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Abstract

Causality detection and mining are impor-
tant tasks in information retrieval due to their
enormous use in information extraction, and
knowledge graph construction. To solve these
tasks, in existing literature there exist sev-
eral solutions—both unsupervised and super-
vised. However, the unsupervised methods
suffer from poor performance and they of-
ten require significant human intervention for
causal rule selection, leading to poor gener-
alization across different domains. On the
other hand, supervised methods suffer from
the lack of large training datasets. Recently,
large language models (LLMs) with effective
prompt engineering are found to be effective
to overcome the issue of unavailability of large
training dataset. Yet, in existing literature,
there does not exist comprehensive works on
causality detection and mining using LLM
prompting. In this paper, we present several
retrieval-augmented generation (RAG) based
dynamic prompting schemes to enhance LLM
performance in causality detection and extrac-
tion tasks. Extensive experiments over three
datasets and five LLMs validate the superiority
of our proposed RAG-based dynamic prompt-
ing over other static prompting schemes.

1 Introduction

The expression of causality, along with causal rea-
soning, is a defining characteristic of human cog-
nition (Goddu and Gopnik, 2024), which makes
natural language text a trove of causal knowledge.
Extracting this knowledge from text is a significant
task due to its widespread applications in natural
language processing (NLP), including question an-
swering (Khoo et al., 1998; Girju, 2003), event
prediction (Radinsky et al., 2012; Silverstein et al.,
2000) and medical text mining (Hashimoto et al.,
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2014; Riaz and Girju, 2010). The importance of
causality extraction task has intensified even further
with the proliferation of AI Chatbots and conversa-
tional AI agents, which rely on synthesized causal
knowledge. Therefore, sophisticated and scalable
models are essential to accurately extract causal
knowledge from various textual sources, ranging
from scientific documents to news articles.

Causality in natural language text refers to the re-
lationship between two entities in a sentence, where
the occurrence of one entity (the cause) leads to
the occurrence of the other (the effect). There are
two prominent research tasks related to causality:
causality detection (Blanco et al., 2008; Hidey and
McKeown, 2016; Kayesh et al., 2019) and causality
extraction (Dasgupta et al., 2018; Li et al., 2021;
Kabir, 2023). The first task detects whether a given
sentence is causal or not, which is typically framed
as a binary classification task. The second task la-
bels the cause and the effect phrases within a given
sentence, given that it is causal. This task is often
formulated as a sequence labeling task, where each
token in the sentence is labeled as part of a cause
phrase, effect phrase, or neither.

In traditional machine learning, many unsuper-
vised (Kaplan and Berry-Rogghe, 1991; Garcia
et al., 1997; Girju et al., 2002) and supervised (Li
et al., 2021; Dasgupta et al., 2018; Kabir, 2023)
methods are proposed for causality mining. Among
these, the unsupervised methods require significant
human intervention, and the supervised methods
suffer from the lack of large training datasets. With
the emergence of pre-trained large language mod-
els (LLMs) such as GPT (Brown, 2020; Achiam
et al., 2023), Llama (Touvron et al., 2023), Gem-
ini (Anil et al., 2023), and Mixtral (Jiang et al.,
2023), many supervised NLP tasks are now being
solved using LLMs, primarily due to their ability to
produce superior results only with minimal supervi-
sion. This is exciting news for causality mining, as
supervised models for causality mining, trained on
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datasets from one domain, often perform poorly on
datasets from different domains. Thus, LLMs with
few-shot learning capabilities could be an attractive
approach for causality mining.

Performance improvements of LLMs in specific
tasks like causality mining can be achieved through
fine-tuning, prompt engineering, and Retrieval-
Augmented Generation (RAG) approaches. Fine-
tuning methods train weights of a few terminal
layers of the LLMs, prompt engineering selects
effective in-context examples for few-shot training
of LLMs, and RAG improves LLM outputs by gen-
erating prompt dynamically by leveraging relevant
knowledge from external sources. For causality
mining using LLMs, Jin et al. (2023) proposed to
improve LLM performance in causal inference by
fine-tuning, but their results show that fine-tuned
models fail to generalize, yielding poorer results on
out-of-distribution data. Besides, fine-tuning large
language models requires significant resources and
diverse training data as they are not good for in-
corporating dynamic knowledge based on varying
scenarios. These limitations of fine-tuning open
the frontier of research in prompt engineering and
RAG to improve LLM performance.

