savitha Sam Abraham.
2022. CLEVR-Math: A dataset for compositional
language, visual and mathematical reasoning. arXiv
preprint arXiv:2208.05358.

Bo Liu, Li-Ming Zhan, Li Xu, Lin Ma, Yan Yang, and
Xiao-Ming Wu. 2021. SLAKE: A semantically-labeled
knowledge-enhanced dataset for medical visual question
answering. In 2021 IEEE 18th International Symposium
on Biomedical Imaging (ISBI), pages 1650-1654. IEEE.

Shilong Liu, Hao Cheng, Haotian Liu, Hao Zhang, Feng
Li, Tianhe Ren, Xueyan Zou, Jianwei Yang, Hang Su,
Jun Zhu, et al. 2023. Llava-plus: Learning to use
tools for creating multimodal agents. arXiv preprint
arXiv:2311.05437.

Ming Y Lu, Bowen Chen, Drew FK Williamson, Richard J
Chen, Ivy Liang, Tong Ding, Guillaume Jaume, Igor
Odintsov, Long Phi Le, Georg Gerber, et al. 2024a.
A visual-language foundation model for computational
pathology. Nature Medicine, 30:863-874.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan
Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei Chang,
Michel Galley, and Jianfeng Gao. 2024b. MathVista:
Evaluating mathematical reasoning of foundation mod-
els in visual contexts. In International Conference on
Learning Representations (ICLR).

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei
Chang, Ying Nian Wu, Song-Chun Zhu, and Jianfeng
Gao. 2023. Chameleon: Plug-and-play compositional
reasoning with large language models. Advances in Neu-
ral Information Processing Systems, 35.

Elias Lumer. 2024. Toolshed: Scale tool-equipped agents
with advanced rag-tool fusion and tool knowledge bases.
arXiv preprint arXiv:2410.14594.

Grégoire Mialon, Clémentine Fourrier, Craig Swift,
Thomas Wolf, Yann LeCun, and Thomas Scialom. 2023.
GAIA: a benchmark for general ai assistants. arXiv
preprint arXiv:2311.12983.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse, Shan-
tanu Jain, Vineet Kosaraju, William Saunders, et al. 2021.

Webgpt: Browser-assisted question-answering with hu-
man feedback. arXiv preprint arXiv:2112.09332.

OpenAl. 2023a. Function calling - openai.
https://platform.openai.com/docs/guides/
function-calling.

OpenAl. 2023b. GPT-4 technical report. arXiv preprint
arXiv:2303.08774.

Varatheepan Paramanayakam, Andreas Karatzas, Iraklis
Anagnostopoulos, and Dimitrios Stamoulis. 2024. Less
is more: Optimizing function calling for Ilm execution
on edge devices. arXiv preprint arXiv:2411.15399.

Ethan Perez, Patrick Lewis, Wen-tau Yih, Kyunghyun Cho,
and Douwe Kiela. 2020. Unsupervised question de-

composition for question answering. arXiv preprint
arXiv:2002.09758.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R Bowman. 2023. GPQA:
A graduate-level google-proof q&a benchmark. arXiv
preprint arXiv:2311.12022.

Tianhe Ren, Yihao Chen, Qing Jiang, Zhaoyang Zeng,
Yuda Xiong, Wenlong Liu, Zhengyu Ma, Junyi Shen,
Yuan Gao, Xiaoke Jiang, Xingyu Chen, Zhuheng Song,
Yuhong Zhang, Hongjie Huang, Han Gao, Shilong Liu,
Hao Zhang, Feng Li, Kent Yu, and Lei Zhang. 2024.
Dino-x: A unified vision model for open-world object
detection and understanding.

Jonathan Roberts, Kai Han, Neil Houlsby, and Samuel Al-
banie. 2024. SciFIBench: Benchmarking large multi-
modal models for scientific figure interpretation. arXiv
preprint arXiv:2405.08807.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves to
use tools. Advances in Neural Information Processing
Systems, 36:68539-68551.

Samuel Schmidgall, Rojin Ziaei, Carl Harris, Eduardo Reis,
Jeffrey Jopling, and Michael Moor. 2024. Agentclinic: a
multimodal agent benchmark to evaluate ai in simulated
clinical environments. arXiv preprint arXiv:2405.07960.

Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju,
Eric Michael Smith, Stephen Roller, Megan Ung, Moya
Chen, Kushal Arora, Joshua Lane, et al. 2022. Blender-
bot 3: a deployed conversational agent that contin-
ually learns to responsibly engage. arXiv preprint
arXiv:2208.03188.

Simeng Sun, Yang Liu, Shuohang Wang, Chenguang Zhu,
and Mohit Iyyer. 2023. Pearl: Prompting large language
models to plan and execute actions over long documents.
arXiv preprint arXiv:2305.14564.

Yuxuan Sun, Hao Wu, Chenglu Zhu, Sunyi Zheng, Qizi
Chen, Kai Zhang, Yunlong Zhang, Dan Wan, Xiaoxiao
Lan, Mengyue Zheng, et al. 2025. PathMMU: A massive
multimodal expert-level benchmark for understanding
and reasoning in pathology. In European Conference on
Computer Vision, pages 56—73. Springer.

https://huggingface.co/datasets/nlile/24-game
https://huggingface.co/datasets/nlile/24-game
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
http://arxiv.org/abs/2411.14347
http://arxiv.org/abs/2411.14347

Heyi Tao, Sethuraman TV, Michal Shlapentokh-Rothman,
Derek Hoiem, and Heng Ji. 2023. Webwise: Web inter-
face control and sequential exploration with large lan-
guage models. arXiv preprint arXiv:2310.16042.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng, Ali-
cia Jin, Taylor Bos, Leslie Baker, Yu Du, YaGuang Li,
Hongrae Lee, Huaixiu Steven Zheng, Amin Ghafouri,
Marcelo Menegali, Yanping Huang, Maxim Krikun,
Dmitry Lepikhin, James Qin, Dehao Chen, Yuanzhong
Xu, Zhifeng Chen, Adam Roberts, Maarten Bosma,
Vincent Zhao, Yanqi Zhou, Chung-Ching Chang, Igor
Krivokon, Will Rusch, Marc Pickett, Pranesh Srini-
vasan, Laichee Man, Kathleen Meier-Hellstern, Mered-
ith Ringel Morris, Tulsee Doshi, Renelito Delos Santos,
Toju Duke, Johnny Soraker, Ben Zevenbergen, Vinodku-
mar Prabhakaran, Mark Diaz, Ben Hutchinson, Kristen
Olson, Alejandra Molina, Erin Hoffman-John, Josh Lee,
Lora Aroyo, Ravi Rajakumar, Alena Butryna, Matthew
Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Cohen,
Rachel Bernstein, Ray Kurzweil, Blaise Aguera-Arcas,
Claire Cui, Marian Croak, Ed Chi, and Quoc Le. 2022.
Lamda: Language models for dialog applications.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou
Shen, Ji Zhang, Fei Huang, and Jitao Sang. 2024a.
Mobile-agent: Autonomous multi-modal mobile de-
vice agent with visual perception. arXiv preprint
arXiv:2401.16158.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng
Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, et al. 2024b.
MMLU-Pro: A more robust and challenging multi-task
language understanding benchmark. arXiv preprint
arXiv:2406.01574.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
2022. Chain-of-thought prompting elicits reasoning in
large language models. Advances in neural information
processing systems, 35:24824-24837.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran,
Karthik Narasimhan, and Yuan Cao. 2022. React: Syner-
gizing reasoning and acting in language models. arXiv
preprint arXiv:2210.03629.

Yuxiang Zhang, Jing Chen, Junjie Wang, Yaxin Liu,
Cheng Yang, Chufan Shi, Xinyu Zhu, Zihao Lin, Han-
wen Wan, Yujiu Yang, et al. 2024. Toolbehonest:
A multi-level hallucination diagnostic benchmark for
tool-augmented large language models. arXiv preprint
arXiv:2406.20015.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan
Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui,
Olivier Bousquet, Quoc Le, et al. 2022. Least-to-most
prompting enables complex reasoning in large language
models. arXiv preprint arXiv:2205.10625.

https://doi.org/10.48550/ARXIV.2201.08239

A Experimental Details

A.1 Benchmark Datasets

Here, we report further details of each of the 16 benchmark we used in this study. Unless specified otherwise, a
validation set of 100 examples and a test set of 200 examples were sampled from each dataset. No additional
preprocessing was performed for open-ended questions. For multiple choice questions, choices were enumerated
using capital letters and each concatenated to the question following a new line character. Any subsetting of the
original datasets are also described below.

A.1.1 General Domain Benchmarks

AlgoPuzzleVQA (Ghosal et al., 2024) is a set of geometric puzzles that require both visual understanding,
language understanding, and complex algorithmic reasoning that are difficult for base VLMs.

Hallusion-VD is a subset of HallusionBench (Guan et al., 2024), a benchmark to test visual understand-
ing through optical and geometric illusions. For our experiments we use the Visual Dependent subset of
HallusionBench, consisting of questions where the visual context is required to give a definitive answer.

PuzzleVQA (Chia et al., 2024) is a dataset of puzzle instances based on abstract, geometric patterns that test
understanding and reasoning based on colors, numbers, sizes, and shapes.

VQA 2.0 (Goyal et al., 2017) consists of open-ended questions about images that require fine-grained visual
understanding.

A.1.2 Mathematical Benchmarks

Game of 24 (Lile, 2024) is based on the classic arithmetic game of 24 (also known as 24, the 24 numbers
game, efc.). The puzzle involves using four numbers and basic arithmetic operations (addition, subtraction,
multiplication, division) to construct an expression that evaluates to 24. For example, given the numbers 4, 9, 10,
and 13, one valid solution is “(10 - 4) x (13 - 9) = 24”. Solving the puzzle requires numerical calculation skills
as well as multiple attempts to verify proposed solutions. Each puzzle is presented as open-ended questions.

Omni-MATH (Gao et al., 2024) is a text-only mathematical benchmark consisting of open-ended competition-
level problems at the Olympiad level, requiring advanced mathematical knowledge and reasoning.

CLEVR-Math (Lindstrom and Abraham, 2022) consists of multimodal math word problems involving
addition and subtraction. Each problem contains a textual description and an image illustrating the scenario. A
combination of language, visual, and mathematical reasoning is required to solve these word problems.

MathVista (Lu et al., 2024b) is benchmark designed to combine challenges from diverse mathematical
and visual tasks. The queries are a mix of multiple choice and open-ended questions and require numerical
computation, fine-grained visual understanding, and multi-step reasoning.

A.1.3 Scientific Benchmarks

GPQA or Graduate Level Google-Proof Q&A Benchmark (Rein et al., 2023) is a set of challenging text-only
multiple choice questions written by domain experts in biology, physics, and chemistry designed to be “extremely
difficult".

MMLU-Pro (Wang et al., 2024b) is a text-only benchmark consisting of challenging, reasoning-focused
multiple choice questions that require general scientific knowledge and complex reasoning.

SciFIBench (Roberts et al., 2024) is a benchmark of multiple choice questions for scientific figure interpreta-
tion. Queries involve understanding and extracting information from scientific figures.

A.1.4 Medical Benchmarks

MedQA (Jin et al., 2021) consists of text-only multiple choice questions curated from professional medical
board exams. Questions cover general medical and clinical knowledge and reasoning.

PathCLS is a subset of PathMMU (Sun et al., 2025) that consists of multiple choice questions based
on hematoxylin and eosin (H&E)-stained histopathology microscopy images reformulated from well-known
pathology classification datasets. These questions generally involve disease diagnosis based on histopathology
images.

PathVQA (He et al,, 2020) is a visual question-answering dataset curated from pathology-related image-
caption pairs sourced from textbooks, spanning multiple tissue types and stains. All questions were treated as
open-ended in our evaluation.

SLAKE or Semantically-Labeled Knowledge-Enhanced Dataset (Liu et al., 2021) is a radiology visual
question-answering dataset. The associated images span X-ray images, computed tomography (CT) scans,
and magnetic resonance imaging (MRI). All questions were treated as open-ended in our evaluation. Though
the authors of the dataset released object detection labels and segmentation masks for each image, these were
excluded in our evaluation for the purpose of increasing difficulty.

A.1.5 Agentic Benchmark

GAIA-Text (Mialon et al., 2023) is a benchmark specifically designed to evaluate general Al assistants
and agents, requiring abilities such as multi-step reasoning, web browsing, and generally tool-use proficiency.
The questions are designed to be difficult for base LLMs. We use the text-only subset of this dataset in our
experiments.

A.2 Tools Used in Our Experiments
We implemented 11 tools in the toolbox for our experiments. Here, we provide detailed descriptions of each tool.

See §D for the complete tool cards of each tool and usage examples.

Arxiv Paper Searcher (§D.1) searches arXiv', an open-access pre-print repository, for abstracts and links that
match a given query.

Generalist Solution Generator (§D.2) is an instance of the OctoTools base LLM and acts as the default
reasoning engine if the agent decides not to use an external tool.

Google Search (§D.3) uses the Google custom search API? to search the web and return links and a summary
of each result.

Image Captioner (§D.4) is an instance of the base LLM prompted for generating text descriptions of input
images.

Path Generalist Classifier (§D.5) is a tool for performing general classification of H&E-stained pathology
microscopy images. The tool relies on CONCH (Lu et al., 2024a), a pretrained vision-language foundation
model for pathology, for performing zero-shot classification of pathology image patches.

Pubmed Search (§D.6) retrieves relevant article abstracts from PubMed based on a text query. The retrieval is
performed using the PubMed and NCBI APIs>.

Python Code Generator (§D.7) generates and executes Python code given a query and returns the execution
result. The code generation is performed by an instance of the base LLM prompted for Python code generation.

Relevant Patch Zoomer (§D.8) is an instance of the base LLM that, given a query, decides which regions of
the image to zoom into (among the four quadrants and the center patch) and saves the zoomed patches.

Text Detector (§D.9) detects multilingual text within an image by calling the EasyOCR tool for text detection®.
URL Text Extractor (§D.10) visits web pages given the URL and returns the text content of the page.

Wikipedia Knowledge Searcher (§D.11) searches Wikipedia using the MediaWiki API° and returns articles
matching a given query.

A.3 Additional Tools for Exploration Study

We also provide several additional tools for exploration, as follows:

1https://arxiv.org/

2https ://developers.google.com/custom-search/v1/introduction
Shttps://www.ncbi.nlm.nih.gov/books/NBK25501/

4https ://github.com/JaidedAI/EasyOCR

5https ://www.mediawiki.org/wiki/API

https://arxiv.org/
https://developers.google.com/custom-search/v1/introduction
https://www.ncbi.nlm.nih.gov/books/NBK25501/
https://github.com/JaidedAI/EasyOCR
https://www.mediawiki.org/wiki/API

Object Detector (§E.1) performs object detection on an image given a list of object labels to detect, using
the Grounding DINO model (Caron et al., 2021). Due to the standardized design of tool cards, this tool can
be upgraded to the Advanced Object Detector (§E.2), which uses DINO-X (Ren et al., 2024), a more recent
version powered by API calls.®

Nature News Fetcher (§E.3) retrieves the latest news articles from the science journal Nature.” An example
in §F.8 demonstrates how this tool can be used to obtain the latest research trends for a given topic.

B Experimental Results

Gains from decompositions v.s. tool usage. To assess the performance gains from tool calling, we com-
pute for each benchmark the difference between OctoTools, i.e., with external tools, and OctoToolsp,ge, i.e.,
without external tools: Aels = ACCOctoTools — ACCOCtoToolsyy - SiMilarly, to assess the performance gains from
decomposing the problem into multiple steps, we compute the difference between OctoToolsp,se and the 0-shot
baseline: Agecom = ACCOctoToolspase — ACCO-shot-

For each benchmark, the performance gains from these two dimensions are visualized in Figure 9. We observe
that the tasks can be broadly categorized into three groups: (1) Tasks far above the y = x diagonal benefit more
from step decomposition, and a specialized tool is either not needed or not available. (2) Tasks far below the
diagonal benefit more from one or more specialized tools that are well-suited for the task, while multi-step
reasoning is less critical. (3) Tasks along the diagonal benefit from both aspects. This analysis highlights that Al
agent frameworks can improve performance in different ways depending on the specific skills demanded by each
task, and that OctoTools is a versatile framework for achieving such improvements across a diverse set of tasks.

[0 Gameof24
c 154
S
=
5 ¢ PathvQa @ General
§ @ Math
3 107 MedQA YV Science
[<> <> Medicine
® PuzzleVQA .
€ © @ HalysionvD O Agentic
je SciFIBench
€ 57
g Omni-MATH [0 CLEVR-Math
2
° MathVista © AlgoPuzzleVQA PathCLS
% O GAIA-Text 0
07 ¥V { stake
MMLU-Pro
T T T I !
0 5 10 15 20

Improvement from specialized tools

Figure 9: Benchmark distribution across two dimensions. Tasks that show high improvement from task decomposition likely require
multi-step reasoning, while tasks that show high improvement from specialized tools likely require specialized skills.

