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Abstract

Retrieval-Augmented Generation (RAG) sys-
tems and large language model (LLM)-
powered chatbots have significantly advanced
conversational AI by combining generative ca-
pabilities with external knowledge retrieval.
Despite their success, enterprise-scale deploy-
ments face critical challenges, including di-
verse user queries, high latency, hallucinations,
and difficulty integrating frequently updated
domain-specific knowledge. This paper intro-
duces a novel hybrid framework that integrates
RAG with intent-based canned responses, lever-
aging predefined high-confidence responses for
efficiency while dynamically routing complex
or ambiguous queries to the RAG pipeline. Our
framework employs a dialogue context man-
ager to ensure coherence in multi-turn inter-
actions and incorporates a feedback loop to
refine intents, dynamically adjust confidence
thresholds, and expand response coverage over
time. Experimental results demonstrate that
the proposed framework achieves a balance of
high accuracy (95%) and low latency (180ms),
outperforming RAG and intent-based systems
across diverse query types, positioning it as a
scalable and adaptive solution for enterprise
conversational AI applications.

1 Introduction

Recent progress in NLP has drastically changed
the landscape of conversational AI, and among
such new state-of-the-art solutions, a class of
Retrieval-Augmented Generation (RAG) systems
has emerged. By combining large language mod-
els (LLMs) with separate information retrieval
pipelines, RAG systems can generate contextu-
ally rich and factually grounded responses, which
are necessary for knowledge-intensive applications
(Lewis et al., 2020). However, enterprise-scale con-
versational AI systems often face real-world chal-
lenges such as diverse user query patterns, vary-
ing levels of query complexity, and stringent la-

tency requirements for seamless user experiences.
High computational costs, susceptibility to hallu-
cinations when retrieval is misaligned, and ineffi-
ciencies in managing frequently updated domain-
specific knowledge further compound these chal-
lenges, particularly in dynamic environments like
customer support (Sanh et al., 2020b; Rocktäschel
et al., 2020). In practice, ensuring that such sys-
tems can scale while maintaining accuracy and low
latency remains an industry pain point.

In contrast, classical intent-based chatbots are ef-
ficient in processing frequently asked questions
(FAQ) and other predictable queries, thanks to us-
ing pre-defined responses. Their lightweight com-
putational footprint and scalability also make them
well-suited for high-confidence, domain-specific
scenarios (Serban et al., 2017; Shah et al., 2018).
However, these systems are inherently rigid and of-
ten struggle with query diversity, especially when
faced with ambiguous or context-dependent user in-
teractions. In high-demand enterprise settings, the
inability of intent-based systems to adapt quickly to
evolving user needs or handle complex multi-turn
dialogues (Shah et al., 2018; Zhao, 2020) results in
inconsistent user experiences and increased oper-
ational overhead for manual updates. The inabil-
ity to balance adaptability with efficiency under-
scores the need for hybrid systems that synergize
the strengths of RAG and intent-based approaches.

In order to solve these challenges, we propose a
novel hybrid framework that combines RAG sys-
tems with intent-based canned responses for dy-
namic, multi-turn customer service interactions.
While prior works have explored combining RAG
and intent-based systems independently, our contri-
bution lies in a cohesive framework that not only
integrates these elements but also introduces a dy-
namic confidence-based routing mechanism refined
through user feedback. This mechanism ensures
that query routing decisions are continuously op-
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timized based on real-time user interactions, en-
abling a system that evolves and adapts without
manual intervention. Additionally, our framework
addresses scalability challenges by efficiently bal-
ancing computational resources, making it par-
ticularly suited for enterprise-scale applications
where latency and accuracy are paramount. Our
approach utilizes a dynamic query routing mecha-
nism that evaluates the intent confidence level of
user queries:

• High-confidence queries are resolved using
predefined canned responses to ensure low
latency and computational efficiency.

• Low-confidence or ambiguous queries are
routed to the RAG pipeline, enabling contex-
tually enriched responses generated from ex-
ternal knowledge.

The framework is further enhanced with a dia-
logue context manager, keeping track and man-
aging evolving intents across multiple turns, ensur-
ing consistent and coherent interactions. Addition-
ally, a feedback loop continuously refines the intent
repository, adapting to emerging user needs and ex-
panding response coverage over time. Our system
is designed to meet enterprise latency standards,
delivering responses within an acceptable thresh-
old (sub-200ms latency and high turn efficiency),
thereby ensuring user engagement and satisfaction
in real-time applications(Pattnayak et al., 2024).