In this paper, we propose two novel RAG
(Retrieval-Augmented Generation) approaches
namely Pattern RAG and kNN+Pattern RAG,
for solving the causality mining task using LLMs.
Both the approaches leverage a fewshot example
repository—an external resource which we build
(offline) for supporting our proposed RAG ap-
proaches. The fewshot example repository con-
tains a collection of causal sentences with the cause
and the effect phrases correctly tagged. Each of
these sentences in this repository are also indexed
by a causal connective. During causal inference
using an LLM, given an input sentence both the
RAG approaches judiciously retrieve relevant ex-
amples dynamically from the fewshot example
repository, and augment the causality detection
LLM prompts with these examples for improving
LLM performance. We conduct extensive exper-
iments on three datasets and five different LLMs
to validate the performance of our proposed RAG
approaches against traditional supervised ML ap-
proaches and other LLM prompting approaches,
namely Zeroshot, Random fewshot and kNN RAG.
Experimental results show that our approaches out-
perform the baseline methods for both causality
detection and causality extraction tasks.

Input Sentence Causal
Connectives

However, as illustrated by these and other
cases reported to date, the onset of <cause>
troglitazone </cause> -induced <effect>
liver injury </effect> is insidious and tempo-
rally variable.

induced

When a <effect> tsunami </effect> is gen-
erated by a strong offshore <cause> earth-
quake </cause>, its first waves would reach
the outer coast minutes after the ground
stops shaking.

is generated
by

Highly viscous <cause> lavas </cause> lead
to a violent <effect> eruption </effect>.

lead to

Table 1: Causal sentences from the fewshot example
repository with LLM generated causal connectives.

Figure 1: Logarithmic of the number of causal connec-
tives in each frequency category ranging from 1 to 10.

2 Related Works

Causality mining research in the past few decades
can be broadly categorized into three main
approaches: rule-based (non-statistical), tradi-
tional machine learning-based, and deep learning-
based. Rule-based approaches (Kaplan and Berry-
Rogghe, 1991; Joskowicz et al., 1989; Kontos and
Sidiropoulou, 1991; Garcia et al., 1997; Girju et al.,
2002; Khoo et al., 1998; Sadek, 2013) mainly use
different linguistic patterns and causality connec-
tives (e.g., “caused”, “lead to” and “triggered”) to
detect causality. These methods require significant
human intervention for identifying the rules. Often,
rules extracted from one domain may not work for
another domain as effectively. Traditional machine
learning approaches (Girju et al., 2002; Bethard
and Martin, 2008; Pal et al., 2010; Sorgente et al.,
2013; Pakray and Gelbukh, 2014) are more advan-
tageous than rule-based approaches as they require
less human effort. These methods automate the
pattern extraction process by utilizing NLP tools
like WordNet, Google N-grams, POS tagging, and
apply them in models like decision trees, SVM, and
Naive Bayes for causality extraction.

The advent of deep learning models and the at-
tention mechanism help overcome the feature spar-



Freq. Five Causal Connective sample

1 generates, probable cause of, that caused the, as the consequence of, after the treatment
by

2 led to, can lead to, may be induced by, effect, root causes of
3 were caused by, derived from, experienced, was generated from, after initiation of,

adverse effect of
4 caused the, after the use of, association of, causing, induces
5 can induce, that resulted in, leading causes of, leading to, was the cause of
6 leads to, because of, ensued from, produces, can cause
7 most common cause of, association between, as a complication of, side effect of,

instigated by
8 result in, created by, as a result of, radiated, emits
9 resulting from, results in, had caused, radiating from, had caused
10 triggered by, induced by, arose from, is one of the main causes of, -associated

Table 2: Causal connective examples for each frequency category

Figure 2: Dynamic fewshot selection mechanism of Pattern RAG and kNN+Pattern RAG. An example sentence
from SemEval dataset and related sentences that are selected by different RAG schemes are also shown.

sity problem and made the training more effec-
tive (De Silva et al., 2017; Ponti and Korhonen,
2017; Dasgupta et al., 2018; Wu and He, 2019;
Zhao et al., 2019; Ali et al., 2021; Tian et al.,
2022; Lan et al., 2023; Chen and Li, 2021). Prior
studies use various deep learning architectures, in-
cluding Self-attentive BiLSTM-CRF with Trans-
ferred Embeddings (SCITE) (Li et al., 2021), lin-
guistically informed Bi-LSTM model (Dasgupta
et al., 2018), bidirectional LSTM with a CRF
layer (BI-LSTM-CRF) (Huang et al., 2015) and
dependency-aware transformer based model (DEP-
BERT) (Kabir, 2023). However, achieving better
performance with deep learning models requires
high computational resources and a large training
corpus, preferably from the same domain, which
poses a significant obstacle. The advance of LLMs
and prompt engineering helps to overcome the limi-
tations of deep learning models. Zhang et al. (2024)
utilize the idea of RAG-based LLMs to deduce
causal relationships from a large corpus of scien-
tific literature for the causal graph discovery task.