Optimized tool sets. Table 3 shows the optimized tool sets across 16 tasks from Algorithm 1. The
toolset optimization method in OctoTools is able to find diverse optimal tool sets for different tasks. In
general, the Image_Captioner and Relevant_Patch_Zoomer tools are very commonly used in vision bench-
marks, with the former being used in all vision benchmarks and the latter being used in 6 out of the 10.
The Python_Code_Generator is represented in 3 out of the 4 mathematical domain benchmarks. The
Wikipedia_Knowledge_Searcher is represented in all the scientific domain benchmarks. We also see that
highly domain-specific tools are represented in their corresponding use cases, such as Pubmed_Search in a
general medical benchmark (Jin et al., 2021) and Path_Generalist_Classifier in a pathology classification
benchmark (Sun et al., 2025).

Steps taken for different tasks. Figure 17 shows the distribution of the number of steps taken. OctoTools is
able to adapt to each task by applying different sets of tools and constructing chains of reasoning as needed.

Shttps://github.com/IDEA-Research/DINO-X-API
7https ://www.nature.com/latest-news

https://github.com/IDEA-Research/DINO-X-API
https://www.nature.com/latest-news

o
o [
+ (V]
© < o
[(o] Q
3} C -t
c © G
(] (0] o
(&) o wn o [}
| [0} | o o [2]
c £ (V] [} + ©
o o o0 [< © —~
- o © (o] (&) [(@]
+ N (] + o () |
S P | — Q © c +
— (] < = © (] [0} [%2]
(] o [} o [e] < o wn (&) o <
wn o + o (= Q + | | — (@]
| - [0} + x O > o (0] © [
+ + o (9] | 4] = (] el o @
[%] Q | (O] © (] | Q o (] (]
- © 2 + -~ n + © (] c n
— (&) o] © | x o | (] |
[0] | ¢ (=) (] (V] (] | c (&) ©
[[J) > | (o} — [l > o | Q
[J] o0 (] + o o0 | s < < £
c @ — x X o - > + + o]
(] 1S (9] ()] o o [a o > O >
(@] — o |l = (&) oD <C o o o
Benchmarks Modality Domain " & 6 6 ® & & & o |
AlgoPuzzleVQA Vision General |V v
Hallusion-VD Vision General v |/
PuzzleVQA Vision General a4
VQA 2.0 Vision General v |V |/
Game of 24 Text Mathematical | v/ v
Omni-MATH Text Mathematical | v/ v
CLEVR-Math Vision Mathematical | v | vV | V/
MathVista Vision Mathematical | v | vV | V/ v v
GPQA Text Scientific v v
MMLU-Pro Text Scientific v v
SciFIBench Vision Scientific v |/ v |/ v
MedQA Text Medical v v
PathCLS Vision Medical v |/ v
PathVQA Vision Medical N A 4
SLAKE Vision Medical v |/
GAIA-Text | Text | Agentic | / | | | | v | v | V| | v | |

Table 3: Optimized tool sets for each benchmark following our Algorithm1. A indicates that the tool is used for that benchmark.

mm AutoGen mmm GPT-Functions B | angChain mmm OctoTools

100 General Mathematical Scientific Medical Agentic
80
60
40
0 iiii
¥y O & O N 2 ¥ &
\00 Aoﬁ‘A ¥ ?)AO Ofl, q—' 0 A\fo QO \/ {b @0 @Q\/ & Ao % \‘?:@
X N
5T S 0@@ & o@‘ & & S
S R O
N

Figure 10: Performance ours vs. other agents. Our system consistently outperforms agent baselines across all benchmarks. Bar values
represent accuracy and error bars represent standard deviation.

[Base toolset B Full toolset B Optimized toolset

100 General Mathematical Scientific Medical Agentic
80
60
40
m il
1
0 & L NG & © & F & & W . <
o o9 &\&\Q Q\@z 40 0'0@00 @’\‘\QV . \(;\q: @ 0 \§\9 é}{b‘" NP & 0‘?\‘5
st

Figure 11: Performance with vs. without tool selection. While toolset optimization increases performance over using the full toolset
in most tasks, even without it, our system achieves similar performance by naively enabling all possible tools. Bar values represent
accuracy and error bars represent standard deviation.

[GPT-40-mini . GPT-40-mini (CoT) B OctoTools (GPT-40-mini)

General Mathematical Scientific Medical Agentic
80
60
40
Il || i III |
L f
’ R © (’l/b‘ Q < o vig’ ii@“'
QM\Q %\q}\oe‘°° Qﬁ ity 0&4‘* 0&“ & o@‘\' ¢ @9 f’e & & qo‘“ S
v}

Figure 12: Performance on a weaker LLM (GPT-40-mini). We observe similar trends using OctoTools with a weaker base LLM. Bar
values represent accuracy and error bars represent standard deviation.

100 1
B Base Tool
HEE Image_Captioner
B Relevant_Patch_Zoomer
80 1 [0 Text_Detector
Il Wikipedia_Knowledge_Searcher
HEEE Google_Search
601 s Url_Text_Extractor
[Python_Code_Generator
Bmm Path_Generalist_Classifier
Pubmed_Search
40 [Others
20
0.
ebov éovoggoo O QQV\\OVQ 4\‘}:\,‘?’{%@“&@&¢& &@V@bo‘\’ﬁ;&d&,
v\m\\/(,\ ARSI SR S NN
\Q R \‘s“ & @ 60((Q(J\(;\ Qo“\(\o@@ s

Figure 13: Distribution of tools usage. Frequency of tools used by the AutoGen agent for each benchmark.

100
I Base Tool
HEEE |Image_Captioner
Bl Relevant_Patch_Zoomer
801 [Text_Detector
mmm Wikipedia_Knowledge_Searcher
Il Google_Search
601 W Url_Text_Extractor
[Python_Code_Generator
B Path_Generalist_Classifier
Pubmed_Search
40 - [Others
20
0.
>\0 &S & QOVAOVQOV ‘\q/ & \\OV’ Q& \9 A QOV '2‘:'{'(\ &&?j?
e>°°°">1®"’é@¢\® C S S FE S
N \v‘“‘v S L E
& 2 R Q o (o
N

Figure 14: Distribution of tools usage. Frequency of tools used by the LangChain agent for each benchmark.

100 1
s Base Tool
I Image_Captioner
Bm Relevant_Patch_Zoomer
801 [Text_Detector
mmm Wikipedia_Knowledge_Searcher
HEEE Google_Search
60 - W Url_Text_Extractor
[Python_Code_Generator
B Path_Generalist_Classifier
Pubmed_Search
40 A [Others
20
0.
c§zo" bo‘?\;é Q éo‘?(go F S 5 P 6\& o7 e »‘?{&Qp & o@“
S S FFESES L T TG e
Q‘ QQQ\\\ N O‘,(/ © I
ng

Figure 15: Distribution of tools usage. Frequency of tools used by the GPT-Functions agent for each benchmark.

AlgoPuzzleVQA

GAIA-Text

PathVQA

MedQ®W

MMLU-Pro

GPQA

allusion-VD

athVista

Figure 16: Performance gains across different benchmarks from our OctoTools framework over the base GPT-40 model.

AlgoPuzzleVQA Hallusion-VD

Game of 24 Omni-MATH

5 0.8
ks}
T 0.6
€

L2o4

0.0
0

PathCLS

10 GPQA MMLU-Pro

0.8
£o06
[
(0]
‘c 04
(7]

0.2

0'00 2 4 6 8 10 0 2 4 6 8

Figure 17: Distribution of number of steps used.

10

10

10

10

PuzzleVQA

CLEVR-Math

PathVQA
2 4 6
SciFIBench
2 4 6

Agentic

VQA2.0

MathVista

SLAKE

GAIA-Text

AlgoPuzzleVQA Hallusion-VD PuzzleVQA VQA2.0

10
< 5
21_.) /\/
C
)
(G} /\/ /\/v
s 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
10 Game of 24 Omni-MATH CLEVR-Math MathVista

Mathematical
o

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

10 MedQA PathCLS PathVQA SLAKE

w 5

Q

he]

9]

= 0 m ¥/\ w
-8 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
10 GPQA MMLU-Pro SciFIBench GAIA-Text

Scientific
o
Agentic

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

Figure 18: Accuracy vs number of maximum steps. The change in accuracy from a maximum step of 1 is plotted. Most benchmarks
improve in performance with the number of allowed steps.

C Configurations in OctoTools

C.1 Query Analyzer

Prompt for Query Analyzer

Task: Analyze the given query with accompanying inputs and determine the skills and tools needed to
address it effectively.

Available tools: {self.available_tools}
Metadata for the tools: {self.toolbox_metadata}
Image: {image_info}

Query: {question}

Instructions:

1. Carefully read and understand the query and any accompanying inputs.

2. Identify the main objectives or tasks within the query.

3. List the specific skills that would be necessary to address the query comprehensively.

4. Examine the available tools in the toolbox and determine which ones might relevant and useful for
addressing the query. Make sure to consider the user metadata for each tool, including limitations and
potential applications (if available).

5. Provide a brief explanation for each skill and tool you’ve identified, describing how it would contribute to
answering the query.

Your response should include:

1. A concise summary of the query’s main points and objectives, as well as content in any accompanying
inputs.

2. A list of required skills, with a brief explanation for each.

3. A list of relevant tools from the toolbox, with a brief explanation of how each tool would be utilized and
its potential limitations.

4. Any additional considerations that might be important for addressing the query effectively.

Please present your analysis in a clear, structured format.

C.2 Action Predictor

Prompt for Action Predictor

Task: Determine the optimal next step to address the given query based on the provided analysis, available
tools, and previous steps taken.

Query: {question}

Image: {image}

Query Analysis: {query_analysis}

Available Tools: {self.available_tools}

Tool Metadata: {self.toolbox_metadata}

Previous Steps and Their Results: {memory.get_actions()}
Current Step: {step_count} in {max_step_count} steps
Remaining Steps: {max_step_count - step_count}

Instructions:
1. Analyze the context thoroughly, including the query, its analysis, any image, available tools and their
metadata, and previous steps taken.
2. Determine the most appropriate next step by considering:
- Key objectives from the query analysis
- Capabilities of available tools
- Logical progression of problem-solving
- Outcomes from previous steps
- Current step count and remaining steps
3. Select ONE tool best suited for the next step, keeping in mind the limited number of remaining steps.
4. Formulate a specific, achievable sub-goal for the selected tool that maximizes progress towards answering
the query.

Output Format:
<justification>: detailed explanation of why the selected tool is the best choice for the next step,
considering the context and previous outcomes.
<context>: MUST include ALL necessary information for the tool to function, structured as follows:

* Relevant data from previous steps

* File names or paths created or used in previous steps (list EACH ONE individually)

* Variable names and their values from previous steps’ results

* Any other context-specific information required by the tool
<sub_goal>: a specific, achievable objective for the tool, based on its metadata and previous outcomes. It
MUST contain any involved data, file names, and variables from Previous Steps and Their Results that the
tool can act upon.
<tool_name>: MUST be the exact name of a tool from the available tools list.

Rules:

- Select only ONE tool for this step.

- The sub-goal MUST directly address the query and be achievable by the selected tool.

- The Context section MUST include ALL necessary information for the tool to function, including ALL
relevant file paths, data, and variables from previous steps.

- The tool name MUST exactly match one from the available tools list: {self.available_tools}.

- Avoid redundancy by considering previous steps and building on prior results.

C.3 Command Predictor

Prompt for Command Predictor

Task: Generate a precise command to execute the selected tool based on the given information.

Query: {question}

Image: {image}

Context: {context}

Sub-Goal: {sub_goal}

Selected Tool: {tool_name}

Tool Metadata: {tool_metadata}

Instructions:

Instructions:

1. Carefully review all provided information: the query, image path, context, sub-goal, selected tool, and
tool metadata.

2. Analyze the tool’s input_types from the metadata to understand required and optional parameters.

3. Construct a command or series of commands that aligns with the tool’s usage pattern and addresses the
sub-goal.

4. Ensure all required parameters are included and properly formatted.

5. Use appropriate values for parameters based on the given context, particularly the Context field which
may contain relevant information from previous steps.

6. If multiple steps are needed to prepare data for the tool, include them in the command construction.

Output Format:
<analysis>: a step-by-step analysis of the context, sub-goal, and selected tool to guide the command
construction.
<explanation>: a detailed explanation of the constructed command(s) and their parameters.
<command>: the Python code to execute the tool, which can be one of the following types:
a. A single line command with execution = tool.execute().
b. A multi-line command with complex data preparation, ending with execution = tool.execute().
c. Multiple lines of execution = tool.execute() calls for processing multiple items.

python
<your command here>

Rules:

1. The command MUST be valid Python code and include at least one call to tool.execute().

2. Each tool.execute() call MUST be assigned to the execution variable in the format execution =
tool.execute(...).

3. For multiple executions, use separate execution = tool.execute() calls for each execution.

4. The final output MUST be assigned to the execution variable, either directly from tool.execute() or
as a processed form of multiple executions.

5. Use the exact parameter names as specified in the tool’s input_types.

6. Enclose string values in quotes, use appropriate data types for other values (e.g., lists, numbers).

7. Do not include any code or text that is not part of the actual command.

8. Ensure the command directly addresses the sub-goal and query.

9. Include ALL required parameters, data, and paths to execute the tool in the command itself.

10. If preparation steps are needed, include them as separate Python statements before the tool.execute()
calls.

Prompt for Command Prediction (Continued)

Examples (Not to use directly unless relevant):

Example 1 (Single line command):

<analysis>: The tool requires an image path and a list of labels for object detection.
<explanation>: We pass the image path and a list containing “baseball” as the label to detect.
<command>:

python
execution = tool.execute(image="path/to/image"”, labels=["baseball”])

Example 2 (Multi-line command with data preparation):

<analysis>: The tool requires an image path, multiple labels, and a threshold for object detection.
<explanation>: We prepare the data by defining variables for the image path, labels, and threshold, then
pass these to the tool.execute() function.

<command>:

python

image = "path/to/image”

labels = ["baseball”, "football”, "basketball"]

threshold = 0.5

execution = tool.execute(image=image, labels=labels, threshold=threshold)

Example 3 (Multiple executions):

<analysis>: We need to process multiple images for baseball detection.

<explanation>: We call the tool for each image path, using the same label and threshold for all.
<command>:

python

execution = tool.execute(image="path/to/image1"”, labels=["baseball”], threshold=0.5)
execution = tool.execute(image="path/to/image2"”, labels=["baseball”], threshold=0.5)
execution = tool.execute(image="path/to/image3”, labels=["baseball”], threshold=0.5)

Prompt for Command Predictor (Continued)

Some Wrong Examples:

<command>:

python

executionl = tool.execute(query="...")
execution2 = tool.execute(query="...")

Reason: only execution = tool.execute is allowed, not executionl or execution2.

<command>:

python

urls = [
"https://example.com/articlel”,
"https://example.com/article2”

]
execution = tool.execute(url=urls[0])
execution = tool.execute(url=urls[1])

Reason: The command should process multiple items in a single execution, not separate executions for each
item.

Remember: Your <command> field MUST be valid Python code including any necessary data
preparation steps and one or more execution = tool.execute() calls, without any additional explanatory
text. The format execution = tool.execute must be strictly followed, and the last line must begin with
execution = tool.execute to capture the final output.

C.4 Context Verifier

Prompt for Verifier

Task: Thoroughly evaluate the completeness and accuracy of the memory for fulfilling the given query,
considering the potential need for additional tool usage.

Query: {question}

Image: {image_info}

Available Tools: {self.available_tools}

Toolbox Metadata: {self.toolbox_metadata}

Initial Analysis: {query_analysis}

Memory (tools used and results): {memory.get_actions()?}

Detailed Instructions:
1. Carefully analyze the query, initial analysis, and image (if provided):
- Identify the main objectives of the query.
- Note any specific requirements or constraints mentioned.
- If an image is provided, consider its relevance and what information it contributes.

2. Review the available tools and their metadata:
- Understand the capabilities and limitations and best practices of each tool.
- Consider how each tool might be applicable to the query.

3. Examine the memory content in detail:
- Review each tool used and its execution results.
- Assess how well each tool’s output contributes to answering the query.

4. Critical Evaluation (address each point explicitly):

a) Completeness: Does the memory fully address all aspects of the query?
- Identify any parts of the query that remain unanswered.
- Consider if all relevant information has been extracted from the image (if applicable).

b) Unused Tools: Are there any unused tools that could provide additional relevant information?
- Specify which unused tools might be helpful and why.

¢) Inconsistencies: Are there any contradictions or conflicts in the information provided?
- If yes, explain the inconsistencies and suggest how they might be resolved.

d) Verification Needs: Is there any information that requires further verification due to tool limitations?
- Identify specific pieces of information that need verification and explain why.

e) Ambiguities: Are there any unclear or ambiguous results that could be clarified by using another tool?
- Point out specific ambiguities and suggest which tools could help clarify them.

5. Final Determination: Based on your thorough analysis, decide if the memory is complete and
accurate enough to generate the final output, or if additional tool usage is necessary.

Response Format:
<analysis>: Provide a detailed analysis of why the memory is sufficient. Reference specific information
from the memory and explain its relevance to each aspect of the task. Address how each main point of the
query has been satisfied.
<stop_signal>: Whether to stop the problem solving process and proceed to generating the final output.
* "True": if the memory is sufficient for addressing the query to proceed and no additional available tools
need to be used. If ONLY manual verification without tools is needed, choose "True”.
* "False": if the memory is insufficient and needs more information from additional tool usage.

C.5 Solution Summarizer

Prompt for Solution Summarizer

Task: Generate the final output based on the query, image, and tools used in the process.