Our Contributions This work makes the follow-
ing key contributions:

1. Hybrid Conversational Framework: We
propose a novel architecture which combines
RAG systems with intent-based canned re-
sponses; the queries are routed dynamically
for optimizing response latency and computa-
tional cost without compromising accuracy.

2. Multi-Turn Dialogue Management: We in-
troduce a dialogue context manager which can
track the evolving user intents and guarantee
coherence in responses over multiple turns,
thus addressing a key gap in the current sys-
tems.

3. Feedback-Driven Adaptability: Our frame-
work incorporates a feedback loop to enable
continuous refinement of intents, canned re-
sponses and confidence thresholds, thereby
improving system adaptability and coverage

for real-world applications.

4. Comprehensive Evaluation: Extensive ex-
periments on synthetic and real-world datasets
demonstrate significant improvements in ac-
curacy, latency, and cost efficiency compared
to state-of-the-art baselines.

5. Real-World Applicability: Our framework
is designed for enterprise-scale deployment,
handling diverse user queries efficiently, from
repetitive FAQs to complex knowledge-based
questions, while adhering to industry latency
standards critical for user retention.

By addressing key challenges faced by enterprise
conversational AI systems, such as query diver-
sity, dynamic knowledge updates, and real-time la-
tency requirements, our proposed framework offers
a scalable, adaptive, and efficient solution. This
work advances task-oriented dialogue systems, par-
ticularly in domains where multi-turn interactions
and dynamic knowledge management are essential
for operational success.

2 Related Work

2.1 Retrieval-Augmented Generation (RAG)

Recent advancements in RAG have enhanced con-
textual retrieval and generative capabilities, improv-
ing incident resolution in IT support (Isaza et al.,
2024), question-answering systems, and domain-
specific chatbots (Veturi et al., 2024). Research on
noise handling (Cuconasu et al., 2024) and rein-
forcement learning (Kulkarni et al., 2024) further
optimizes RAG for precision and adaptability in
complex applications. By retrieving relevant doc-
uments during inference, RAG systems mitigate
common LLM challenges such as hallucinations
and outdated knowledge (Lewis et al., 2020; Sanh
et al., 2020b). These systems are particularly effec-
tive for knowledge-intensive tasks where accuracy
and factual grounding are critical.

Despite their effectiveness, RAG systems face sig-
nificant challenges, including high computational
costs and latency due to the dual retrieval and gen-
eration processes. Enterprise settings also pose
unique challenges, such as diverse user queries,
latency constraints, and evolving domain knowl-
edge needs (Lewis et al., 2020; Pattnayak et al.,
2025). Moreover, most existing RAG systems are
optimized for single-turn interactions and strug-
gle with maintaining coherence in multi-turn di-



Approach Strengths Weaknesses Multi-Turn Support Feedback Adaptation

RAG Systems Accurate, dynamic re-
sponses

High latency, computa-
tionally expensive

Limited No

Intent-Based Chatbots Efficient, low latency Rigid, poor adaptability No No

Hybrid RAG-Intent
Systems

Balance between effi-
ciency and flexibility

Limited multi-turn and
feedback mechanisms

Partial No

Proposed Framework Low latency, multi-turn
adaptable

Scalability challenges Yes Yes

Table 1: Comparison of Existing Approaches and the Proposed Framework.

alogues, where evolving user intents require dy-
namic retrieval and contextual adaptation (Rock-
täschel et al., 2020). Recent efforts to optimize
RAG pipelines, such as multi-stage retrieval sys-
tems (Lee et al., 2020) and model distillation (Sanh
et al., 2020b), have reduced latency but do not ad-
dress the complexities of multi-turn interactions
(Sanh et al., 2020a).

2.2 Intent-Based Chatbots

Intent-based chatbots work well for predictable,
high-confidence queries by mapping user inputs to
predefined intents. These systems are widely used
in domains like customer support, where they effi-
ciently handle FAQs and repetitive queries with
minimal computational overhead (Serban et al.,
2017; Shah et al., 2018). However, their reliance
on predefined intents limits their adaptability to
ambiguous or evolving queries, particularly in
multi-turn conversations (Michelson et al., 2020;
Friedrich et al., 2020).