Liu et al. (2021) introduce the idea of select-
ing dynamic few-shot examples for a test instance

based on similarity measures. They experiment
these kNN based in-context example selection
method for sentiment classification, table-to-text
generation, and question answering tasks. Simi-
lar approaches are also used for relation extraction
tasks (Nori et al., 2023; Liu et al., 2023; Efeoglu
and Paschke, 2024). We make minor modification
to Liu et al. (2021) to adapt it our task and use it as
one of the baseline.

kNN-based method chooses semantically similar
examples, but they are not always helpful for cause
effect phrase extraction task. Specifically, when the
phrases are not identified by the semantic meaning
of entire sentence, but by causal connectives, such
a method performs poorly. Wang et al. (2023) uti-
lizes a retriever trained on a labeled dataset, which
involves a costly training phase. In contrast, our
pattern-based method does not require such a re-
triever, offering a more efficient and lightweight
alternative. Zhang et al. (2022) uses reinforcement
learning to iteratively train a policy, which demands
significant time and computational resources. Li
et al. (2023) proposes a Unified Demonstration
Retriever (UDR) that retrieves examples across



diverse tasks using a multi-task listwise ranking
framework, reducing storage and deployment costs
compared to task-specific retrievers. These works
have explored the in context example selection
methods but haven’t explored the causality min-
ing tasks. Since cause-effect phrase extraction is
a sequence labeling task, incorporating these base-
lines requires to adapt these methods substantially,
which in-itself can be a new research direction.

3 Methodology

Inspired by recent advancements in Retrieval-
Augmented Generation (RAG) demonstrating the
efficacy of dynamically selected few-shot examples
for enhancing LLM performance (Liu et al., 2021),
we propose a novel approach to causality mining
that utilizes an external knowledge base to augment
LLM prompts. We construct a concise knowledge
base of causal examples, and develop two RAG-
based methods—Pattern RAG and kNN+Pattern
RAG—to dynamically select relevant instances for
a given task. These approaches retrieve in-context
examples from our fewshot example repository by
leveraging causal connectives and sentence embed-
ding similarity.

3.1 Fewshot Example Repository Creation

The fewshot example repository is created off-line,
which is to be used as an external source to support
retrieval-augmented prompt generation with a large
language model. The desiderata of this repository,
which stores example causality sentences are as
follows: (1) it should contain examples similar
to any test instance provided by a user; (2) the
examples should be domain-neutral; and (3) they
should be concise.

To fulfill these requirements, we first combine
all the causal sentences from the training datasets
of SemEval, ADE and Li et al. (4,082 sentences
in total). Each sentence is then fed into GPT-3.5-
turbo with an ICL prompt to identify the causal
connectives. Some sample sentences with their
identified causal connectives (from GPT-3.5-turbo)
are shown in Table 1.

The sentences are then indexed by the causal
connectives identified by GPT, and stored in a data
structure, called Fewshot Example DB. Since our
experiment does not require many examples, and
also to make the repository memory efficient, we
keep up to 10 random examples per unique causal
connective. Note that some example sentences are

shared by multiple causal connectives, as GPT does
not always extract the exact casual connectives; for
instance, it may extract “caused by” in one instance
and “caused by the” in another, resulting in two dif-
ferent connectives. At the end, our Fewshot Exam-
ple DB contains 2,365 instances indexed by 1,394
unique causal connectives, with 80 connectives hav-
ing at least 5 examples, while the rest occur 1 to 5
times. Figure 1 shows the causal connectives count
in each frequency category of Fewshot example DB.
We manually verify the quality of causal connec-
tives by randomly selecting five causal connective
from each frequency category, ranging from 1 to
10, in our repository. This process is repeated over
several iterations, and one of the results is shown
in Table 2.

3.2 RAG Prompts for Causality Mining
LLMs offer powerful language understanding and
generation capabilities, but they are not reliable
information sources and they lack access to in-
formation beyond their training data. Retrieval-
augmented generation enables LLMs to witness in-
context examples which are highly relevant to the
given task. These in-context examples are chosen
by RAG approaches. In this work, for the causality
extraction task, we propose two RAG ideas: Pattern
RAG and kNN+Pattern RAG.
Pattern RAG: This is our first RAG scheme, where
the fewshot examples are chosen by matching the
causal connective of the input sentence with those
of the sentences in the textitFewshot Example DB.
For example, for input sentence “fever is caused
by flu”, fewshot examples in the repository which
has “cause by” connective are chosen for prompt
augmentation. Since causal connective detection
is not always exact, we select those sentences for
which the causal connective is more than 90 percent
similar to the causal connective of the input. If we
find more than 10 matched examples, we randomly
choose 10 of them and filter out the rest. This Pat-
tern RAG scheme gets similar fewshot examples
based on the presence of similar causal connec-
tives in the examples. Our hypothesis is that, with
these fewshot examples, LLM will be able to align
the causal connective between the input sentence
and the fewshot example, and be able to identify
the cause and effect phrases more effectively. In
Figure 2, the input sentence has the “caused by”
pattern, the retrieved fewshot examples also have
“caused by” in them (see the sentence tagged with
a yellow star).