Query: {question}
Image: {image_info}
Actions Taken: {memory.get_actions()}

Instructions:

1. Review the query, image, and all actions taken during the process.

2. Consider the results obtained from each tool execution.

3. Incorporate the relevant information from the memory to generate the step-by-step final output.
4. The final output should be consistent and coherent using the results from the tools.

Output Structure:
Your response should be well-organized and include the following sections:
1. Summary:

- Provide a brief overview of the query and the main findings.

2. Detailed Analysis:
- Break down the process of answering the query step-by-step.
- For each step, mention the tool used, its purpose, and the key results obtained.
- Explain how each step contributed to addressing the query.

3. Key Findings:
- List the most important discoveries or insights gained from the analysis.
- Highlight any unexpected or particularly interesting results.

4. Answer to the Query:
- Directly address the original question with a clear and concise answer.
- If the query has multiple parts, ensure each part is answered separately.

5. Additional Insights (if applicable):
- Provide any relevant information or insights that go beyond the direct answer to the query.
- Discuss any limitations or areas of uncertainty in the analysis.

6. Conclusion:
- Summarize the main points and reinforce the answer to the query.
- If appropriate, suggest potential next steps or areas for further investigation.

D Tool Cards in OctoTools
D.1 ArXiv Paper Searcher Tool

ArXiv Paper Searcher Tool: Metadata

tool_name="ArXiv_Paper_Searcher_Tool",
tool_description="A tool that searches arXiv for papers based on a given query.",

input_types={

"query": "str - The search query for arXiv papers.”,
"size": "int - The number of results per page (25, 50, 100, or 200). If None, use 25.",
"max_results”: "int - The maximum number of papers to return (default: 25). Should be less than or

equal to 100."
3

output_type="list - A list of dictionaries containing paper information.”,

demo_commands=[

{
"command”: 'execution = tool.execute(query="tool agents with large language models")',
"description”: "Search for papers about tool agents with large language models."

}’

{
"command”: 'execution = tool.execute(query="quantum computing"”, size=100, max_results=50)',
"description”: "Search for quantum computing papers, with 100 results per page, returning a

maximum of 5@ papers.”

}’

{
"command”: 'execution = tool.execute(query="machine learning”, max_results=75)",
"description”: "Search for machine learning papers, returning a maximum of 75 papers.”

}’

]y

user_metadata={
"valid_sizes": [25, 50, 100, 200],
"base_url”: "https://arxiv.org/search/"

ArXiv Paper Searcher Tool: Example 1

Input (query): enhance mathematical reasoning with large language models
Output (article 1, search date: Jan 14, 2025):

Title: Enhancing Reasoning through Process Supervision with Monte Carlo Tree Search

Authors: Shuangtao Li, Shuaihao Dong, Kexin Luan, Xinhan Di, Chaofan Ding

Abstract: Large language models (LLMs) have demonstrated their remarkable capacity across a variety
of tasks. ... Furthermore, models trained on one dataset also exhibit improved performance on the other,
showing the transferability of the enhanced reasoning ability.

Link: https://arxiv.org/abs/2501.01478

Output (article 2, search date: Jan 14, 2025):

Title: Open Eyes, Then Reason: Fine-grained Visual Mathematical Understanding in MLLMs

Authors: Shan Zhang, Aotian Chen, Yanpeng Sun, Jindong Gu, Yi-Yu Zheng, Piotr Koniusz, Kai Zou,
Anton van den Hengel, Yuan Xue

Abstract: Current multimodal large language models (MLLMs) often underperform on mathematical
problem-solving tasks that require fine-grained visual understanding. ... Our findings emphasize the
importance of incorporating fine-grained visual understanding into MLLMs and provide a promising
direction for future research.

Link: https://arxiv.org/abs/2501.06430

Output (structured result):
L

"title"”: "Enhancing Reasoning through Process Supervision with Monte Carlo Tree Search”,

"authors”: "Shuangtao Li, Shuaihao Dong, Kexin Luan, Xinhan Di, Chaofan Ding",

"abstract”: "Large language models (LLMs) have demonstrated their remarkable capacity across a
variety of tasks. ... Furthermore, models trained on one dataset also exhibit improved
performance on the other, showing the transferability of the enhanced reasoning ability.",

"link": "https://arxiv.org/abs/2501.01478"

"title": "Open Eyes, Then Reason: Fine-grained Visual Mathematical Understanding in MLLMs",

"authors”: "Shan Zhang, Aotian Chen, Yanpeng Sun, Jindong Gu, Yi-Yu Zheng, Piotr Koniusz, Kai
Zou, Anton van den Hengel, Yuan Xue",

"abstract”: "Current multimodal large language models (MLLMs) often underperform on
mathematical problem-solving tasks that require fine-grained visual understanding. ... Our
findings emphasize the importance of incorporating fine-grained visual understanding into
MLLMs and provide a promising direction for future research.”,

"link": "https://arxiv.org/abs/2501.06430"

https://arxiv.org/abs/2501.01478
https://arxiv.org/abs/2501.06430

ArXiv Paper Searcher Tool: Example 2

Input (query): automated scientific discovery
Output (article 1, search date: Jan 14, 2025):

Title: BoxingGym: Benchmarking Progress in Automated Experimental Design and Model Dis-
cover

Authors: Kanishk Gandhi, Michael Y. Li, Lyle Goodyear, Louise Li, Aditi Bhaskar, Mohammed Zaman,
Noah D. Goodman

Abstract: Understanding the world and explaining it with scientific theories is a central aspiration of
artificial intelligence research. Proposing theories, designing experiments to test them, and then revising
them based on data are fundamental to scientific discovery. ... We find that augmenting the LLM-based
agent with an explicit statistical model does not reliably improve these results.

Link: https://arxiv.org/abs/2501.01540

Output (article 2, search date: Jan 14, 2025):

Title: Automating the Search for Artificial Life with Foundation Models

Authors: Akarsh Kumar, Chris Lu, Louis Kirsch, Yujin Tang, Kenneth O. Stanley, Phillip Isola, David Ha
Abstract: With the recent Nobel Prize awarded for radical advances in protein discovery, foundation models
(FMs) for exploring large combinatorial spaces promise to revolutionize many scientific fields. ... This new
paradigm promises to accelerate ALife research beyond what is possible through human ingenuity alone.
Link: https://arxiv.org/abs/2412.17799

Output (structured result):
L

"title"”: "BoxingGym: Benchmarking Progress in Automated Experimental Design and Model Discovery

"authors"”: "Kanishk Gandhi, Michael Y. Li, Lyle Goodyear, Louise Li, Aditi Bhaskar, Mohammed
Zaman, Noah D. Goodman",

"abstract”: "Understanding the world and explaining it with scientific theories is a central
aspiration of artificial intelligence research. ... We find that augmenting the LLM-based
agent with an explicit statistical model does not reliably improve these results.”,

"link": "https://arxiv.org/abs/2501.01540"

"title"”: "Automating the Search for Artificial Life with Foundation Models”,

"authors”: "Akarsh Kumar, Chris Lu, Louis Kirsch, Yujin Tang, Kenneth 0. Stanley, Phillip Isola
, David Ha",

"abstract”: "With the recent Nobel Prize awarded for radical advances in protein discovery,
foundation models (FMs) for exploring large combinatorial spaces promise to revolutionize
many scientific fields. ... This new paradigm promises to accelerate ALife research beyond

what is possible through human ingenuity alone.”,

"link": "https://arxiv.org/abs/2412.17799"

https://arxiv.org/abs/2501.01540
https://arxiv.org/abs/2412.17799

D.2 Generalist Solution Generator Tool

Generalist Solution Generator Tool: Metadata

tool_name="Generalist_Solution_Generator_Tool",

tool_description="A generalized tool that takes query from the user as prompt, and answers the question
step by step to the best of its ability. It can also accept an image.”,

input_types={
"prompt”: "str - The prompt that includes query from the user to guide the agent to generate
response (Examples: 'Describe this image in detail').",
"image": "str - The path to the image file if applicable (default: None).",
}!

output_type="str - The generated response to the original query prompt”,

demo_commands=[

{
"command”: 'execution = tool.execute(prompt="Summarize the following text in a few lines”)',
"description”: "Generate a short summary given the prompt from the user.”

}!

{

"command”: 'execution = tool.execute(prompt="Explain the mood of this scene.”, image="path/to/
imagel.png")"',

"description”: "Generate a caption focusing on the mood using a specific prompt and image.”

}’
{

"command”: 'execution = tool.execute(prompt="Give your best coordinate estimate for the
pacemaker in the image and return (x1, y1, x2, y2)", image="path/to/image2.png"”)',

"description”: "Generate bounding box coordinates given the image and prompt from the user. The
format should be (x1, y1, x2, y2).”"

}’
{

"command”: 'execution = tool.execute(prompt="Is the number of tiny objects that are behind the
small metal jet less than the number of tiny things left of the tiny sedan?”, image="path/
to/image2.png") ",

"description”: "Answer a question step by step given the image."

}
]’
user_metadata = {
"limitation”: "The Generalist_Solution_Generator_Tool may provide hallucinated or incorrect
responses.”,
"best_practice”: "Use the Generalist_Solution_Generator_Tool for general queries or tasks that don'

t require specialized knowledge or specific tools in the toolbox. For optimal results:\n\n"

"1) Provide clear, specific prompts.\n"

"2) Use it to answer the original query through step by step reasoning for tasks without complex or
multi-step reasoning.\n"

"3) For complex queries, break them down into subtasks and use the tool multiple times.\n"

"4) Use it as a starting point for complex tasks, then refine with specialized tools.\n"

"5) Verify important information from its responses.\n”

"6) For image-related tasks, ensure the image path is correct and the prompt is relevant to the
image content.”

Generalist Solution Generator Tool: Example 1

Input (query): Describe the image in detail.
Input (image): "baseballs.png”

Output (response):

The image shows four blue buckets, each containing five baseballs. The baseballs are white with red
stitching, and the buckets have handles on the sides. The arrangement of the baseballs within each bucket is
slightly different, but each bucket consistently holds five baseballs. The background is plain, emphasizing
the buckets and their contents.

QOutput (structured result):
{

"The image shows four blue buckets, each containing five baseballs. The baseballs are white with
red stitching, and the buckets have handles on the sides. The arrangement of the baseballs
within each bucket is slightly different, but each bucket consistently holds five baseballs.
The background is plain, emphasizing the buckets and their contents.”

D.3 Google Search Tool

Google Search Tool: Metadata

tool_name="Google_Search_Tool",
tool_description="A tool that performs Google searches based on a given text query.”,

input_types={
"query": "str - The search query to be used for the Google search.”,
"num_results”: "int - The number of search results to return (default: 10).

n

}’

output_type="list - A list of dictionaries containing search result information."”,

demo_commands=[

{
"command”: 'execution = tool.execute(query="Python programming”)',
"description”: "Perform a Google search for 'Python programming' and return the default number
of results.”
}!
{
"command”: 'execution = tool.execute(query="Machine learning tutorials”, num_results=5)",
"description”: "Perform a Google search for 'Machine learning tutorials' and return 5 results.”
}7

Google Search Tool: Example 1

Input (query): nobel prize winners in chemistry 2024

Output (result 1, search date: Jan 14, 2025):

Title: Nobel Prize in Chemistry Laureates

URL: https://www.nobelprize.org/prizes/chemistry/

Snippet: The Nobel Prize in Chemistry 2024 was awarded with one half to David Baker “for computational
protein design” and the other half jointly to Demis Hassabis and ...

Output (result 2, search date: Jan 14, 2025):

Title: NSF congratulates laureates of the 2024 Nobel Prize in chemistry ...

URL: https://new.nsf.gov/news/nsf-congratulates-laureates-2024-nobel-prize-chemistry
Snippet: Oct 9, 2024 ... The U.S. National Science Foundation congratulates David Baker, Demis Hassabis
and John Jumper on being awarded the 2024 Nobel Prize in ...

Output (result 3, search date: Jan 14, 2025):

Title: Press release: The Nobel Prize in Chemistry 2024 - NobelPrize.org

URL: https://www.nobelprize.org/prizes/chemistry/2024/press-release/

Snippet: Oct 9, 2024 ... David Baker has succeeded with the almost impossible feat of building entirely new
kinds of proteins. Demis Hassabis and John Jumper have ...

Output (structured result):

L
{
"title": "Nobel Prize in Chemistry Laureates”,
"url”: "https://www.nobelprize.org/prizes/chemistry/",
"snippet”: "The Nobel Prize in Chemistry 2024 was awarded with one half to David Baker "~ for
computational protein design'' and the other half jointly to Demis Hassabis and ..."
}!
{
"title": "NSF congratulates laureates of the 2024 Nobel Prize in chemistry ...",
"url”: "https://new.nsf.gov/news/nsf-congratulates-laureates-2024-nobel-prize-chemistry”,
"snippet”: "Oct 9, 2024 ... The U.S. National Science Foundation congratulates David Baker,
Demis Hassabis and John Jumper on being awarded the 2024 Nobel Prize in ..."
}!
{
"title": "Press release: The Nobel Prize in Chemistry 2024 - NobelPrize.org",
"url”: "https://www.nobelprize.org/prizes/chemistry/2024/press-release/",
"snippet”: "Oct 9, 2024 ... David Baker has succeeded with the almost impossible feat of
building entirely new kinds of proteins. Demis Hassabis and John Jumper have ..."
3

https://www.nobelprize.org/prizes/chemistry/
https://new.nsf.gov/news/nsf-congratulates-laureates-2024-nobel-prize-chemistry
https://www.nobelprize.org/prizes/chemistry/2024/press-release/

D.4 Image Captioner Tool

Image Captioner Tool: Metadata

tool_name="Image_Captioner_Tool",
tool_description="A tool that generates captions for images using OpenAIl's multimodal model.”,

input_types={
"image": "str - The path to the image file.",
"prompt”: "str - The prompt to guide the image captioning (default: 'Describe this image in detail
.1)"1’
}!

output_type="str - The generated caption for the image."”,

demo_commands=[

{
"command”: 'execution = tool.execute(image="path/to/image.png")",
"description”: "Generate a caption for an image using the default prompt and model.”
}!
{
"command”: 'execution = tool.execute(image="path/to/image.png"”, prompt="Explain the mood of this
scene.") ',
"description”: "Generate a caption focusing on the mood using a specific prompt and model."”
}

]:

user_metadata = {

"limitation”: "The Image_Captioner_Tool provides general image descriptions but has limitations: 1)
May make mistakes in complex scenes, counting, attribute detection, and understanding object
relationships. 2) Might not generate comprehensive captions, especially for images with
multiple objects or abstract concepts. 3) Performance varies with image complexity. 4)
Struggles with culturally specific or domain-specific content. 5) May overlook details or
misinterpret object relationships. For precise descriptions, consider: using it with other
tools for context/verification, as an initial step before refinement, or in multi-step
processes for ambiguity resolution. Verify critical information with specialized tools or human
expertise when necessary.”

Image Captioner Tool: Example 1

Input (image): "baseballs.png”

Output (caption):

The image shows four blue buckets, each containing five baseballs. The buckets are arranged in a grid
pattern with two on the top row and two on the bottom row. Each bucket has a handle on the side, and the
baseballs inside are white with red stitching, typical of standard baseballs. The background is plain white,
emphasizing the buckets and their contents.

Output (structured result):
{

"The image shows four blue buckets, each containing five baseballs. The buckets are arranged in a
grid pattern with two on the top row and two on the bottom row. Each bucket has a handle on
the side, and the baseballs inside are white with red stitching, typical of standard baseballs
. The background is plain white, emphasizing the buckets and their contents.”

D.5 Path Generalist Classifier Tool

Path Generalist Classifier Tool: Metadata

tool_name="Path_Generalist_Classifier_Tool",

tool_description="A tool for answering multiple choice questions about H&E microscopy images. Do NOT
use for open-ended questions. Do NOT use for images that are not H&E-stained.”,

input_types={
"image": "str - The path to the histopathology image.",
"options”: "list[str] - A list of options to classify the image against."

3

output_type="str - The classification result."”,

demo_commands=[

{
"command”: 'execution = tool.execute(image="path/to/image. jpg", options=["lung adenocarcinoma”,
"lung squamous cell carcinoma”])',
"description”: "Classify the image into one of the given options.”
}!
{
"command”: 'execution = tool.execute(image="path/to/image.png", options=["debris” "cancer-
associated stroma”, "adipose”, "normal colon mucosa”, "colorectal adenocarcinoma epithelium
", "none of the above"])',
"description”: "Classify the image into one of the given options.”
}

]y

user_metadata={

"limitations”: "This tool is designed for answering classification questions about H&E-stained
microscopy images. This tool is not suitable for open ended questions. Do NOT use this tool if
the input is a natural image, a medical image of other domains (such as IHC, CT, MRI, or X-ray
images), or a raw whole slide image (i.e., svs, ndpi, czi, etc). This tool is not always
reliable and the result should be cross-referenced by other tools or your own knowledge."”,

"best_practice”: "Provide clear and specific options for classification. This tool is ideal for
classification tasks where the options are well-defined and specific to histopathology (H&E)
images."”

Path Generalist Classifier Tool: Example 1

Input (query): ["Non-tumor”, "Necrotic tumor”, "Viable tumor"]
Input (image): "tissue.png”

B
3‘%
fi3r N ey
7;;

y e
&y oo

37
e
ﬁ 7
gﬁ?f
25

=

Output (type):

Viable tumor

Output (structured result):
{

"result”: "Viable tumor”

3

D.6 Pubmed Search Tool

Pubmed Search Tool: Metadata

tool_name="Pubmed_Search_Tool",

tool_description="A tool that searches PubMed Central to retrieve relevant article abstracts based on a
given list of text queries. Use this ONLY if you cannot use the other more specific ontology tools

”
’

input_types={
"queries”: "list[str] - list of queries terms for searching PubMed."”