Recent developments have involved the inclusion
of transformer-based models to enhance intent
recognition and increase coverage (Michelson et al.,
2020). However, these methods are resource-heavy,
as they require a lot of labeled data and compu-
tational resources, which makes scalability quite
limited for dynamic domains.

2.3 Hybrid Approaches

Hybrid retrieval systems integrating lexical search
(e.g., BM25 (Robertson and Walker, 1994))
and semantic search (e.g., dense embeddings via
FAISS (Douze et al., 2024)) effectively balance
speed and semantic depth (Agarwal et al., 2025),
improving retrieval accuracy (Mitra et al., 2021;
Hernandez et al., 2020).

In conversational AI, hybrid approaches integrating
RAG with intent-based responses have emerged to
address limitations in single-mode systems by en-

hancing flexibility and efficiency (Bordes et al.,
2020). Prior works, such as (Gao et al., 2020b;
Zhao, 2020; Patel et al., 2024), have explored blend-
ing retrieval-augmented pipelines with canned re-
sponses to improve response efficiency and contex-
tual depth. However, these systems are primarily
designed for single-turn interactions and do not
address the complexities of multi-turn dialogues,
where query context evolves dynamically (Agar-
wal et al., 2024a). While existing research relies
on static threshold-based routing, the integration
of adaptive threshold driven routing and response
generation for real-time, multi-turn applications
remains an under explored area with significant
potential for optimization.

2.4 Positioning of This Work

While prior research has advanced RAG systems,
intent-based chatbots, and hybrid architectures, key
limitations remain. RAG systems excel in generat-
ing contextually rich responses but struggle with
coherence in multi-turn conversations, high latency,
and computational costs (Lewis et al., 2020; Rock-
täschel et al., 2020). Intent-based chatbots are effi-
cient but lack flexibility for ambiguous or evolving
queries in dynamic settings (Serban et al., 2017;
Agarwal et al., 2024b). Hybrid systems balance
efficiency and adaptability but often fail to track
dialogue context or refine responses dynamically
based on user feedback (Gao et al., 2020a). Ta-
ble 1 summarizes the key differences between the
existing work and our proposed framework.

This work addresses real-world challenges by
proposing a hybrid framework that integrates RAG
systems with intent-based canned responses. It uses
dynamic query routing to handle high-confidence
queries efficiently with canned responses while re-
lying on RAG pipelines for complex cases. A dia-
logue context manager ensures coherence in multi-
turn interactions, and a real-time feedback loop



Figure 1: High-level Architecture of the Hybrid Framework.

enables continuous refinement of intents, thresh-
olds and canned responses. For instance, in an
enterprise customer support setting, our system ef-
ficiently handles high-frequency queries such as,

“How do I reset my password?” using canned re-
sponses with minimal latency (under 200ms), en-
suring quick resolution for routine tasks. In con-
trast, more complex queries such as, “Can you
help me troubleshoot a payment gateway integra-
tion issue with API X?” are dynamically routed to
the RAG pipeline, leveraging external documen-
tation and past incident reports to generate accu-
rate responses. This adaptability is further evident
when users provide feedback on response quality,
prompting the system to refine its intent classifi-
cation and adjust confidence thresholds for future
queries. Unlike existing systems that either focus
on single-turn interactions or static routing and
struggle with multi-turn dialogue management, our
framework continuously adapts to diverse queries
and user needs, optimizing latency and scalability.

By focusing on these critical aspects, this frame-
work advances the state-of-the-art in task-oriented
dialogue systems, particularly for enterprise-scale
applications where efficiency, scalability, and
adaptability are paramount.

3 Proposed Framework

The proposed framework integrates the efficiency
of intent-based canned responses with the con-

textual richness and adaptability of Retrieval-
Augmented Generation (RAG) systems (Lewis
et al., 2020; Gao et al., 2020c). By dynamically
routing queries based on intent confidence and
leveraging user feedback for adaptive refinement,
the framework addresses latency, accuracy, and
scalability challenges while maintaining coherence
across multi-turn interactions. Figure 1 illustrates
the architecture with key modules, data flow and
a Redis Cache which stores frequently accessed
intents and responses for faster retrievals.

3.1 Key Modules
The framework comprises the following key com-
ponents, each designed to address specific chal-
lenges in multi-turn dialogue systems:

Intent Classifier. The Intent Classifier utilizes
a fine-tuned BERT model (Devlin et al., 2019) to
encode user queries into semantic embeddings ex-
tracted from last layer of the model. See Appendix
A.3 for datatset detail. Confidence scores (c) are
calculated by comparing the query embedding with
predefined intent embeddings: Based on c, the
query is classified as:

• c > 0.85: FAQ (Canned Response).