LLM Method SemEval ADE Li et al. dataset

Acc. F1 P R Acc. F1 P R Acc. F1 P R

GPT-3.5 Zeroshot 0.68 0.73 0.60 0.93 0.76 0.81 0.72 0.93 0.65 0.57 0.40 0.95

-turbo Random fewshot 0.85 0.84 0.83 0.85 0.73 0.67 0.97 0.51 0.89 0.72 0.86 0.63

kNN RAG 0.84 0.81 0.88 0.75 0.85 0.84 0.92 0.78 0.91 0.84 0.77 0.93

Pattern RAG 0.86 0.83 0.90 0.78 0.86 0.85 0.96 0.77 0.93 0.86 0.85 0.87

kNN+Pattern RAG 0.86 0.84 0.89 0.80 0.88 0.88 0.92 0.85 0.92 0.85 0.76 0.96
GPT-4o Zeroshot 0.85 0.83 0.83 0.84 0.81 0.81 0.89 0.75 0.89 0.79 0.72 0.88

Random fewshot 0.87 0.84 0.90 0.79 0.85 0.84 0.95 0.76 0.91 0.82 0.86 0.78

kNN RAG 0.90 0.88 0.92 0.84 0.85 0.84 0.95 0.76 0.96 0.92 0.87 0.97

Pattern RAG 0.88 0.86 0.89 0.84 0.89 0.89 0.95 0.84 0.94 0.88 0.85 0.92

kNN+Pattern RAG 0.91 0.90 0.92 0.87 0.90 0.90 0.96 0.84 0.96 0.93 0.89 0.98
Llama3 Zeroshot 0.79 0.79 0.70 0.91 0.83 0.85 0.78 0.93 0.73 0.62 0.47 0.94

-8b Random fewshot 0.78 0.74 0.78 0.71 0.87 0.88 0.87 0.90 0.84 0.72 0.63 0.83

kNN RAG 0.72 0.75 0.62 0.96 0.74 0.80 0.69 0.95 0.57 0.53 0.36 0.98

Pattern RAG 0.83 0.83 0.79 0.86 0.88 0.89 0.85 0.93 0.83 0.73 0.59 0.94

kNN+Pattern RAG 0.82 0.82 0.77 0.87 0.81 0.83 0.80 0.86 0.74 0.64 0.48 0.95
Gemma2 Zeroshot 0.81 0.77 0.82 0.73 0.67 0.59 0.88 0.45 0.89 0.77 0.79 0.75

-9b-it Random fewshot 0.79 0.75 0.84 0.67 0.71 0.66 0.91 0.52 0.88 0.73 0.79 0.68

kNN RAG 0.83 0.80 0.90 0.71 0.60 0.43 0.86 0.28 0.92 0.85 0.85 0.85

Pattern RAG 0.80 0.76 0.85 0.69 0.64 0.51 0.89 0.36 0.91 0.80 0.85 0.76

kNN+Pattern RAG 0.83 0.81 0.84 0.78 0.65 0.56 0.85 0.42 0.91 0.84 0.78 0.90
Mixtral- Zeroshot 0.79 0.78 0.72 0.86 0.78 0.80 0.78 0.82 0.76 0.64 0.50 0.88

8x7b Random fewshot 0.75 0.69 0.77 0.63 0.72 0.70 0.84 0.60 0.81 0.64 0.62 0.65

kNN RAG 0.81 0.80 0.79 0.81 0.78 0.78 0.84 0.73 0.84 0.75 0.61 0.96

Pattern RAG 0.83 0.81 0.78 0.85 0.80 0.81 0.81 0.81 0.82 0.72 0.58 0.93

kNN+Pattern RAG 0.80 0.80 0.71 0.92 0.81 0.84 0.77 0.92 0.75 0.66 0.49 0.99

Table 3: Causality detection results.

kNN+Pattern RAG: In this RAG scheme we first
identify causal sentences that are semantically simi-
lar to the input. We use “text-embedding-ada- 002”
model to obtain vector representations of the input
sentence (test instances) and all example instances
in our Fewshot Example DB. The k-nearest neigh-
bor search algorithm is applied to find the 10 most
similar examples to the given test instance from
the DB. For kNN+Pattern RAG, we concatenate
the 10 examples identified by kNN RAG and those
retrieved by Pattern RAG, resulting in a total of 20
examples for fewshot prompt augmentation. kNN
RAG retrieves 10 examples that are semantically
similar to the input sentence, while Pattern RAG
retrieves all the examples that show a causality
relation with the same causal connective present
in the input sentence. Our hypothesis is that this
combination will help the LLM by leveraging both
sentential semantics and causal pattern syntax. Fig-
ure 2 provides a pictorial depiction of both our
RAG approaches.