3

output_type="list - List of items matching the search query. Each item consists of the title, abstract,
keywords, and URL of the article. If no results found, a string message is returned.”,

demo_commands=[

{
"command”: 'execution = tool.execute(queries=["scoliosis”, "injury”1)',
"description”: "Search for PubMed articles mentioning 'scoliosis' OR 'injury'.”
}’
{
"command”: 'execution = tool.execute(queries=["COVID", "vaccine”, "occupational health”])',
"description”: "Search for PubMed articles mentioning 'COVID' OR 'vaccine' OR 'occupational
health'.”
3

],

user_metadata={
"limitations”: "Try to use shorter and more general search queries.”

}

Pubmed Search Tool: Example 1

Input (query): COVID occupational health

Output (result 1):

Title: COVID-19 workplace countermeasures that occupational physicians...

Abstract: BACKGROUND: During the COVID-19 pandemic, information and circumstances changed
from moment to moment...

Keywords: COVID-19, Japan, Occupational health,...

URL: https://ncbi.nlm.nih.gov/pubmed/39780108

Output (result 2):

Title: Rapid COVID-19 Testing of Symptomatic Health Care Personnel...

Abstract: Determine performance characteristics and safety outcomes of two rapid COVID-19 screening
methods ...

Keywords:

URL: https://ncbi.nlm.nih.gov/pubmed/39739739

Output (result 3):

Title: Satisfaction and Workload as Predictors of Psychological Distress in Professionals of Psy-
chosocial Care Centers During the COVID-19 Pandemic.

Abstract: BACKGROUND AND AIMS: The COVID-19 pandemic significantly impacted the mental health
of healthcare professionals...

Keywords: COVID-19, health personnel, job satisfaction,...

URL: https://ncbi.nlm.nih.gov/pubmed/39728651

Output (structured result):

L
{
"title"”: "COVID-19 workplace countermeasures that occupational physicians...”,
"abstract”: "BACKGROUND: During the COVID-19 pandemic, information and circumstances changed
from moment to moment...",
"keywords”: ["COVID-19", "Japan"”, "Occupational health”, ...1],
"url”: "https://ncbi.nlm.nih.gov/pubmed/39780108"
}’
{
"title"”: "Rapid COVID-19 Testing of Symptomatic Health Care Personnel...”,
"abstract”: "Determine performance characteristics and safety outcomes of two rapid COVID-19
screening methods...",
"keywords": [],
"url”: "https://ncbi.nlm.nih.gov/pubmed/39739739"
}!
{
"title": "Satisfaction and Workload as Predictors of Psychological Distress in Professionals of
Psychosocial Care Centers During the COVID-19 Pandemic.”,
"abstract”: "BACKGROUND AND AIMS: The COVID-19 pandemic significantly impacted the mental
health of healthcare professionals...",
"keywords"”: ["COVID-19", "health personnel”, "job satisfaction”, ...],
"url”: "https://ncbi.nlm.nih.gov/pubmed/39728651"
3

https://ncbi.nlm.nih.gov/pubmed/39780108
https://ncbi.nlm.nih.gov/pubmed/39739739
https://ncbi.nlm.nih.gov/pubmed/39728651

D.7 Python Code Generator Tool

Python Code Generator Tool: Metadata

tool_name="Python_Code_Generator_Tool",

tool_description="A tool that generates and executes simple Python code snippets for basic arithmetical
calculations and math-related problems. The generated code runs in a highly restricted environment
with only basic mathematical operations available.”,

input_types={
"query"”: "str - A clear, specific description of the arithmetic calculation or math problem to be
solved, including any necessary numerical inputs.”},

output_type="dict - A dictionary containing the generated code, calculation result, and any error
messages. ",

demo_commands=[

{
"command”: 'execution = tool.execute(query="Calculate the factorial of 5")',
"description”: "Generate a Python code snippet to calculate the factorial of 5."
}’
{
"command”: 'execution = tool.execute(query="Find the sum of prime numbers up to 50")',
"description”: "Generate a Python code snippet to find the sum of prime numbers up to 50."
}’
{
"command”: 'query="Given the list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], calculate the sum of squares
of odd numbers”\nexecution = tool.execute(query=query)',
"description”: "Generate a Python function for a specific mathematical operation on a given list
of numbers.”
}’

Python Code Generator Tool: Metadata (Continued)

user_metadata = {
"limitations”: [
"Restricted to basic Python arithmetic operations and built-in mathematical functions."”,
"Cannot use any external libraries or modules, including those in the Python standard library.",
"Limited to simple mathematical calculations and problems."”,
"Cannot perform any string processing, data structure manipulation, or complex algorithms.”,
"No access to any system resources, file operations, or network requests.”,
"Cannot use 'import' statements.”,
"All calculations must be self-contained within a single function or script.”,
"Input must be provided directly in the query string."”,
"Output is limited to numerical results or simple lists/tuples of numbers.”
]’
"best_practices”": [
"Provide clear and specific queries that describe the desired mathematical calculation.”,
"Include all necessary numerical inputs directly in the query string.”,
"Keep tasks focused on basic arithmetic, algebraic calculations, or simple mathematical
algorithms."”,
"Ensure all required numerical data is included in the query.",
"Verify that the query only involves mathematical operations and does not require any data
processing or complex algorithms.”,
"Review generated code to ensure it only uses basic Python arithmetic operations and built-in
math functions.”

Python Code Generator Tool: Example 1

Input (query): Given the number list: [1, 2, 3, 4, 5], calculate the sum of all the numbers in the list.

Output (code):

numbers = [1, 2, 3, 4, 5]
result = sum(numbers)
print(f'The sum is: {result}')

Output (structured result):
{

"generated_code"”: """

numbers = [1, 2, 3, 4, 5]
result = sum(numbers)
print(f'The sum is: {result}')

I
"execution_result”: "The sum is: 15",
"error”: None

D.8 Relevant Patch Zoomer Tool

Relevant Patch Zoomer Tool: Metadata

tool_name="Relevant_Patch_Zoomer_Tool",

tool_description="A tool that analyzes an image, divides it into 5 regions (4 quarters + center), and
identifies the most relevant patches based on a question. The returned patches are zoomed in by a
factor of 2.",

input_types={
"image": "str - The path to the image file.",
"question”: "str - The question about the image content."”,

},

output_type="dict - Contains analysis text and list of saved zoomed patch paths.”,

demo_commands=[

{
"command”: 'execution = tool.execute(image="path/to/image.jpg"”, question="What is the color of
the car?")',
"description”: "Analyze image and return relevant zoomed patches that show the car's color.”
}

],

user_metadata = {
"best_practices”: [

"It might be helpful to zoom in on the image first to get a better look at the object(s)."”,

"It might be helpful if the question requires a close-up view of the object(s), symbols, texts,
etc.”,

"The tool should be used to provide a high-level analysis first, and then use other tools for
fine-grained analysis. For example, you can use Relevant_Patch_Zoomer_Tool first to get a
zoomed patch of specific objects, and then use Image_Captioner_Tool to describe the objects

in detail.”

Relevant Patch Zoomer Tool: Example 1

Input (query): What is the color of the car?
Input (image): "car.png”

Output (analysis):
The image shows a red car on a curvy road with green hills and a blue sky with clouds in the background.
Here is what is visible in each region:
(A) Top-left quarter: Contains the blue sky, clouds, and a small part of green hills. No car is visible here.
(B) Top-right quarter: Contains the sky, clouds, and the tops of the green hills. The car is not visible.
(C) Bottom-left quarter: Shows part of the road and guardrail. The car is partially visible.
(D) Bottom-right quarter: Contains the road, guardrail, and most of the car, including its rear view.
(E) Center region: Overlaps with parts of the road, hills, and car. The car’s rear is partially visible.

The task is to identify the color of the car. Regions (D) and (E) are relevant as they show the car,
but region (D) contains the full view of the car, making region (E) unnecessary.

QOutput (patch region): (D) bottom-right quarter
Output (patch image): "car_bottom-right_zoomed_2x.png"

Output (structured result):
{

"analysis”: "The image shows a red car on a curvy road with green hills and a blue sky with clouds
in the background. ... The task is to identify the color of the car. Regions (D) and (E) are
relevant as they show the car, but region (D) contains the full view of the car, making region
(E) unnecessary."”,

"patches”:

{
"path”: "car_bottom-right_zoomed_2x.png",
"description”: "The bottom-right region of the image: car.png.”

Relevant Patch Zoomer Tool: Example 2

Input (query): What is the color of the car?
Input (image): "car.png”

Output (analysis):
The image depicts a red car driving on a curved road surrounded by green trees. Here’s a breakdown of the
five regions:

(A) Top-left quarter: Contains part of the road and green trees in the background. No car is visible.

(B) Top-right quarter: Includes trees in the background and part of the road. The rear portion of the car is
partially visible.

(C) Bottom-left quarter: Shows the road with no visible car.

(D) Bottom-right quarter: Displays a clear view of the rear part of the red car, along with some of the road
and green surroundings.

(E) Center region: Contains the clearest and most focused view of the rear of the red car.

To answer the question, “What is the color of the car?’: The most relevant region is (E), as it
contains the clearest depiction of the car’s color without including unnecessary background or less visible
parts of the car.

Output (patch region): (E) center quarter
QOutput (patch image): "car_bottom-right_zoomed_2x_center_zoomed_2x.png"

Output (returned result):
{

"analysis”: "The image depicts a red car driving on a curved road surrounded by green trees. ...
To answer the question, 'What is the color of the car?': The most relevant region is (E), as
it contains the clearest depiction of the car's color without including unnecessary background

or less visible parts of the car.”,

"patches”:
{

"path”: "car_bottom-right_zoomed_2x_center_zoomed_2x.png",

"description”: "The center region of the image: car_bottom-right_zoomed_2x.png."
}

D.9 Text Detector Tool

Text Detector Tool: Metadata

tool_name="Text_Detector_Tool",
tool_description="A tool that detects text in an image using EasyOCR.",

input_types={
"image": "str - The path to the image file.",
"languages"”: "list - A list of language codes for the OCR model.",
"detail”: "int - The level of detail in the output. Set to @ for simpler output, 1 for detailed
output.”
}!

output_type="list - A list of detected text blocks.",

demo_commands=[

{
"command”: 'execution = tool.execute(image="path/to/image.png”, languages=["en"1)',
"description”: "Detect text in an image using the default language (English).”

}’

{
"command”: 'execution = tool.execute(image="path/to/image.png"”, languages=["en", "de"]1)',
"description”: "Detect text in an image using multiple languages (English and German)."”

}’

{
"command”: 'execution = tool.execute(image="path/to/image.png"”, languages=["en"], detail=0)',
"description”: "Detect text in an image with simpler output (text without coordinates and scores

Do
}!

]’

user_metadata={
"frequently_used_language"”: {

"ch_sim": "Simplified Chinese”,
"ch_tra": "Traditional Chinese”,
lldell . “German”
o ’
"en": "English",
"es": "Spanish”,
"fr": "French",
Mhill: I‘Hindilﬁ’
"ja": "Japanese”,

Text Detector Tool: Example 1

Input (image): "english.png”

Reduce your risk of coronavirus infection:
.

@. Clean hands with soap and water
or alcohol-based hand rub

Cover nose and mouth when coughing and ﬂ'
sneezing with tissue or flexed elbow

.+ Avoid close contact with anyone with
cold or flu-like symptoms

Thoroughly cook meat and eggs ”

No unprotected contact with live wild
& or farm animals

{$ World Health

/ Organization

Output (detected text):

[CCC231, 321, [674, 321, [674, 64], [231, 6411, "Reduce your risk of coronavirus infection:", 0.84],
[[[326, 98], [598, 981, [598, 124], [326, 124]], "Clean hands with soap and water”, 0.96],

[[[328, 124], [542, 124], [542, 1481, [328, 148]1, "or alcohol-based hand rub”, 0.891],

[[[246, 1691, [595, 1691, [595, 1961, [246, 19611, "Cover nose and mouth when coughing and”, 1.0],
[L[245, 1941, [546, 194], [546, 222], [245, 222]], "sneezing with tissue or flexed elbow”, 0.96],
[[[320, 2401, [624, 240], [624, 266], [320, 266]1], "Avoid close contact with anyone with”, 0.86],
[[[318, 266], [528, 2661, [528, 2921, [318, 292]], "cold or flu-like symptoms”, 0.77],

[[[248, 3221, [510, 3221, [510, 3481, [248, 34811, "Thoroughly cook meat and eggs”, 0.72],

[[[332, 370], [640, 3701, [640, 3961, [332, 39611, "No unprotected contact with live wild"”, @.83],
[[[334, 3961, [464, 3961, [464, 4201, [334, 420]], "or farm animals”, 0.721],

[[[595, 4271, [683, 4271, [683, 4471, [595, 447]1], "World Health”, 1.0],

[L[595, 4451, [685, 4451, [685, 4631, [595, 463]], "Organization”, 1.0]1]

Output (structured result):

{
"CLCL231, 321, [674, 321, [674, 641, [231, 6411, “Reduce your risk of coronavirus infection: ",

0.847, [[[326, 98], [598, 98], [598, 1241, [326, 12411, ~Clean hands with soap and water~,
0.96], [[[328, 1241, [542, 1241, [542, 1481, [328, 148]], “or alcohol-based hand rub™, 0.89],
[[[246, 1691, [595, 1691, [595, 1961, [246, 19611, ~Cover nose and mouth when coughing and”,
1.01, [[[245, 1941, [546, 1941, [546, 2221, [245, 222]], “sneezing with tissue or flexed elbow
T, 0.967, [[[320, 240], [624, 240], [624, 2661, [320, 266]], “Avoid close contact with anyone
with™, 0.861, [[[318, 2661, [528, 2661, [528, 2921, [318, 29211, “cold or flu-like symptoms-,
0.77], [[[248, 3221, [510, 322], [510, 348], [248, 348]], ~Thoroughly cook meat and eggs~,
0.72], [[[332, 3701, [640, 3701, [640, 3961, [332, 39611, “No unprotected contact with live
wild™, 0.83], [[[334, 3961, [464, 3961, [464, 4201, [334, 42011, “or farm animals™, @.72],
[[C595, 4271, [683, 4271, [683, 4471, [595, 44711, ~World Health™, 1.0], [[[595, 4451, [685,
4457, [685, 4631, [595, 46311, “Organization™, 1.01]"

Text Detector Tool: Example 2

Output (detected text):

{
[([[86, 801, [134, 801, [134, 1281, [86, 12811, "Fi", ©.81),
(CC189, 751, [469, 751, [469, 1651, [189, 16511, "BEEK", 0.96),
(CL517, 811, [565, 811, [565, 1231, [517, 12311, "Z8", 0.99),
(CL78, 1261, [136, 1261, [136, 1561, [78, 15611, "315", 1.0),
(CL514, 1261, [574, 1261, [574, 1561, [514, 15611, "309”, 1.0),
(CL79, 1731, [125, 1731, [125, 2131, [79, 21311, "W", ©.32),
([[226, 1701, [414, 1701, [414, 2201, [226, 22011, "Yuyuan Rd.”, 0.86),
([[529, 1731, [569, 1731, [569, 2131, [529, 21311, "E", 0.56)]

b

Output (structured result):

{

"[CCL86, 801, [134, 801, [134, 128], [86, 12811, '\u897f', ©.811, [[[189, 75], [469, 751, [469,
1651, [189, 16511, '\u6lla\u56ed\u8def', 0.96]1, [[[517, 811, [565, 811, [565, 1231, [517,
12311, '\udelc', ©.991, [[[78, 1261, [136, 1261, [136, 1561, [78, 15611, '315', 1.0], [[[514,
1261, [574, 1261, [574, 1561, [514, 15611, '309', 1.e1, [[[79, 1731, [125, 1731, [125, 2131,
[79, 21311, 'W', 0.32], [[[226, 1701, [414, 1701, [414, 2201, [226, 22011, 'Yuyuan Rd\u3002',
0.861, [[[529, 1731, [569, 1731, [569, 2131, [529, 21311, 'E', 0.5611"

D.10 URL Text Extractor Tool
URL Text Extractor Tool: Metadata

tool_name="URL_Text_Extractor_Tool",

tool_description="A tool that extracts all text from a given URL.",

input_types={

"url”: "str - The URL from which to extract text."”,

3

output_type="dict - A dictionary containing the extracted text and any error messages.”,

demo_commands=[

{
"command”: 'execution = tool.execute(url="https://example.com”)"',
"description”: "Extract all text from the example.com website.”
})
{
"command”: 'execution = tool.execute(url="https://en.wikipedia.org/wiki/Python_(
programming_language)")',
"description”: "Extract all text from the Wikipedia page about Python programming language."
}’

URL Text Extractor Tool: Example 1

Input (query): https://example.com

Output (text):

Example Domain

Example Domain

This domain is for use in illustrative examples in documents. You may use this domain in literature without
prior coordination or asking for permission.

More information...

Output (structured result):
{

"url”: "https://example.com”,
"extracted_text": "Example Domain\nExample Domain\nThis domain is for use in illustrative examples
in documents. You may use this\n domain in literature without prior coordination or asking
for permission.\nMore information..."

https://example.com

URL Text Extractor Tool: Example 2

Input (query): https://arxiv.org/abs/1706.03762

Output (text):
[1706.03762] Attention Is All You Need

[Submitted on 12 Jun 2017 (vl), last revised 2 Aug 2023 (this version, v7)]

Title: Attention Is All You Need

Authors: Ashish Vaswani , Noam Shazeer , Niki Parmar , Jakob Uszkoreit , Llion Jones , Aidan N. Gomez ,
Lukasz Kaiser , Illia Polosukhin

Abstract: The dominant sequence transduction models are based on complex recurrent or convolutional neural
networks in an encoder-decoder configuration. The best performing models also connect the encoder and
decoder through an attention mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments
on two machine translation tasks show these models to be superior in quality while being more parallelizable
and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-
German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On
the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art
BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to other tasks by applying it
successfully to English constituency parsing both with large and limited training data.

Output (structured result):

{
"url”: "https://arxiv.org/abs/1706.03762",

"extracted_text": "[1706.03762] Attention Is All You Need\n\n...\n\n[Submitted on 12 Jun 2017 (\
nvi\n), last revised 2 Aug 2023 (this version, v7)J\n\nTitle:\nAttention Is All You Need\n\
nAuthors:\nAshish Vaswani\n,\nNoam Shazeer\n,\nNiki Parmar\n,\nJakob Uszkoreit\n,\nLlion Jones
\n,\nAidan N. Gomez\n,\nLukasz Kaiser\n,\nIllia Polosukhin\n\n...\n\nAbstract:\nThe dominant
sequence transduction models are based on complex recurrent or convolutional neural networks
in an encoder-decoder configuration. The best performing models also connect the encoder and
decoder through an attention mechanism. We propose a new simple network architecture, the
Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions

entirely. Experiments on two machine translation tasks show these models to be superior in
quality while being more parallelizable and requiring significantly less time to train. Our
model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over
the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-
French translation task, our model establishes a new single-model state-of-the-art BLEU score
of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of
the best models from the literature. We show that the Transformer generalizes well to other
tasks by applying it successfully to English constituency parsing both with large and limited
training data.\n\n..."

https://arxiv.org/abs/1706.03762

D.11 Wikipedia Knowledge Searcher Tool

Wikipedia Knowledge Searcher Tool: Metadata

tool_name="Wikipedia_Knowledge_Searcher_Tool",
tool_description="A tool that searches Wikipedia and returns web text based on a given query.",

input_types={
"query"”: "str - The search query for Wikipedia."”, 3,

output_type="dict - A dictionary containing the search results, extracted text, and any error messages.

’

demo_commands=[

{
"command”: 'execution = tool.execute(query="Python programming language")',
"description”: "Search Wikipedia for information about Python programming language."
}!
{
"command”: 'execution = tool.execute(query="Artificial Intelligence”)',
"description”: "Search Wikipedia for information about Artificial Intelligence”
})
{
"command”: 'execution = tool.execute(query="Theory of Relativity”)',
"description”: "Search Wikipedia for the full article about the Theory of Relativity.”
})

Wikipedia Knowledge Searcher Tool: Example 1

Input (query): kidney

Output (type):

Search results for ‘kidney’:

1. Kidney 2. Kidney disease 3. Kidney failure 4. Kidney dialysis 5. Kidney transplantation 6. Kidney bean
7. Kidney cancer 8. Nephrology 9. Ectopic kidney 10. Kidney dish

Extracted text:

In humans, the kidneys are two reddish-brown bean-shaped blood-filtering organs that are a multilobar,
multipapillary form of mammalian kidneys, usually without signs of external lobulation. They are located
on the left and right in the retroperitoneal space, and in adult humans are about 12 centimetres (4+1/2 inches)
in length. They receive blood from the paired renal arteries; blood exits into the paired renal veins. Each
kidney is attached to a ureter, a tube that carries excreted urine to the bladder. ...

Output (structured result):

{
"output”: "Search results for 'kidney':\n1. Kidney\n2. Kidney disease\n3. Kidney failure\n4.

Kidney dialysis\n5. Kidney transplantation\n6. Kidney bean\n7. Kidney cancer\n8. Nephrology\n9
. Ectopic kidney\n10@. Kidney dish\n\nExtracted text:\nIn humans, the kidneys are two reddish-
brown bean-shaped blood-filtering organs that are a multilobar, multipapillary form of
mammalian kidneys, usually without signs of external lobulation. They are located on the left
and right in the retroperitoneal space, and in adult humans are about 12 centimetres (4+1\
u20442 inches) in length. They receive blood from the paired renal arteries; blood exits into
the paired renal veins. Each kidney is attached to a ureter, a tube that carries excreted
urine to the bladder. "

E Additional Tool Cards in OctoTools
E.1 Object Detector Tool

Object Detector Tool: Metadata

tool_name="0Object_Detector_Tool",

tool_description="A tool that detects objects in an image using the Grounding DINO model and saves
individual object images with empty padding.”,

input_types={
"image": "str - The path to the image file.",
"labels”: "list - A list of object labels to detect.”,
"threshold”: "float - The confidence threshold for detection (default: ©.35).",
"model_size": "str - The size of the model to use ('tiny' or 'base', default: 'tiny').",
"padding”: "int - The number of pixels to add as empty padding around detected objects (default: 20)

},

output_type="list - A list of detected objects with their scores, bounding boxes, and saved image paths.

’

demo_commands=[

{
"command”: 'execution = tool.execute(image="path/to/image.png"”, labels=["baseball”, "basket"])',
"description”: "Detect baseball and basket in an image, save the detected objects with default
empty padding, and return their paths.”
}’
{
"command”: 'execution = tool.execute(image="path/to/image.png"”, labels=["car", "person"],
threshold=0.5, model_size="base"”, padding=15)",
"description”: "Detect car and person in an image using the base model, save the detected
objects with 15 pixels of empty padding, and return their paths.”
3

]y

user_metadata={

"limitation”: "The model may not always detect objects accurately, and its performance can vary
depending on the input image and the associated labels. It typically struggles with detecting
small objects, objects that are uncommon, or objects with limited or specific attributes. For
improved accuracy or better detection in certain situations, consider using supplementary tools

or image processing techniques to provide additional information for verification.”

Object Detector Tool: Example 1

Input (image): "example.png"

Input (label): ["baseball”]

Output (detected objects):

Oa88a0
Il@
Caagig 0

Output (structured result):

Q g
)
e

)
@

[
{
"label”: "baseball”,
"confidence score”: 0.69,
"box": [558, 48, 615, 1071,
"saved_image_path”: "example_baseball_1.png"
}’
{
"label”: "baseball”,
"confidence score”: 0.69,
"box": [614, 137, 671, 191],
"saved_image_path”: "example_baseball_2.png"
}’
{
"label”: "baseball”,
"confidence score”: 0.65,
"box": [86, 335, 143, 393],
"saved_image_path": "example_baseball_19.png"
}!
{
"label"”: "baseball”,
"confidence score”: 0.63,
"box": [336, 95, 393, 153],
"saved_image_path": "example_baseball_20.png"
3

Object Detector Tool: Example 2

Input (image): "example.png”

Input (label): ["basket”]

Output (detected objects):

Output (structured result):

[
{
"label"”: "basket"”,
"confidence score”: 0.59,
"box": [252, 2, 468, 215],
"saved_image_path": "example_basket_1.png"
}!
{
"label”: "basket”,
"confidence score”: 0.55,
"box": [503, 2, 717, 215],
"saved_image_path": "example_basket_2.png"
}!
{
"label”: "basket”,
"confidence score”: 0.54,
"box": [2, 2, 217, 215],
"saved_image_path": "example_basket_3.png"
}!
{
"label”: "basket”,
"confidence score”: 0.5,
"box": [2, 242, 217, 455],
"saved_image_path": "example_basket_4.png"
}

E.2 Advanced Object Detector Tool

Advanced Object Detector Tool: Metadata

tool_name="Advanced Object Detector Tool"”,

tool_description="A tool that detects objects in an image using the Grounding DINO-X model and saves
individual object images with empty padding.”,

input_types={
"image": "str - The path to the image file.”,
"labels”: "list - A list of object labels to detect.”,
"threshold”: "float - The confidence threshold for detection (default: ©.35).",
"padding”: "int - The number of pixels to add as empty padding around detected objects (default: 20)

}’

output_type="list - A list of detected objects with their scores, bounding boxes, and saved image paths.

’

demo_commands=[

{
"command”: 'execution = tool.execute(image="path/to/image.png"”, labels=["baseball”, "basket"])',
"description”: "Detect baseball and basket in an image, save the detected objects with default
empty padding, and return their paths.”
}’
{
"command”: 'execution = tool.execute(image="path/to/image.png"”, labels=["car", "person"],
threshold=0.5, model_size="base", padding=15)"',
"description”: "Detect car and person in an image using the base model, save the detected
objects with 15 pixels of empty padding, and return their paths.”
}

]:

user_metadata={

"limitation”: "The model may not always detect objects accurately, and its performance can vary
depending on the input image and the associated labels. It typically struggles with detecting
small objects, objects that are uncommon, or objects with limited or specific attributes. For
improved accuracy or better detection in certain situations, consider using supplementary tools

or image processing techniques to provide additional information for verification.”

Advanced Object Detector Tool: Example 1

Input (image): "example.png"

Input (label): ["baseball”]

Output (detected objects):

2 QR
@ 0
a R
Qg
@ a

Output (structured result):

[
{
"label”: "baseball”,
"confidence score”: 0.73,
"box": [614, 137, 671, 191],
"saved_image_path"”: "example_baseball_1.png"
}!
{
"label”: "baseball”,
"confidence score”: 0.73,
"box": [114, 377, 171, 431],
"saved_image_path”: "example_baseball_2.png"
}!
{
"label”: "baseball”,
"confidence score”: 0.66,
"box": [535, 111, 592, 1691,
"saved_image_path": "example_baseball_19.png"
}!
{
"label”: "baseball”,
"confidence score”: 0.66,
"box": [337, 95, 393, 1537,
"saved_image_path": "example_baseball_20.png"
3

E.3 Nature News Fetcher Tool

Nature News Fetcher Tool: Metadata

tool_name="Nature_News_Fetcher_Tool",
tool_description="A tool that fetches the latest news articles from Nature.",

input_types={
"num_articles”: "int - The number of articles to fetch (default: 100).",
"max_pages": "int - The maximum number of pages to fetch (default: 5).",

},

output_type="list - A list of dictionaries containing information about the latest Nature news articles.

)

demo_commands=[

{
"command”: 'execution = tool.execute()',
"description”: "Fetch the latest 100 news articles from Nature."
})
{
"command”: 'execution = tool.execute(num_articles=50, max_pages=3)"',
"description”: "Fetch the latest 50 news articles from Nature, searching up to 3 pages.”
}!

Nature News Fetcher Tool: Example 1

Output (article 1, search date: Jan 14, 2025):

Title: Has Bluesky replaced X for scientists? Take Nature’s poll

URL: https://www.nature.com/articles/d41586-025-00037-y

Description: The research community has flocked to the social-media platform Bluesky. Tell us about your
experien...

Authors: No authors found

Date: 2025-01-14

Image URL:
https://media.springernature.com/w290h158/magazine-assets/d41586-025-00037-y/
d41586-025-00037-y_50440812. jpg

Output (article 2, search date: Jan 14, 2025):

Title: How should we test Al for human-level intelligence? OpenAl’s 03 electrifies quest

URL: https://www.nature.com/articles/d41586-025-00110-6

Description: Experimental model’s record-breaking performance on science and maths tests wows re-
searchers....

Authors: Nicola Jones

Date: 2025-01-14

Image URL:
https://media.springernature.com/w290h158/magazine-assets/d41586-025-00110-6/
d41586-025-00110-6_50469004 . jpg

Output (structured result):

[
{
"title"”: "Has Bluesky replaced X for scientists? Take Nature\u2019s poll”,
"url”: "https://www.nature.com/articles/d41586-025-00037-y",
"description”: "The research community has flocked to the social-media platform Bluesky. Tell
us about your experience.”,
"authors": [
"No authors found”
]!
"date": "2025-01-14",
"image_url”: "https://media.springernature.com/w290h158/magazine-assets/d41586-025-00037-y/
d41586-025-00037-y_50440812. jpg"
}l
{
"title”: "How should we test AI for human-level intelligence? OpenAI\u2019s o3 electrifies
quest”,
"url”: "https://www.nature.com/articles/d41586-025-00110-6",
"description”: "Experimental model\u2019s record-breaking performance on science and maths
tests wows researchers.”,
"authors"”: [
"Nicola Jones”
]!
"date": "2025-01-14",
"image_url”: "https://media.springernature.com/w290h158/magazine-assets/d41586-025-00110-6/
d41586-025-00110-6_50469004 . jpg"
}

https://www.nature.com/articles/d41586-025-00037-y
https://media.springernature.com/w290h158/magazine-assets/d41586-025-00037-y/d41586-025-00037-y_50440812.jpg
https://media.springernature.com/w290h158/magazine-assets/d41586-025-00037-y/d41586-025-00037-y_50440812.jpg
https://www.nature.com/articles/d41586-025-00110-6
https://media.springernature.com/w290h158/magazine-assets/d41586-025-00110-6/d41586-025-00110-6_50469004.jpg
https://media.springernature.com/w290h158/magazine-assets/d41586-025-00110-6/d41586-025-00110-6_50469004.jpg

F Experimental Examples

F.1 Demonstration Example

Below is an example from MathVista (Lu et al., 2024b), which demonstrates the detailed steps in our OctoTools
framework. The base GPT-40 model fails to provide a correct answer due to its limited visual perception of
abstract scenes.

(The Query

Image path: baseball.png
Question: How many baseballs are there?

Ground truth: 20

f Wrong Prediction from GPT-40

There are a total of 19 baseballs across the four buckets:
- The first bucket (top left) contains 4 baseballs.

- The second bucket (top right) contains 5 baseballs.

- The third bucket (bottom left) contains 4 baseballs.

- The fourth bucket (bottom right) contains 6 baseballs.

Adding them together: 4 + 5 + 4 + 6 = 19 baseballs.

\ 7

In contrast, OctoTools decomposes the query into two steps by calling two vision tools to enhance visual
perception. First, it calls the Image_Captioner_Tool to provide a general description of the associated image.
Then, it uses the Object_Detector_Tool to detect and count the baseballs. These two steps provide consistent
information about the number of baseballs, thus resulting in a correct answer.

(2

Step 0: Initial Plan from Query Analyzer

Concise summary: The query asks, “How many baseballs are there?” accompanied by an image showing
several buckets containing baseballs. The objective is to determine the total number of baseballs present in
the image.

Required skills:

1. Image Analysis: Understanding and interpreting visual content.

2. Tool Operation: Ability to operate and execute commands using the provided tools.
3. Ciritical Thinking: Evaluating tool outputs and making decisions based on them.

Relevant tools:

1. Image_Captioner_Tool: Used to generate a description of the image, which can provide context and
identify objects present.

2. Object_Detector_Tool: Used to detect and count the number of baseballs in the image, providing
specific object identification and quantification.

Additional considerations: Consider the limitations of each tool, such as potential inaccuracies
in complex scenes or object detection. Verify results if possible, and be aware of the need for potential
manual verification or supplementary tools for precise counting.

f Step 1: Action from Action Predictor

Justification: The Image_Captioner_Tool is the best choice for the first step because it provides a general
description of the image, which can help identify the presence of baseballs and other relevant objects. This
initial step is crucial for understanding the context of the image before proceeding to count specific objects
using the Object_Detector_Tool.

Context: Image path: baseball.png

Sub-goal: Generate a detailed description of the image located at "baseball.png” to identify the
presence of baseballs and other relevant objects.

Tool name: Image_Captioner_Tool

Step 1: Command from Command Generator

Analysis: The task requires two steps: first, using the Image_Captioner_Tool to generate a caption
for the image, and second, using the Object_Detector_Tool to count the number of baseballs. The
current focus is on the first step, which involves generating a descriptive caption for the image located
at baseball.png’. The Image_Captioner_Tool requires an image path and optionally a prompt. The
default prompt is sufficient for generating a general description of the image.

Explanation: The command uses the Image_Captioner_Tool to generate a caption for the im-
age. The image path is provided as ’baseball.png’, and the default prompt is used to describe the image.

This step is necessary to provide context for the subsequent object detection task.

Command: execution = tool.execute(image="baseball.png")

Step 1: Result from Command Executor

Result: The image shows four blue buckets, each containing five baseballs. The buckets are arranged in
a grid with three on the top row and one on the bottom left. Each bucket is depicted from a top-down
perspective, and the baseballs inside are white with red stitching. The buckets have handles on the sides.
The background is plain white, emphasizing the buckets and baseballs.

Step 1: Verification from Context Verifier

Completeness: The memory addresses the query by using the Image_Captioner_Tool to describe the
image, which mentions that there are four buckets, each containing five baseballs. This provides a total
count of 20 baseballs. However, the Object_Detector_Tool has not been used yet to verify this count,
which is a requirement of the task.

Unused Tools: The Object_Detector_Tool is available and should be used to count the base-
balls as per the task description. This tool is specifically designed to detect and count objects, which is
necessary to fulfill the query accurately.