4 Experiments

We test our proposed RAG approaches with five
different LLMs on three datasets, comparing our
results for two tasks against competing methods.
The first task is causality detection, a binary clas-
sification task. The input to this task consists of
sentences labeled as 1 (causal sentence) and 0 (non-
causal sentence). The LLM outputs a response of 1
if the sentence has a causality relation, otherwise
it outputs 0. For evaluation, We use standard clas-
sification evaluation metrics: accuracy, F1 score,
precision and recall.

The second task is causality extraction, a se-
quence labeling task where the LLM identifies
cause and effect phrases from the input sentence.
The labeled dataset in our experiments typically
marks single words as cause and effect. However,
in real-world scenarios, more detailed phrase rep-
resentations of cause and effect are often more in-
formative than single words. To accommodate this,
our designed prompts guide the LLM to extract



LLM Method SemEval ADE Li et al. dataset

Accuracy Accuracy F1 Precision Rrecall

DEPBERT Supervised 0.65 0.61 0.12 0.12 0.13

GPT-3.5 Zeroshot 0.85 0.75 0.54 0.57 0.52
-turbo Random fewshot 0.83 0.79 0.47 0.56 0.40

kNN RAG 0.91 0.83 0.46 0.60 0.38

Pattern RAG 0.90 0.80 0.52 0.61 0.46

kNN+Pattern RAG 0.91 0.82 0.51 0.62 0.44

GPT-4o Zeroshot 0.82 0.66 0.76 0.79 0.73

Random fewshot 0.82 0.77 0.75 0.77 0.73

kNN RAG 0.87 0.79 0.77 0.83 0.72

Pattern RAG 0.89 0.83 0.80 0.83 0.78
kNN+Pattern RAG 0.89 0.84 0.75 0.78 0.73

Llama3-8b Zeroshot 0.77 0.75 0.65 0.84 0.53

Random fewshot 0.76 0.78 0.65 0.85 0.52

kNN RAG 0.83 0.76 0.64 0.82 0.52

Pattern RAG 0.83 0.77 0.64 0.83 0.53

kNN+Pattern RAG 0.83 0.75 0.66 0.83 0.55
Gemma2 Zeroshot 0.76 0.76 0.64 0.76 0.55

-9b-it Random fewshot 0.77 0.81 0.68 0.83 0.58

kNN RAG 0.83 0.83 0.64 0.81 0.53

Pattern RAG 0.83 0.83 0.72 0.82 0.61

kNN+Pattern RAG 0.87 0.84 0.74 0.90 0.63
Mixtral- Zeroshot 0.73 0.71 0.66 0.81 0.56
8x7b Random fewshot 0.74 0.79 0.66 0.84 0.55

kNN RAG 0.81 0.80 0.62 0.80 0.51

Pattern RAG 0.81 0.83 0.67 0.86 0.55

kNN+Pattern RAG 0.80 0.81 0.66 0.80 0.56
Table 4: Causality extraction results.

phrases instead of single words when identifying
cause and effect within a sentence. For example, in
the input sentence, “The truck carried homemade
weapons, and the blast was caused by the mishan-
dling of weapons,” the ground truth dataset labels
“mishandling” as the cause and “blast” as the effect.
However, with our prompts, the LLM generates
“mishandling of weapons” as the cause and “blast”
as the effect. Additionally, we explicitly instruct
the LLM in the prompt to ensure there is no overlap
between the predicted cause and effect phrases.

To evaluate the performance of causality extrac-
tion task, we use different metrics based on whether
a sentence has only one cause-effect phrase or mul-
tiple cause-effect phrases in the ground truth data.
For the SemEval and ADE datasets, each sentence
has only a single set of cause-effect phrase; so for
these datasets we only check whether the predicted
cause and effect phrases match with the ground
truth cause and effect phrases, respectively. If the

ground truth word is presented in the predicted
phrases (for both cause and effect), we consider the
causality extraction task on that sentence a success.
Accuracy is simply the fraction of sentences for
which causality extraction is a success. Note that,
for these two datasets, we add a constraint in the
prompt so that LLM extracts only one cause-effect
pair from each sentence.

The Li et al. dataset have sentences which have
multiple cause-effect phrases, so for this dataset
accuracy is hard to produce. So we use precision,
recall, and F1 metrics as below. From all the sen-
tences in Li et al., we first create triplets (S,C,E),
each denoting a distinct cause (C) and effect (E)
phrase pair in the sentence S. Let the set of these
triplets be called the triplet test set (Tt). Say, Tp

is the collection of triplets formed from the LLM
for all the sentences. Then, precision of the LLM
model for the Li et al. dataset can be calculated as
P = |Tt ∩ Tp|/|Tp|, and recall can be calculated



as R = |Tt ∩ Tp|/|Tt|. From P and R, we then
compute the F1 value. While computing intersec-
tion between Tp and Tt, a predicted triplet in Tp

is considered a match with a ground truth triplet
in Tt, when their sentences are identical, and the
ground truth cause and effect phrases are present
in the predicted cause and effect phrase.