Inconsistencies: There are no inconsistencies in the information provided by the Image_Captioner_Tool.
However, the task requires verification using the Object_Detector_Tool, which has not been done.

Verification needs: The count of baseballs needs verification using the Object_Detector_Tool
due to the task’s explicit requirement to use this tool for counting.

f Step 1: Verification from Context Verifier (Continued)

Ambiguities: There are no ambiguities in the current description, but the task’s requirement to use the
Object_Detector_Tool suggests that the count should be confirmed using this tool.

Final determination: The memory is not complete as it lacks the use of the Object_Detector_Tool to
count the baseballs, which is a critical part of the task. Therefore, additional tool usage is necessary to fulfill

the query accurately.

Conclusion: CONTINUE

Step 2: Action from Action Predictor

Justification: The next logical step is to use the Object_Detector_Tool to count the number of baseballs
in the image. The Image_Captioner_Tool has already provided a detailed description indicating the
presence of baseballs in buckets. The Object_Detector_Tool is specifically designed to detect and
quantify objects, making it the most suitable choice for counting the baseballs accurately. This step directly
addresses the query’s requirement to determine the number of baseballs, leveraging the tool’s capability to
identify and count specific objects within an image.

Context: Image path: baseball.png

Previous description: The image shows four blue buckets, each containing five baseballs. The
buckets are arranged in a grid with two on the top row and two on the bottom row. Each bucket has a
handle on the side, and the baseballs inside are white with red stitching. The background is plain white,

emphasizing the buckets and baseballs.

Sub-goal: Use the Object_Detector_Tool to detect and count the number of baseballs in the im-
age located at "baseball.png”.

Tool name: Object_Detector_Tool

Step 2: Command from Command Generator

Analysis: The task requires detecting and counting the number of baseballs in a given image using the
Object_Detector_Tool. The image path is provided, and the context suggests that the image contains
baseballs. The tool’s metadata indicates that it requires an image path and a list of labels to detect. The
label relevant to our task is ‘baseball’. The tool also allows setting a confidence threshold, model size,
and padding, but these are optional. For this task, we will use the default values for these optional parameters.

Explanation: The command is constructed to use the Object_Detector_Tool to detect baseballs
in the specified image. We provide the image path and a list containing the label ‘baseball’ to focus the
detection on baseballs. The default values for threshold, model size, and padding are used, as they are not
specified in the task requirements. This setup will allow the tool to detect and count the baseballs in the image.

Command: execution = tool.execute(image="baseball.png"”, labels=["baseball”])

f Step 2: Result from Command Executor

{

"label”: "baseball”,

"confidence score”: 0.69,

"hox": "(558, 48, 615, 107)",

"saved_image_path”: "solver_cache/baseball_1.png"
}’
{

"label”: "baseball”,

"confidence score”: 0.63,

"box": " (336, 95, 393, 153)",

"saved_image_path": "solver_cache/baseball_20.png"
}

Step 2: Verification from Context Verifier

Completeness: The memory addresses the query by using both the Image_Captioner_Tool and
the Object_Detector_Tool. The Image_Captioner_Tool provided a detailed description of the
image, stating that there are four blue buckets, each containing five baseballs, which totals to 20
baseballs. This description aligns with the task’s requirement to identify the presence of baseballs. The
Object_Detector_Tool was then used to count the baseballs, detecting 20 baseballs in the image. This
matches the description provided by the Image_Captioner_Tool, confirming the count.

Unused Tools: All relevant tools have been used. The Image_Captioner_Tool provided context,
and the Object_Detector_Tool confirmed the count of baseballs.

Inconsistencies: There are no inconsistencies between the outputs of the two tools. Both tools
indicate the presence of 20 baseballs.

Verification Needs: The results from both tools are consistent, reducing the need for further veri-
fication. The Object_Detector_Tool’s output aligns with the Image_Captioner_Tool’s description,
providing confidence in the accuracy of the count.

Ambiguities: There are no ambiguities in the results. The tools have provided clear and consis-
tent information regarding the number of baseballs.

Final Determination: The memory is complete and accurate enough to generate the final output.
The use of both tools has provided a consistent and verified count of the baseballs, fulfilling the query’s
requirements.

Conclusion: STOP

" Full Trajectory in the Context after Two Steps

"Action Step 1": {
"tool_name”: "Image_Captioner_Tool",
"sub_goal”: "Generate a descriptive caption for the image located at \"baseball.png\” to provide
context for subsequent object detection.”,
"command”: "execution = tool.execute(image=\"baseball.png\")",
"result”: [

"The image shows four blue buckets, each containing five baseballs. The buckets are arranged
in a grid with three on the top row and one on the bottom left. Each bucket is depicted
from a top-down perspective, and the baseballs inside are white with red stitching. The
buckets have handles on the sides. The background is plain white, emphasizing the buckets
and baseballs.”

1
}’
"Action Step 2": {
"tool_name": "Object_Detector_Tool”,
"sub_goal”: "Use the Object_Detector_Tool to detect and count the number of baseballs in the image
located at \"baseball.png\".",
"command”: "execution = tool.execute(image=\"baseball_113.png\", labels=[\"baseball\"1)",
"result”: [
L
{
"label”: "baseball”,
"confidence score”: 0.69,
"box": " (558, 48, 615, 107)",
"saved_image_path”: "solver_cache/baseball_1.png"
}’
{
"label”: "baseball”,
"confidence score”: 0.63,
"box": " (336, 95, 393, 153)",
"saved_image_path”: "solver_cache/0/baseball_20.png"
3
1
]
}
\ 7

The final answer is summarized by the solution summarizer in the planner, given the full trajectory in the
context described above. This two-step flow overcomes the base GPT-40 model’s limitation in visual perception.

~

[Final Answer

Detailed analysis:
Step 1: Image_Captioner_Tool
Result: The image contains four blue buckets, each with five baseballs, arranged in a grid pattern.
Step 2: Object_Detector_Tool
Result: Detected 20 baseballs with varying confidence scores.

Key findings: The image contains a total of 20 baseballs, distributed evenly across four buckets.
Each bucket contains five baseballs, as confirmed by both tools.

Answer to the query: The image shows four blue buckets, each containing five baseballs. There-
fore, there are a total of 20 baseballs.

Additional insights: The consistent results from both tools reinforce the accuracy of the analysis.
The arrangement of the buckets and baseballs is clear and well-organized, aiding in accurate detection.

F.2 Example for Multi-step Mathematical Reasoning

The Query

Question: Using the numbers [1, 1, 6, 9], create an expression that equals 24. You must use basic arithmetic
operations (+, -, X, /) and parentheses.
Example: for [1, 2, 3, 4], one solution is (1+2+3)x4.

Wrong Prediction from GPT-40

One possible expression using the numbers [1, 1, 6, 9] to make 24 is:
(9+1) x(6/2)

Breaking it down:

-94+1=10
-6/2=3
-10x3 =24
This satisfies the conditions using basic arithmetic operations and parentheses.
(\

Wrong Prediction from GPT-40 with another attempt

One possible solution using the numbers [1, 1, 6, 9] to make 24 is:
(6/(1—-1)+9)x1

However, (1 - 1) equals 0, which makes division by zero undefined. So we must try another approach.
A correct solution is:

(6/1) x (9/1) = 6 x 9 = 54

This exceeds 24. Let’s adjust:
A valid expression that equals 24 is:

(6x9)/(1+1)=54/2 =24

This correctly uses all four numbers and results in 24.

Step 0: Initial Plan from Query Analyzer

Required skills:

1. Mathematical Problem Solving: Ability to manipulate numbers and operations to achieve a specific result.
2. Arithmetic Operations: Proficiency in using addition, subtraction, multiplication, and division.

3. Logical Reasoning: Skill in applying logical steps to combine numbers and operations effectively.

Relevant tools:

1. Python_Code_Generator_Tool: This tool can be used to generate and test different combinations of
arithmetic operations on the given numbers to find an expression that equals 24. It is suitable for simple
arithmetic calculations and can help automate the trial-and-error process.

2. Generalist_Solution_Generator_Tool: Although not specifically designed for arithmetic problems,
it can provide a step-by-step approach to solving the problem by suggesting possible combinations and
reasoning through them.

f Step 1: Action from Action Predictor

Justification: The Python_Code_Generator_Tool is the most suitable choice for this task because it is
specifically designed to handle arithmetic calculations and can automate the process of testing different
combinations of the given numbers and operations to achieve the target result of 24. ...

Sub-goal: Generate and test different arithmetic expressions using the numbers [1, 1, 6, 9] to
find a combination that equals 24.

Tool name: Python_Code_Generator_Tool

Step 1: Command from Command Generator

Command: execution = tool.execute(query="Using the numbers [1, 1, 6, 9], create
an expression that equals 24 using basic arithmetic operations (+, -, *, /) and
parentheses.")

\ J
é A

Step 1: Result from Command Executor

Generated Python code:

Define the numbers
numbers = [1, 1, 6, 9]

Calculate the expression

Using the expression: 6 / (1 - (9 / 1)) = 24
result =6 / (1 - (9 7/ 1))

Print the result with a descriptive message
print(f"The result of the expression using the numbers {numbers} is: {result}")

Execution: The result of the expression using the numbers [1, 1, 6, 9] is: -0.75

Step 1: Verification from Context Verifier

Justification: The memory does not fully address the query as the expression found does not equal
24. The task requires finding a valid arithmetic expression using the numbers [1, 1, 6, 9] that results
in 24, which has not been achieved. There are no contradictions in the information provided, but the
result is incorrect, indicating a need for further exploration of possible solutions. The incorrect result
from the Python_Code_Generator_Tool suggests that further verification and exploration of different
expressions are necessary. This could involve manually testing different combinations or using the
Generalist_Solution_Generator_Tool to explore potential solutions.

Conclusion: CONTINUE

Step 2: Action from Action Predictor

Justification: The previous attempt using this tool resulted in an incorrect expression, indicating that further
exploration of possible combinations is needed. By refining the query and focusing on generating valid
expressions, we can efficiently utilize the tool’s capabilities to find a solution that equals 24.

Sub-goal: Generate and test additional arithmetic expressions using the numbers [1, 1, 6, 9] to
find a valid combination that equals 24, ensuring the use of parentheses to alter operation precedence.

Tool name: Python_Code_Generator_Tool

f Step 2: Command from Command Generator

Command: execution = tool.execute(query="Using the numbers [1, 1, 6, 9], create
an expression that equals 24 using basic arithmetic operations (+, -, *, /) and
parentheses.”)

Step 2: Result from Command Executor

Generated Python code:

Step 1: Calculate the inner division
inner_division = 9 / 1

Step 2: Subtract the result from 1
subtraction_result = 1 - inner_division

Step 3: Divide 6 by the result of step 2
final_result = 6 / subtraction_result

Print the final result with a descriptive message
print("The result of the expression (6 / (1 - (9 / 1))) is:", final_result)

Execution: The result of the expression (6 /(1 - (9/ 1))) is: -0.75

Step 2: Verification from Context Verifier

Justification: The memory is insufficient to generate the final output as it does not provide a correct
expression that equals 24. Additional tool usage, specifically the Generalist_Solution_Generator_Tool,
is necessary to explore other possible solutions and fulfill the query.

Conclusion: Continue

Step 3: Action from Action Predictor

Justification: The Python_Code_Generator_Tool is the most suitable choice for this step because
it is specifically designed to handle arithmetic calculations and can automate the process of testing
different combinations of operations and parentheses. Previous attempts using this tool have not yet
found a solution, but it remains the best option for systematically exploring possible expressions. The
Generalist_Solution_Generator_Tool, while capable of providing step-by-step reasoning, is not
optimized for generating and testing multiple arithmetic expressions efficiently. Given the need to find a
valid expression that equals 24, the Python_Code_Generator_Tool can be used to continue testing new
combinations, leveraging its ability to quickly execute and evaluate arithmetic expressions.

Sub-goal: Generate and test new arithmetic expressions using the numbers [1, 1, 6, 9] with dif-
ferent combinations of operations and parentheses to find a valid expression that equals 24.

Tool name: Python_Code_Generator_Tool

Step 3: Command from Command Generator

Command: execution = tool.execute(query="Find an expression using the numbers [1, 1,
6, 9] with operations +, -, x, / and parentheses to equal 24.")

f Step 3: Result from Command Executor

Generated Python code:

from itertools import permutations, product

Define the numbers and target
numbers = [1, 1, 6, 9]

target = 24

operations = ['+', '=') 'x' '/']

Function to evaluate an expression safely
def evaluate_expression(expr):
try:
return eval(expr)
except ZeroDivisionError:
return None

Generate all permutations of numbers
for num_perm in permutations(numbers):
Generate all combinations of operations
for ops in product(operations, repeat=3):
Generate different parenthesized expressions
expressions = [
" ({num_perm[@]} {ops[0@]1} {num_perm[1]1}) {ops[1]1} ({num_perm[2]} {ops[2]} {num_perm[3]})",
" (({num_perm[@1} {ops[0]1} {num_perm[113}) {ops[11} {num_perm[213}) {ops[2]} {num_perm[31}",
" ({num_perm[0]1} {ops[0]1} ({num_perm[11} {ops[1]1} {num_perm[2]1})) {ops[2]1} {num_perm[3]1}",
f"{num_perm[@]1} {ops[@]1} (({num_perm[11} {ops[11} {num_perm[21}) {ops[2]1} {num_perm[313})",
f"{num_perm[@]} {ops[0]1} ({num_perm[1]1} {ops[11} ({num_perm[2]} {ops[2]1} {num_perm[3]1}))"
]

Evaluate each expression
for expr in expressions:

if evaluate_expression(expr) == target:
print(f"Expression that equals {target}: {expr}")
break
Execution:

Expression that equals 24: (1+1) *9) + 6

Expression that equals 24: 6 + ((1 + 1) * 9)

.

(Step 3: Verification from Context Verifier

Justification: The memory provides a comprehensive solution to the query of creating an expression using
the numbers [1, 1, 6, 9] that equals 24. The Python_Code_Generator_Tool was used effectively to explore
various combinations of arithmetic operations and parentheses. The final result includes multiple valid
expressions that satisfy the query, such as: (1 + 1) *9)+ 6,6 + ((1 + 1) * 9). Conclusion: STOP

.

(.
Final Answer

The expression (1 + 1) x 9 + 6 successfully uses the numbers [1, 1, 6, 9] with basic arithmetic operations
and parentheses to equal 24.

\

F.3 Example for Agentic Reasoning

Below is a challenging example from GAIA-Text (Mialon et al., 2023) that involves multiple steps, specialized
domain knowledge, and rigorous reasoning. Solving it requires understanding the Babylonian number system,
recognizing the cuneiform symbols, and performing careful calculations and conversions. The incorrect
prediction illustrates a limitation of the base GPT-40 model.

[The Query

Question: Consider the following symbols: W ¥
This is a number written using the Mesopotamian/Babylonian number system and represented with
Sumerian cuneiform. Convert this number into Arabic numerals as a decimal number.

Ground truth: 536

Annotated solution (for response validation only):

Annotated solution (for response validation only):

1. Look up Babylonian number system (base 60, using uniform ‘hashmarks’ as counters)
2. Converted the Cuniform to Arabic (W 8 & 56)

3. Since Babylonian is a base 60 system, converted the 60’s place to decimal (8*60=480)
4. Added 56 to 480 (536).

& 7

f Wrong Prediction from GPT-40

The given symbols are written in Sumerian cuneiform and follow the Babylonian number system, which is a

EH-

Let’s analyze the symbols:
1. §: This symbol represents 60 in the Babylonian numeral system.
2. &

- & represents 10.

- I} represents 2.

- Together, & represents 12.

Now, interpreting the full number:

- In a positional system, the leftmost symbols represent higher powers of 60.
- W = 60 (this is in the 60! place).
- T = 12 (this is in the 60 place).

Compute the decimal equivalent:
(60x 1)+ (12x 1) =60+ 12 =72

Thus, the number written in Arabic numerals is 72.

v,

By contrast, in its initial three steps, OctoTools attempts to gather information on the Babylonian system and
Sumerian cuneiform symbols via Wikipedia and Google searches, although these initial efforts do not yield
useful results. The planner in OctoTools then suggests a more general search approach; at Step 4, OctoTools
conducts a broader Google search for general resources, and at Step 5, it obtains the crucial information by
visiting one of the returned URLs.

f Step 0: Initial Plan from Query Analyzer

Required skills:

1. Knowledge of Ancient Number Systems: Understanding the Mesopotamian/Babylonian number system
and Sumerian cuneiform symbols is crucial for interpreting the given symbols.

2. Historical Linguistics: Ability to translate ancient scripts into modern numerical systems.

3. Research Skills: Ability to find reliable sources or references that explain the conversion process from
cuneiform to Arabic numerals.

Relevant tools:

1. Google_Search_Tool: This tool can be used to search for resources or references on the Mesopotami-
an/Babylonian number system and Sumerian cuneiform symbols, which are necessary for understanding
and converting the symbols.

2. Wikipedia_Knowledge_Searcher_Tool: This tool can be used to find detailed articles on the
Babylonian number system and Sumerian cuneiform, providing background information and conversion
methods.

Additional considerations: The task requires a deep understanding of ancient numeral systems,
which may not be directly supported by the available tools. Therefore, the tools should be used to gather
information and resources that can aid in manual conversion. Additionally, verifying the accuracy of the
conversion with multiple sources is recommended to ensure correctness.

Step 1: Action from Action Predictor

Justification: The query requires converting Sumerian cuneiform symbols into Arabic numerals, which
involves understanding the Babylonian number system. The Wikipedia_Knowledge_Searcher_Tool is
ideal for this task as it can provide detailed articles and resources on ancient number systems, including the
Babylonian system and Sumerian cuneiform.

Context: Convert the Sumerian cuneiform symbols ¥ &} into Arabic numerals as a decimal
number.

Sub-goal: Search for information on the Babylonian number system and Sumerian cuneiform
symbols to understand their numerical values and conversion methods.

Tool name: Wikipedia_Knowledge_Searcher_Tool

Step 1: Command from Command Generator

Command: execution = tool.execute(query = "Babylonian number system Sumerian cuneiform
symbols W &™)

Step 1: Result from Command Executor

Execution: No results found for the given query.

Step 1: Verification from Context Verifier

Justification: The memory is insufficient to generate the final output. Additional tool usage, specifically
the Google_Search_Tool, is necessary to gather more information on the Babylonian number system and
Sumerian cuneiform symbols to perform the conversion accurately.

Conclusion: CONTINUE

f Step 2: Action from Action Predictor

Justification: The previous attempt to use the Wikipedia_Knowledge_Searcher_Tool did not yield any
results for the specific cuneiform symbols. To progress, we need a broader search that can provide resources
or references on the Mesopotamian/Babylonian number system and Sumerian cuneiform symbols. The
Google_Search_Tool is well-suited for this task as it can perform a wide-ranging search across the internet,
potentially finding more diverse sources that explain the conversion process from cuneiform to Arabic
numerals.

Sub-goal: Perform a Google search to find resources or references on the Mesopotamian/Babylo-
nian number system and Sumerian cuneiform symbols, focusing on conversion methods to Arabic numerals.

Tool name: Google_Search_Tool

Step 2: Command from Command Generator

Command: execution = tool.execute(query="Mesopotamian Babylonian number system
Sumerian cuneiform conversion W &W")

Step 2: Result from Command Executor

Execution:
{

"title”: "New Capabilities, New Risks? - Evaluating Agentic General ...",

"link": "https://www.lesswrong.com/posts/Foh7HQYeuN2Gej5k6/new-capabilities-new-risks-evaluating-
agentic-general”,

"snippet”: "Sep 29, 2024 \ud8@9\udclc \ud809\udc10\ud80@9\udcla This is a number written
using the Mesopotamian/Babylonian number system and represented with Sumerian cuneiform.

Convert this number\u@0ao..."

Step 2: Verification from Context Verifier

Justification: The Wikipedia and Google searches did not provide relevant results or conversion methods.
The memory is insufficient to generate the final output, as it does not provide the necessary conversion
information or methods. Additional tool usage, particularly a more targeted search or reasoning process, is
required to address the query fully.

Conclusion: Continue

Step 3: Action from Action Predictor

Justification: The previous steps attempted to gather information on the Babylonian number system and
Sumerian cuneiform symbols using Wikipedia and Google searches, but they did not yield useful results.
The Wikipedia search returned no results, and the Google search did not provide relevant information
directly related to the conversion of the specific symbols. Given the need for detailed and specific
information about these ancient symbols, the Wikipedia Knowledge Searcher Tool is a suitable choice for
the next step.

Sub-goal: Search Wikipedia for detailed information on the Babylonian number system and Sumerian
cuneiform, focusing on the conversion of the symbols ¥ and ¥} to Arabic numerals.

Tool name: Wikipedia_Knowledge_Searcher_Tool

f Step 3: Command from Command Generator

Command: execution = tool.execute(query="Babylonian number system Sumerian cuneiform
W W

Step 3: Result from Command Executor

Execution: No results found for the given query.

Step 3: Verification from Context Verifier

Justification: The memory is insufficient to generate the final output as it does not provide the necessary
conversion of the cuneiform symbols to Arabic numerals. Additional tool usage, particularly a more focused
search or an attempt to reason through the problem with the Generalist Solution Generator Tool, is necessary
to address the query.

Conclusion: Continue

Step 4: Action from Action Predictor

Justification: Given the lack of direct results from previous searches using the Wikipedia Knowledge
Searcher Tool and the Google Search Tool, the next logical step is to use the Google Search Tool again. This
tool can provide a broader range of resources and references that might not be available on Wikipedia. The
goal is to find specific resources or articles that explain the conversion of Sumerian cuneiform symbols to
Arabic numerals, which is crucial for solving the query. The previous Google search did not yield useful
results, possibly due to the specificity of the query. A more general search might yield better results.

Context: Previous Google search query: ‘Mesopotamian Babylonian number system Sumerian
cuneiform conversion W &KW’ .

Sub-goal: Perform a Google search to find general resources or articles on converting Sumerian
cuneiform symbols to Arabic numerals, focusing on understanding the Babylonian number system.

Tool name: Google_Search_Tool

Step 4: Command from Command Generator

Command: execution = tool.execute(query="Mesopotamian Babylonian number system
Sumerian cuneiform conversion")

\

f Step 4: Result from Command Executor

Execution:
[
{
"title"”: "Babylonian Numerals Converter - Online Number System Calculator”,
"link": "https://www.dcode.fr/babylonian-numbers”,
"snippet"”: "babylonian, mesopotamian, sumerian, numeral, 60, sexagesimal, babylon, cuneiform,

writing, civilization, tablet, clay, wedge, bracket, pipe, bar. Source code.”

}7

f Step 4: Verification from Context Verifier

Justification: The memory is insufficient to generate a final output as it lacks the specific conversion
information needed. Additional tool usage, particularly more targeted searches or expert consultation, is
necessary to obtain the required conversion details.

Conclusion: Continue

Step 5: Action from Action Predictor

Justification: The previous steps attempted to find information on the Babylonian number system and
Sumerian cuneiform symbols using both Google and Wikipedia searches, but they did not yield specific
results for the symbols ¥ and &¥f. However, the Google search did return links to resources that might
contain the necessary conversion information. The Babylonian Numerals Converter - Online Number
System Calculator’ and *Babylonian Numbers Converter’ links seem promising for directly converting the
symbols to Arabic numerals. Therefore, the next logical step is to use the URL_Text_Extractor_Tool to
extract text from these URLs, which may contain the conversion information needed.

Context: URL: https://www.dcode. fr/babylonian-numbers

Sub-goal: Extract text from the URL ’https://www.dcode.fr/babylonian-numbers’ to find informa-
tion on converting Babylonian cuneiform symbols to Arabic numerals.

Tool name: URL_Text_Extractor_Tool

Step 5: Command from Command Generator

Command: execution = tool.execute(url="https://www.dcode.fr/babylonian-numbers")

Step 5: Result from Command Executor

Execution:

What are babylonian numbers? (Definition)

Babylonian numeration is a numbering system used by the ancient Babylonians/Sumerians in Mesopotamia
to represent numbers. In mesopotamian/babylonian/sumerian number system, numbers are written in a
cuneiform style with | (pipe or nail) and < (corner wedge or bracket), written in base 60 (sexagesimal).

How to write babylonian numbers?
The number is written in base 60, the 60 digits are broken down into vertical bars (often noted |) which are
worth one unit (1) and chevrons (often noted <) which are worth ten (10) in base 10.

Since Unicode 5 (2006) cuneiform symbols can be represented on compatible browsers, here is the table of
characters used by dCode:

V1| W (2(M| 3|} 4|5 W6 W 7
Y| 8 (W | 9| < |10/« |20/« 30| & 40| & |50

https://www.dcode.fr/babylonian-numbers

f Step 5: Verification from Context Verifier

Justification: The memory provides a comprehensive analysis of the query, which involves converting
a number written in the Mesopotamian/Babylonian number system using Sumerian cuneiform symbols
into Arabic numerals. The initial analysis correctly identifies the need for understanding ancient numeral
systems and suggests using the Google_Search_Tool and Wikipedia_Knowledge_Searcher_Tool to
gather relevant information.

The memory shows that multiple attempts were made to find information on the Babylonian num-
ber system and Sumerian cuneiform symbols using both the Wikipedia_Knowledge_Searcher_Tool and
Google_Search_Tool. However, the specific query with the symbols ¥ and ¥ did not yield direct results.

Despite this, a successful extraction from the URL ‘https://www.dcode.fr/babylonian-numbers’
provided detailed information on Babylonian numerals, including the values of the symbols ¥ (8) and &

(50), which are crucial for conversion.

Conclusion: Continue

Final Answer

To convert the given Sumerian cuneiform symbols W and &} into Arabic numerals, we need to understand
the Babylonian number system, which is a base-60 (sexagesimal) system. Here’s a step-by-step breakdown
of the conversion process:

1. Identify the Symbols:
- i represents the number 8.
- & represents the number 50.
- I} represents the number 6.

2. Understand the Structure:
- Babylonian numbers are written in a positional system similar to our decimal system but based on 60.
Each position represents a power of 60.

3. Analyze the Given Symbols:
- The symbols are written as ¥ &W. This suggests two separate groupings, which can be interpreted as
two different positional values.

4. Convert Each Group:
- The first symbol ¥ (8) is in the higher position, so it represents 8 x 60 = 480.
- The second group & (50 + 6) represents 56.

5. Calculate the Total:
- Add the values from each group: 480 + 56 = 536.

Therefore, the Sumerian cuneiform symbols W & convert to the Arabic numeral 536.

\

https://www.dcode.fr/babylonian-numbers

F.4 Example for Medical Reasoning

(The Query

Image path: source. jpg
Question: What is the organ on the left side of this image?

Ground truth: Lung

f Wrong Prediction from GPT-40

The organ on the left side of this MRI image is the heart.

\ 7

OctoTools decomposes the query into three steps. First, it calls the Relevant_Patch_Zoomer_Tool to select
a salient patch from the image for more fine-grained analysis. Then, it uses the Image_Captioner_Tool to
describe the selected zoomed-in image. Note that in the combination of the first and second step is not helpful
and yields an incorrect response, but OctoTools is able to verify with a separate tool due to specified limitations
in the tool card and then corrects the reasoning trajectory.

[Step 0: Initial Plan from Query Analyzer

Required skills:
1. Image Analysis: Ability to interpret and analyze medical images to identify organs.
2. Medical Knowledge: Understanding of human anatomy to accurately identify organs in medical images.

Relevant tools:

1. Image_Captioner_Tool: This tool can generate a description of the image, which might help in
identifying the organ on the left side. However, it may have limitations in complex medical images.

2. Relevant_Patch_Zoomer_Tool: This tool can zoom into specific areas of the image, which might help
in focusing on the left side to better identify the organ.

\ J

f Step 1: Action from Action Predictor

Justification: The Relevant_Patch_Zoomer_Tool is the best choice for the next step because it allows us
to focus specifically on the left side of the image, which is where the organ in question is located...

Context: Image path: source.jpg
Sub-goal: Zoom into the left side of the image to focus on the organ located there...

Tool name: Relevant_Patch_Zoomer_Tool

7

f Step 1: Command from Command Generator

Command: execution = tool.execute(image="source.jpg", question="What is the organ on
the left side of the image?")

\ 7

f Step 1: Result from Command Executor

Analysis: The image appears to be a cross-sectional scan, likely an MRI or CT scan, of the thoracic region.
- (A) Top-left quarter: This region shows part of the thoracic cavity, likely including lung tissue and possibly
part of the heart or other structures. ...

To identify the organ on the left side of the image, the most relevant region is (A) Top-left quarter, as it
contains the left side of the thoracic cavity.

Zoomed-in Patch:

source_top-left_zoomed_2x.png

\

f Step 1: Verification from Context Verifier

Ambiguities: The result is ambiguous as it does not clearly identify the organ. Using the
Image_Captioner_Tool could help clarify this.

Final determination: Given these points, additional tool usage is necessary to accurately identify
the organ on the left side of the image.

Conclusion: CONTINUE

\

f Step 2: Action from Action Predictor

Justification: The Image_Captioner_Tool is the best choice for the next step because it can generate a
detailed description of the zoomed-in image patch, which is focused on the left side of the thoracic cavity.

Tool name: Image_Captioner_Tool

\

f Step 2: Command from Command Generator

Command: execution = tool.execute(image="source_top-left_zoomed_2x.png")

\

f Step 2: Result from Command Executor

Result: The image shows a cross-sectional view of the human brain, likely from an MRI scan.

\

(Step 2: Verification from Context Verifier

Final determination: There is a clear inconsistency between the initial analysis (suggesting a thoracic
region) and the Image_Captioner_Tool’s result (identifying the brain). This needs resolution to ensure
accurate identification of the organ. The memory is insufficient due to the inconsistency in organ
identification. Additional tool usage, specifically the Generalist_Solution_Generator_Tool, is
necessary to resolve the ambiguity and verify the organ’s identity.

Conclusion: CONTINUE

\

f Step 3: Action from Action Predictor

Justification: The Image_Captioner_Tool has already been used to generate a description of the
zoomed-in image patch, which identified the organ as part of the brain. To ensure accuracy and specificity, it
is important to verify this result with a medical expert. Since the Generalist_Solution_Generator_Tool
can provide a step-by-step reasoning and potentially refine the understanding of the image content, it is
suitable for generating a more detailed analysis or hypothesis about the organ based on the current findings.
This tool can help bridge the gap between the image analysis and medical knowledge required to accurately
identify the organ.

Tool name: Generalist_Solution_Generator_Tool

Step 3: Command from Command Generator

Command: execution = tool.execute(prompt="Analyze the image and determine the organ
on the left side, considering it is a cross-sectional view of the human brain.”,
image="source. jpg")

Step 3: Result from Command Executor

Result: The image provided is not a cross-sectional view of the human brain. It appears to be a cross-
sectional MRI of the thorax, showing the chest area. The organs visible in this image are likely the lungs
and the heart, not brain structures.

Step 3: Verification from Context Verifier

Ambiguities: The ambiguity arises from the Image_Captioner_Tool’s incorrect description. The
Generalist_Solution_Generator_Tool provides a more accurate context.

Final determination: The memory is mostly sufficient, but due to the initial misidentification,
manual verification by a medical expert is recommended to ensure accuracy. No additional tool usage is
necessary, as the Generalist_Solution_Generator_Tool has provided a plausible correction.

Conclusion: STOP

\ 7

The final answer is summarized by the solution summarizer in the planner, given the trajectory above. Note
that in the third step, OctoTools was able to correct a subpar usage of tools in the first two steps, eventually
reaching a correct answer.

L/

[Final Answer

The image is a cross-sectional MRI of the thorax. In this orientation, the “left side" of the image represents
the right side of the patient due to standard medical imaging conventions. The organ on the left side of the
image is likely the right lung.

E.5 Example for Pathology Diagnosis

The Query

Image path: tissue. jpg

Question: This is a hematoxylin and eosin (H&E) stained
osteosarcoma histology image of:

A) Non-tumor

B) Necrotic tumor

C) Viable tumor

Choose the correct option.

Ground truth: B) Necrotic tumor

. 7

{)

Wrong Prediction from GPT-40

C) Viable tumor
The image shows a dense cellular area with viable tumor cells, typical of a viable osteosarcoma.

\ S

In contrast, OctoTools decomposes the query into two steps by calling two vision tools to enhance visual
perception. First, it calls the Image_Captioner_Tool to provide a general description of the associated image.
Then, it uses the Object_Detector_Tool to detect and count the baseballs. These two steps provide consistent
information about the number of baseballs, thus resulting in a correct answer.

" Step 0: Initial Plan from Query Analyzer

Required skills:

1. Histopathology Knowledge: Understanding of osteosarcoma and its histological features.
2. Image Analysis: Ability to interpret H&E stained images.

3. Classification Skills: Ability to categorize images based on visual features.

Relevant tools:

1. Path_Generalist_Classifier_Tool: This tool is suitable for classifying histopathology images into
predefined categories. It can be used to determine whether the image is of a non-tumor, necrotic tumor, or
viable tumor.

Additional considerations: Ensure the options provided for classification are clear and specific.
Cross-reference the tool’s output with expert knowledge if possible, as the tool may not always be reliable.

Step 1: Action from Action Predictor

Justification: The task is to classify a histology image of osteosarcoma into one of three categories: Non-
tumor, Necrotic tumor, or Viable tumor. The Path_Generalist_Classifier_Tool is specifically designed
for classifying histopathology images into predefined categories, making it the most suitable tool for this task.

Context: Image path: tissue. jpg

Sub-goal: Classify the histology image into one of the categories: Non-tumor, Necrotic tumor, or
Viable tumor using the provided image path.

Tool name: Path_Generalist_Classifier_Tool

f Step 1: Command from Command Generator

Analysis: The task is to classify a histology image of osteosarcoma into one of three categories: Non-tumor,
Necrotic tumor, or Viable tumor. The selected tool, Path_Generalist_Classifier_Tool, is designed
to classify histopathology images based on provided options. The tool requires two inputs: the path
to the image and a list of classification options. The image path is provided in the context, and the
classification options are specified in the query. The tool’s metadata confirms that it is suitable for this type
of classification task, as it is designed for histopathology images and multiple-choice questions.

Command: execution = tool.execute(image="tissue. jpg", options=["Non-tumor”, "Necrotic
tumor”, "Viable tumor"])

Step 1: Result from Command Executor

Result: Necrotic tumor

Step 1: Verification from Context Verifier

Completeness: The memory addresses the query by using the Path_Generalist_Classifier_Tool to
classify the histology image into one of the specified categories: Non-tumor, Necrotic tumor, or Viable
tumor. The tool’s output indicates that the image is classified as a "Necrotic tumor". This directly answers
the query, fulfilling the main objective of classifying the image.