4.1 Baseline Methods
As baseline methods, we use two static prompt
strategies: Zeroshot and Random fewshot for both
the detection and extraction tasks. And a dynamic
in context example selection baseline, kNN RAG.
For the causality extraction task, we use the three
deep learning based methods Bi-LSTM (Dasgupta),
Bi-LSTM-CRF (SCITE) and DEPBERT (Kabir,
2023) which does not use LLM.
Zeroshot: In this baseline approach for both
causality detection and extraction, we provide an
ICL prompt (shown in Appendix) that combines
the concepts of causal connectives with a detailed
task explanation for the model. Experiments con-
ducted under Zeroshot setting on different LLMs
demonstrate the performance of LLMs on causality
mining tasks when no prior examples are available.
Random fewshot: For this baseline approach, we
randomly select 10 examples from Fewshot Exam-
ple DB and concatenate them with the Zeroshot
setting prompt for both tasks. For causality detec-
tion, an input example includes only the sentence
with cause and effect phrases whereas for causality
extraction, we additionally tag the causal connec-
tive of the example. Note that, the prompts and
example formats for Random fewshot, kNN RAG,
Pattern RAG, and kNN+Pattern RAG are the same,
differing only in the choice of example selections.
kNN-RAG: In existing RAG works [35], examples
that are semantically similar to the input are cho-
sen to augment the LLM prompt. We adapt this
approach as a baseline for causality mining and call
it as kNN RAG. We apply the k-nearest neighbor
search algorithm on the vector representations to
find the 10 most similar examples to the given test
instance from the DB. We then concatenate these
examples with our prompts for causality detection
and extraction. In Figure 2, we see that for an input
sentence related to destruction caused by an earth-
quake, the kNN RAG selects the examples with
similar meanings (shown in green circles).
Dasgupta (Bi-LSTM): Dasgupta et al. (2018) pro-
posed one of the earliest deep neural network-based
method for causality extraction. Their approach

combines embeddings from Word2Vec with a lin-
guistic feature vector, which are then input to a
bi-directional LSTM (bi-LSTM) model.
SCITE (Bi-LSTM-CRF): Li et al. (2021) pro-
posed a causality extraction model that leverages
a BiLSTM CRF back bone, enhanced with Flair
embeddings and multihead self-attention.
DEPBERT (Transformer): (Kabir, 2023) DEP-
BERT is a state-of-the-art transformer-based super-
vised model that leverages the dependency tree of a
sentence on top of a BERT model to extract cause
and effect phrases.

4.2 Datasets

For our experiments, we use three well-known
causality datasets: SemEval (Hendrickx et al.,
2019), ADE (Gurulingappa et al., 2012), and Li
et al. dataset(Li et al., 2021) . Their detailed dis-
cussion is provided in Appendix. Statistics of the
dataset is provided in Table 9 (in Appendix). Table
8 and 7 shows few example inputs for causality
detection and extraction tasks, respectively.

Methods Accuracy

Dasgupta (Bi-LSTM) 0.78
SCITE (Bi-LSTM-CRF) 0.78
DEPBERT (Transformer) 0.86
Pattern RAG 0.88
kNN+Pattern RAG 0.90

Table 5: Accuracy comparison of our RAG methods
(GPT-3.5-turbo Pattern RAG and kNN+Pattern RAG)
with deep learning methods on SemEval dataset.

5 Results

Table 5 shows the comparison of three deep
learning-based baseline methods trained on the en-
tire SemEval train dataset with our RAG based
methods, evaluated on the SemEval test set as used
in the DEPBERT paper. Additionally, the best-
performing deep learning method, DEPBERT, has
been included in Table 4 to compare its performace
against all the LLM results. This DEPBERT result
is obtained by training on our few-shot DB and test-
ing on the cleaned test datasets, as detailed in Table
9. Our experiment results for the causality detec-
tion and extraction tasks are shown in Table 3 and
Table 4, respectively. From these tables, we can see
that our RAG-based methods demonstrate signifi-
cant performance improvements over the baseline
methods across all three datasets.

For causality detection, the kNN+Pattern RAG
method achieves the best performance when paired



Figure 3: Plot of the number of examples vs. perfor-
mance results of Causality detection (Task1) and Causal-
ity extraction (Task2) from GPT-4o model for different
RAG based prompting

with the GPT-4o model. The corresponding
best baseline method for GPT-4o across all three
datasets is kNN RAG. The F1 improvements by the
best of our RAG approach over the best baseline
approach for SemEval, ADE, and Li et al. are +2%,
+7%, and +1%, respectively.