Inconsistencies: There are no inconsistencies in the information provided. The classification re-
sult is clear and aligns with the query’s requirements.

Verification needs: The Path_Generalist_Classifier_Tool has limitations and may not al-
ways be reliable. However, the classification of "Necrotic tumor" seems plausible given the context. If
further verification is needed, consulting a histopathology expert or using additional histopathology-specific
tools could be considered.

Ambiguities: There are no ambiguities in the result. The classification is straightforward and
matches one of the provided options.

Final determination: The memory is complete and accurate enough to generate the final output.
The classification tool has provided a clear answer to the query, and no additional tool usage is necessary.

Conclusion: STOP

\ 7

The final answer is summarized by the solution summarizer in the planner, given the full trajectory in the
context described above. When a highly specialized tool is present for its corresponding domain, in this case
histopathology classification, OctoTools is able to leverage the specialized tool directly to reach the answer.

L/

f Final Answer

The histology image of osteosarcoma stained with hematoxylin and eosin (H&E) has been classified using
the Path_Generalist_Classifier_Tool. Based on the analysis, the image is identified as a:
B) Necrotic tumor

F.6 Example for Scientific Reasoning

The Query

Question: Which of the following describes the fallacy of appeal to indignation?

A) presenting two options as the only possible ones when more options exist

B) attacking an argument by exaggerating, misrepresenting, or even completely fabricating parts of it
C) arguing against a position only based on personal feelings toward the position

D) responding to charges of wrongdoing by saying other people do the same thing

E) arguing that a claim is true because it has not been proven false

F) responding to an argument with an expression of derision instead of a counter argument

G) making a claim based on popularity or majority opinion instead of evidence

H) attacking the character or background of someone making an argument instead of his or her evidence and
reasoning

I) making a claim seem true or false based on irrelevant information or associations

Choose the correct option.

Ground truth: E

Wrong Prediction from GPT-40

F)

The fallacy of appeal to indignation involves responding to an argument with an expression of derision or
outrage instead of providing a logical counterargument. This fallacy focuses on expressing strong emotions
rather than addressing the substance of the argument itself.

7

In contrast, OctoTools decomposes the query into two steps by calling the knowledge retrieval tool and

reasoning tool to answer the question. First, it calls the Wikipedia_Knowledge_Searcher_Tool to retrieve
related knowledge. Then it uses Generalist_Solution_Generator_Tool to perform reasoning over the query
and the knowledge retrieved.

V

Step 0: Initial Plan from Query Analyzer

Required skills:

1. Critical Thinking: To analyze and understand the descriptions of logical fallacies and identify the correct
one.

2. Knowledge of Logical Fallacies: To accurately recognize and differentiate between various logical
fallacies, including the appeal to indignation.

3. Decision Making: To choose the correct option from the given list based on the analysis.

Relevant tools:

1. Wikipedia_Knowledge_Searcher_Tool: This tool can be used to search for information on logical
fallacies, including the appeal to indignation, to verify the correct description. It provides factual information
from Wikipedia, which can be cross-referenced with the options provided.
2.Generalist_Solution_Generator_Tool: This tool can be used to generate a step-by-step analysis of
each option to determine which one describes the fallacy of appeal to indignation. However, it may provide
incorrect responses, so verification is necessary.

Additional considerations: Ensure that the final answer is verified for accuracy, as the
Generalist_Solution_Generator_Tool may provide hallucinated responses. Cross-referencing
with reliable sources is recommended to confirm the correct description of the fallacy.

f Step 1: Action from Action Predictor

Justification: The Wikipedia_Knowledge_Searcher_Tool is the best choice for this step because
it provides factual information from a reliable source, which is crucial for accurately identifying the
description of the fallacy of appeal to indignation. This tool can search for and retrieve specific information
about logical fallacies, ensuring that the selected option is verified against authoritative content.

Sub-goal: Search Wikipedia for information on the fallacy of appeal to indignation to verify
which option correctly describes it.

Tool name: Wikipedia_Knowledge_Searcher_Tool

Step 1: Command from Command Generator

Analysis: The task is to identify which option describes the fallacy of appeal to indignation. The
sub-goal is to search Wikipedia for information on this fallacy to verify the correct option. The
selected tool is the Wikipedia_Knowledge_Searcher_Tool, which requires a query string as input. The
query should be related to the fallacy of appeal to indignation to retrieve relevant information from Wikipedia.

Command: execution = tool.execute(query="appeal to indignation fallac")

Step 1: Result from Command Executor

Result: The “fallacy of appeal to indignation” refers to an argument tactic where someone tries to persuade
others by provoking anger or outrage instead of presenting logical evidence, essentially using strong emotions
like indignation to sway opinion rather than reasoned facts; it is considered a form of “appeal to emotion”
fallacy where the emotion being exploited is anger or outrage.

Step 1: Verification from Context Verifier

Completeness: The memory addresses the main objective of identifying the correct description of the
fallacy. The Generalist_Solution_Generator_Tool§ output aligns with the understanding of the fallacy
as it involves emotional reactions rather than logical reasoning.

Inconsistencies: There are no direct inconsistencies in the information provided

Verification needs: The information regarding the appeal to indignation fallacy needs further ver-
ification as the current memory does not provide a definitive answer.

Ambiguities: The ambiguity lies in the lack of direct information about the appeal to indignation
fallacy. Using the Generalist_Solution_Generator_Tool could help clarify which option best fits the
description of this fallacy.

Final determination: The memory is insufficient to generate the final output as it requires rea-
soning over the information on the appeal to indignation fallacy.

Conclusion: CONTINUE

f Step 2: Action from Action Predictor

Justification: The previous attempts to use the Wikipedia_Knowledge_Searcher_Tool did not yield a
direct answer to the query. The next logical step is to use the Generalist_Solution_Generator_Tool.
This tool can analyze the provided options and use its general knowledge to identify which option best
describes the fallacy of appeal to indignation.

Sub-goal: Use the Generalist_Solution_Generator_Tool to analyze the provided options and
determine which one best describes the fallacy of appeal to indignation.

Tool name: Generalist_Solution_Generator_Tool

Step 2: Command from Command Generator

Analysis: The task is to identify which option describes the fallacy of appeal to indignation. The
Generalist_Solution_Generator_Tool is selected to analyze the options and determine the correct one.
The tool requires a prompt as input, which should include the query and options for analysis. The context
provided includes the query and options, which will be used to construct the prompt for the tool.

Command: execution = tool.execute(prompt="Which of the following describes the
fallacy of appeal to indignation?...”

Step 2: Result from Command Executor

Result: The fallacy of appeal to indignation is best described by option C: arguing against a position only
based on personal feelings toward the position. This fallacy involves rejecting an argument or claim not
because of its merits or evidence, but because of an emotional reaction or personal feelings about it.

Step 2: Verification from Context Verifier

Completeness: The memory does not fully address the query as the search results did not provide a direct
description of the appeal to indignation fallacy. The correct option from the list remains unidentified.

Inconsistencies: There are no direct inconsistencies in the information provided.

Verification needs: The information regarding the appeal to indignation fallacy needs further ver-
ification as the current memory does not provide a definitive answer.

Ambiguities: There are no significant ambiguities in the results that require further clarification.

Final determination: @ The memory is sufficient to generate the final output, as the
Generalist_Solution_Generator_Tool has provided a plausible and logical answer to the query.

Conclusion: STOP

\ 7

When a knowledge retrieval tool is present for retrieving relevant knowledge, OctoTools is able to leverage
the retrieved knowledge directly to reach the answer.

(Final Answer]

Based on the analysis, option C is the correct description of the fallacy of appeal to indignation, as it involves
arguing against a position based on personal feelings.

F.7 Example for Fine-grained Visual Reasoning

[The Query

Image path: rotting_kiwi_0016. jpg
Question: You are given a 3 x 3 grid in which each cell
can contain either no kiwi, one fresh kiwi, or one rotten
kiwi. Every minute, any fresh kiwi that is 4-directionally
adjacent to a rotten kiwi also becomes rotten. What is the
minimum number of minutes that must elapse until no cell
s o
“&V‘ has a fresh kiwi?
AN\

Ground truth: 4 minutes

. 7

f Wrong Prediction from GPT-40

To solve this, we need to track how the rot spreads from the rotten kiwi to the fresh ones:

1. Minute 1: The rotten kiwi in the bottom left corner will rot the fresh kiwi directly above it (middle left
cell).

2. Minute 2: The newly rotten kiwi in the middle left cell will rot the fresh kiwi directly above it (top left
cell) and the fresh kiwi to its right (middle center cell).

3. Minute 3: The rotten kiwi in the middle center cell will rot the fresh kiwi directly above it (top center
cell).

After 3 minutes, all fresh kiwis will be rotten.

\ J

In contrast, OctoTools addresses the query by first calling Image_Captioner_Tool to provide a general
description of the associated image. This step is essential as the mistake from the GPT-4o is because of the
wrong perception of the image, with the Image_Captioner_Tool, the reasoning over the rotting process is also
based on the detailed description of the image, resulting in a correct answer.

(" Step 0: Initial Plan from Query Analyzer

Required skills:

1. Image Analysis: To interpret the grid and identify the state of each kiwi (fresh or rotten).

2. Logical Reasoning: To simulate the process of fresh kiwis becoming rotten over time and determine the
minimum time required.

3. Problem Solving: To apply the rules and constraints effectively to reach the correct answer.

Relevant tools:

1. Image_Captioner_Tool: To generate a description of the image, identifying the state of each kiwi,
which aids in understanding the initial setup.

2. Generalist_Solution_Generator_Tool: To simulate the process of kiwis turning rotten and calculate
the minimum time required, using logical reasoning based on the image description.

Additional considerations: Ensure the image is accurately interpreted to correctly identify the
initial state of each kiwi. Logical reasoning should be applied carefully to simulate the process over time.
Verity the final answer against the provided choices.

Step 1: Action from Action Predictor

Justification: The Image_Captioner_Tool is the most appropriate choice for the next step because it can
generate a detailed description of the image, which is crucial for understanding the initial state of the kiwis
in the grid. This understanding is necessary to simulate the process of fresh kiwis becoming rotten and to
determine the minimum time required. The tool’s ability to describe the image will provide the foundational
information needed for logical reasoning in subsequent steps.

Context: Image path: rotting_kiwi_0016. jpg

Sub-goal: Generate a detailed description of the image ’rotting kiwi_0016.jpg’ to identify the ini-
tial state of each kiwi in the 3x3 grid.

Tool name: Image_Captioner_Tool

Step 1: Command from Command Generator

Analysis: The task requires generating a detailed description of an image to identify the initial state of each
kiwi in a 3x3 grid. The selected tool, Image_Captioner_Tool, is designed to generate captions for images.
The tool’s input requires an image path and an optional prompt. The context provides the image path, which
is ’rotting_kiwi_0016.jpg’. The sub-goal is to generate a detailed description of this image, which aligns
with the tool’s capability to describe images in detail. Therefore, the command will use the image path and a
prompt to guide the captioning process.

Explanation: The command uses the Image_Captioner_Tool to generate a detailed description
of the image. The image path is provided directly from the context, and a prompt is used to ensure the
tool focuses on describing the initial state of each kiwi in the grid. This setup aligns with the tool’s input
requirements and the task’s sub-goal.

Command: execution = tool.execute(image=’rotting_kiwi_0016.jpg’, prompt=’Describe
the initial state of each kiwi in the 3x3 grid in detail.’)

\

f Step 1: Result from Command Executor

Result: The 3x3 grid contains the following kiwis:

* Top Row:
— Left: Empty
— Middle: Empty

— Right: A kiwi with a brown outer skin and a green interior with black seeds.

e Middle Row:

— Left: A kiwi with a brown outer skin and a green interior with black seeds.
— Middle: A kiwi with a brown outer skin and a green interior with black seeds.
— Right: A kiwi with a brown outer skin and a green interior with black seeds.

¢ Bottom Row:

— Left: A kiwi with a brown outer skin and a green interior with black seeds, marked with a red "X."
— Middle: Empty
— Right: Empty

f Step 1: Verification from Context Verifier

The memory provides a detailed description of the initial state of each kiwi in the 3x3 grid. The top row has
one fresh kiwi, the middle row has three fresh kiwis, and the bottom row has one rotten kiwi. The task is to
determine how many minutes it will take for all fresh kiwis to become rotten.The memory is complete and
accurate, and no additional tool usage is necessary to determine the answer.

Conclusion: STOP

. J

The final answer is summarized by the solution summarizer in the planner, given the full trajectory in the
context described above. This two-step flow overcomes the base GPT-40 model’s limitation in visual perception.

~

(.
Final Answer

Detailed analysis: To solve the problem, we need to determine how many minutes it takes for all fresh
kiwis to become rotten, given the initial state of the grid.

Initial Grid Analysis

* Top Row:

— Left: Empty
— Middle: Empty
— Right: Fresh Kiwi

e Middle Row:

— Left: Fresh Kiwi
— Middle: Fresh Kiwi
— Right: Fresh Kiwi

* Bottom Row:

— Left: Rotten Kiwi
— Middle: Empty
— Right: Empty

Process

1. Minute 1: The rotten kiwi at the bottom left will cause the fresh kiwi directly above it (middle row,
left) to become rotten.

2. Minute 2: The newly rotten kiwi (middle row, left) will cause the adjacent fresh kiwis (middle row,
middle) to become rotten. The fresh kiwi in the top row, right, is not adjacent to any rotten kiwi yet.

3. Minute 3: The rotten kiwi (middle row, middle) will cause the adjacent fresh kiwi (middle row, right)
to become rotten. The fresh kiwi in the top row, right, is still not adjacent to any rotten kiwi.

4. Minute 4: The rotten kiwi (middle row, right) will cause the fresh kiwi in the top row, right, to become
rotten.

Conclusion: It takes 4 minutes for all fresh kiwis to become rotten.

\ J

F.8 Exploration Example for Literature Review

[The Query

Question: What are the research trends in tool agents with large language models for scientific discovery?
Please consider the latest literature from ArXiv, PubMed, Nature, and news sources.

Final Answer (Test date: Jan 30 2025)

1. Summary:

The query sought to identify the latest research trends in tool agents with large language models (LLMs)
for scientific discovery, drawing from sources like ArXiv, PubMed, Nature, and related news outlets. The
analysis revealed a growing interest in integrating LL.Ms with various domains, emphasizing their role in
enhancing scientific research, education, healthcare, and more.

2. Detailed Analysis:

Step 1: ArXiv Paper Search
- Tool Used: ArXiv_Paper_Searcher_Tool
- Purpose: To find recent academic papers on tool agents with LLMs.
- Key Results:
- Papers discussed the application of LLMs in multi-agent systems, UAVs, education, REST API
testing, and more.
- Notable papers include “Al Agent for Education,” “UAVs Meet LLMs,” and “Reasoning Language
Models: A Blueprint.”
- Contribution: Provided a comprehensive view of how LLMs are being utilized across different fields,
highlighting their versatility and potential for innovation.

Step 2: PubMed Article Search

- Tool Used: Pubmed_Search_Tool

- Purpose: To identify recent articles on LLMs in scientific discovery.

- Key Results:
- Articles focused on LLMs in healthcare, such as mental health support and vaccination information.
- Highlighted the integration of LLMs in educational tools and their potential biases.

- Contribution: Offered insights into the application of LLMs in healthcare and education,

emphasizing the need for accuracy and equity.

Step 3: Nature News Fetch
- Tool Used: Nature_News_Fetcher_Tool
- Purpose: To gather recent news articles on LLMs and tool agents.
- Key Results:
- Articles discussed the development of Al models like DeepSeek and their impact on scientific
research.
- Highlighted the role of Al in various scientific advancements and societal impacts.
- Contribution: Provided context on the broader implications of LLMs in scientific research and
public perception.

3. Key Findings:

- LLMs are increasingly being integrated into multi-agent systems, enhancing capabilities in fields like
education, healthcare, and UAV operations.

- There is a significant focus on improving the reasoning and problem-solving abilities of LLMs, as seen
in the development of reasoning language models.

- The application of LLMs in healthcare is promising but requires careful consideration of biases and
accuracy.

" Final Answer (Continued)

- News articles highlight the rapid advancements in Al models and their potential to transform scientific
research.

4. Answer to the Query:
The latest research trends in tool agents with large language models for scientific discovery include:

- The integration of LLMs into multi-agent systems to enhance collaborative problem-solving and
decision-making.

- The use of LLMs in healthcare for tasks like mental health support and vaccination information, with a
focus on ensuring accuracy and equity.

- The development of advanced reasoning models to improve the problem-solving capabilities of LLMs.

- The exploration of LL.Ms in educational contexts to support personalized learning and cognitive
development.

5. Additional Insights:

- While LLMs offer significant potential, there are challenges related to computational overhead, biases,
and the need for domain-specific adaptations.

- The ethical implications of LLMs, particularly in healthcare and education, require ongoing attention to
ensure equitable access and outcomes.

6. Conclusion:

The integration of large language models into tool agents is a rapidly evolving field with significant
implications for scientific discovery. These models are enhancing capabilities across various domains, from
healthcare to education, while also presenting challenges that need to be addressed. Future research should
focus on optimizing these models for specific applications, ensuring ethical use, and exploring their full
potential in scientific innovation.