For causality extraction, the SemEval dataset
shows its best performance with the GPT-3.5-turbo
model in the kNN RAG and kNN+Pattern RAG
settings. The ADE and Li et al. datasets achieve
their best performance with the GPT-4o model in
kNN+Pattern RAG and Pattern RAG, respectively.
Our best-performing RAG model shows no im-
provement in accuracy over the best baseline (kNN
RAG) for the SemEval dataset, maintaining an ac-
curacy of 0.91. However, significant improvements
are observed for the ADE and Li et al. datasets.
For ADE, the GPT-4o model using kNN+Pattern
RAG improves accuracy by +6% (0.84 vs. 0.79).
In the Li et al. dataset, the Pattern RAG method
boosts F1 by +4% (0.80 vs. 0.77).

6 Performance vs Fewshot Count

In this experiment we validate whether the number
of fewshot examples affects the performance of dif-
ferent promptings: Random fewshot, kNN RAG,
Pattern RAG, and kNN+Pattern RAG. For obvious
reason, Zeroshot is not used as it does not use any
example. We show results for GPT-4o as this is the
best performing LLM, Figure 3 shows the results.
In this figure, we show six panels. In each panel,
we show the change in F1 score with respect to the

number of fewshot examples for Random fewshot,
kNN RAG, Pattern RAG and kNN+Pattern RAG.
For causality detection, the Random fewshot selec-
tion approach shows lower F1 scores than those
of all three RAG-based methods, regardless of the
number of examples chosen. This indicates that
the causality detection task benefits solely from
the quality of the examples chosen across all three
datasets, rather than the number of examples.

For causality extraction, we see that the RAG-
based approaches show higher accuracy than the
Random fewshot approach for different fewshot ex-
ample counts in the SemEval and ADE datasets. In
the Li et al. plot, we see that the Random fewshot
outperforms Pattern RAG at a fewshot example
count of 50. This is due to the fact that Pattern
RAG dynamically selects examples based on the
existence of causal connectives. Our Fewshot exam-
ple DB has a limit of 10 examples for each pattern
(causal connectives), so if an instance does not have
multiple causal connectives, Pattern RAG cannot
obtain more examples. Therefore, when the num-
ber of examples is increased to a high value like 50,
Pattern RAG does not necessarily has 50 examples,
while Random fewshot always have 50 examples.

We conclude from these results that simply in-
creasing the number of examples does not improve
LLM performance. The performance increase in
the kNN+Pattern RAG in most of the LLM re-
sults is solely based on the quality of the examples
chosen by concatenation, not on the increase in
example count.

7 Causality extraction on multi-word and
multi-cause-effect scenarios.

The dataset by Li et al. contains sentences la-
beled with multiple cause-effect pairs. Table 6
presents a comparative analysis of the transformer-
based DEPBERT method and our best-performing
Pattern RAG method using GPT-4o. Extracting
multiple cause-effect pairs from a sentence poses
significant challenges for traditional deep learn-
ing methods. However, our proposed LLM-based
RAG method demonstrates a notable improvement
in performance (F1 score). From the first exam-
ple, we observe that DEPBERT struggles to predict
all causes and effects correctly in a multi-labeled
dataset. Our approach shows a good performance
improvement but is hindered by the exact-match re-
quirement of the evaluation metric (all words in the
label should be present in the predicted phrase). For



Input Sentence DEPBERT Pattern RAG GPT 4o
Cause Effect Cause Effect

Heat , wind and smoke cause flight
delays.

× Heat flight delays Heat , wind,
smoke

flight delays

Information about the foodborne ill-
ness caused by salmonella bacteria .

× by salmonella
bacteria

× foodborne illness salmonella bacte-
ria

× foodborne illness

Eye discomfort from this staring ef-
fect is exacerbated by low humidity.

× low humidity Eye discomfort,
staring

× staring effect,
low humidity

Eye discomfort

Table 6: Comparitative analysis of DEPBERT and the proposed approach on cause-effect extraction tasks. Cause and
effect labels are indicated by blue and red color in the input sentence respectively. × indicates incorrect predictions,
while denotes correct ones based on our evaluation metrics.

Dataset Input Sentence Cause label Effect label

SemEval Dogs develop a fever from stress and/or pain such as in a severe flea
infestation.

stress fever

ADE Benzocaine-induced methemoglobinemia has been reported in man,
dogs, and cats.

Benzocaine methemoglobinemia

Li et al. Paralysis or convulsions are caused by hormone deficiencies and
imbalances .

– hormone deficiencies
and imbalances

Paralysis

– hormone deficiencies
and imbalances

convulsions

Table 7: Input examples for causality extraction.

instance, in example two, the actual effect phrase
is "the foodborne illness," while our model pre-
dicts "foodborne illness," resulting in a misclassi-
fication due to the missing article. Example three
highlights a scenario where our model predicts the
cause phrase correctly, but the dataset lacks cor-
responding labels. This analysis shows that the
causality extraction for a multi-word and multi-
cause-effect scenarios, can be improved by a better
evaluation metrics and labeling practices.

8 Conclusion

In this work, we proposed two retrieval-augmented
generation (RAG) based dynamic prompting meth-
ods for LLMs to address the task of causality min-
ing. These approaches leverage both semantic and
pattern-based similarity between the input sentence
and a collection of test sentences to construct dy-
namic prompts. Experimental results demonstrate
that our proposed methods significantly enhance
the performance of causality detection and causal-
ity extraction tasks.

9 Limitations

One major limitation of our approach is its focus on
intra-sentential causality relations, without address-
ing inter-sentential causality relations. Extending
our method to detect and extract inter-sentential
causality could be a promising direction for future
research, offering significant benefits to real-world

situations. For example, in the medical domain,
understanding complex causal relationships across
sentences is crucial. Besides, causality relations
exist across all languages. Our experiments have
been conducted only in English language. An in-
depth understanding of the meaning and structure
of different languages would help extend our RAG-
based approaches to causality mining in different
languages.
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11 Appendix

The prompts for causal connective extraction,
causality detection (zeroshot setting), and causality
extraction (zeroshot setting) are shown in Figures
6, 5, and 4, respectively. For different RAG set-
tings and for different causality tasks, the following
texts and dynamically generated examples (as re-
trieved by various RAG methods) are appended
to the associated prompt. “Below are 10 example
sentences which show causality relation with their
cause and effect phrase delimited between the XML
tags <cause>, </cause> , <effect> and </effect>." +
EXAMPLES.”



Figure 4: Causality Extraction Prompt

A Dataset Discription

SemEval: For our causality detection task, we se-
lect 249 causal sentences from the test set that are
absent in our Fewshot Example DB and a random
sample of 300 non-causal sentences from the test
data (9). We label the causal sentences with a 1 and
the non-causal sentences with a 0. Table 8 shows
a sample of input from the SemEval data for the
causality detection task. For the causality extrac-
tion task, we use the same 249 causal sentences
from the detection task and their provided cause
and effect labels as test keys. Table 7 shows a sam-
ple of input sentences along with their provided
cause and effect labels.

ADE: This dataset contains 6,821 causal sen-
tences involving drugs and their effects. After filter-
ing sentences having multiple cause-effect phrases,
we retain 4,271 instances. We randomly partition
these into 2,000 training instances (later used for
the Fewshot Example DB creation) and 2,271 test
instances. For our causality detection task, we
use these 2,271 test instances (causal sentences
absent in our Fewshot Example DB) and combine
them with a random sample of 2,000 non-causal
sentences from the training dataset of the Li et al.
dataset. An ADE input sample is shown in Table
8. For the causality extraction task, we use the
2,271 causal sentences as input and use the drug

Dataset Input Sentence label

SemEval Dogs develop a fever from stress
and/or pain such as in a severe
flea infestation.

1

The researchers placed the com-
pound in a tube, which then was
put inside a magnet.

0

ADE Benzocaine-induced methe-
moglobinemia has been
reported in man, dogs, and cats.

1

The man placed the cartridge
into the printer.

0

Li et al. Paralysis or convulsions are
caused by hormone deficiencies
and imbalances ..

1

This theme has been covered in
science fiction like Star Trek.

0

Table 8: Task1 Causality detection input examples

and effect labels as ground truth.
Li et al. : For the causality detection task, we

use the entire test data (Table 9) as our input (all
causal sentences are absent in our Fewshot Example
DB). For the causality extraction task, we use the
191 causal sentences as input and use the provided
cause-effect labels as our test keys. The Li et al.
dataset has multiple cause-effect pairs labeled in a
given sentence, resulting in a total of 296 unique
triplets of (cause, effect, sentence).



Figure 5: Causality Detection Prompt

Figure 6: Causal Connective Extraction Prompt

Dataset Split #total
unique
instances

#causal
relations

#non-causal
relations

Fewshot Ex-
ample DB - 2,365 2,365 -

SemEval

Train 8,000 1,003 6,997
Test 2,717 328 2,389
Task1 input 549 249 300
Task2 input 249 249 -
Train 2,000 2,000 -

ADE Test 2,271 2,271 -
Task1 input 4,271 2,271 2,000
Task2 input 2,271 2,271 -

Li et al.

Train 4,450 1,079 3,371
Test 786 191 595
Task1 input 786 191 595
Task2 input 191 191 -

Table 9: Dataset statistics. (Task1: Causality detection, Task2: Causality extraction)
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