• 0.5 < c ≤ 0.85: Contextual.

• c ≤ 0.5: Out-of-Domain.

The above thresholds are default for the system
which are updated based on the user-feedback on



Algorithm 1 Context-Aware Intent Confidence Calculation

Require: Query Q, Set of Intent Embeddings {E1, E2, . . . , En}, Historical Context Embeddings Ht

Ensure: Highest Confidence Score c, Corresponding Intent: Intentmax
1: Step 1: Calculate Query Embedding
2: Eq ← BERT(Q)
3: Step 2: Contextual Query Embedding
4: Contextt ← ϕ(Eq,Ht) ▷ Augment query embedding with historical context
5: Step 3: Confidence Calculation
6: for each intent embedding Ei in {E1, E2, . . . , En} do
7: ci ← CosineSimilarity(Contextt, Ei) ▷ Compute similarity for intent i
8: end for
9: Step 4: Find Best Match

10: c← max(ci) ▷ Highest confidence score
11: Intentmax ← argmaxi(ci) ▷ Intent corresponding to c
12: Output: c, Intentmax

the fly. Algorithm 1 provides the pseudo-code for
the classification process, which incorporates his-
torical context from the Dialogue Context Manager.

Dialogue Context Manager. The module tracks
dialogue history using embeddings of prior queries
and responses, stored in a sliding window. For
multi-turn interactions, historical context embed-
dings are computed dynamically:

Ht = ψ
(
{(Qt−i, Rt−i) | i = 1, ..n}

)
where ψ represents a bi-encoder (in-house architec-
ture) that computes the embeddings by appending
prior context, queries, and responses into a string.
Qt−i and Rt−i represents previous query and cor-
responding responses within a chat session. The
aggregated historical context Ht is then used to
compute the current contextual query embedding:

Contextt = ϕ(Eq,Ht)

Here, ϕ represents a lightweight transformer block
(in house cross-encoder) to compute attention, Eq

is the current query embedding. Relevant historical
context embedding is appended to the current query
embedding for downstream processing.

Dynamic Routing. The module checks the confi-
dence (c) of the classified intent: Intentmax, against
the threshold (τFAQ) of the particular intent in the
Intent Data Store. τFAQ for each intent is dynami-
cally updated with user-feedback.

Response Generator. The module refines the fi-
nal response to user by either blending the static
canned responses (Rc) with dynamic RAG outputs

(Rr) using a language module or directly passing
the Rc or Rr to the user based on the Dynamic
Router.

Feedback Mechanism. Explicit (ratings) and im-
plicit (e.g., query refinements) feedback is logged
and used to refine thresholds, intents, and response
mappings. New intents are created for recurring un-
handled queries. Specifically, recurring unhandled
queries are logged and grouped based on semantic
similarity. When a threshold number of similar un-
resolved queries is reached in a group, the system
automatically flags for creation of a new intent and
response. Explicit user feedback is collected via
a post-response prompt in the chat interface, al-
lowing users to rate responses positive or negative
(thumbs up or thumbs down), which dynamically
updates the system’s confidence thresholds every
100 interactions.

3.2 Workflow
The framework integrates query classification, re-
sponse routing, multi-turn handling, and feedback
adaptation into a cohesive workflow:

Query Classification. Queries are classified into
types (FAQ, Contextual, or Out-of-Domain) based
on the confidence score c from the Intent Classifier
and the threshold τFAQ & τOut-of-Domain for each
intent, stored in the Intent Data Store, which is
dynamically updated with the user feedback. The
classification logic is as follows:

• FAQ: If c > τFAQ, the query is resolved using
a predefined canned response for the intent.

• Out-of-Domain: If c ≤ τOut-of-Domain, the



query is routed exclusively to the RAG
pipeline for domain-specific response genera-
tion.

• Contextual: If τOut-of-Domain < c ≤ τFAQ, the
query is processed by both canned responses
for the intent and the RAG pipeline. The Re-
sponse Generator then combines the outputs.

Response Routing. The final response for the
user is based on the query classification. The re-
sponse generation varies by query type:

1. Canned Response (FAQ): The predefined the
canned response for the intent is passed di-
rectly to the user for rapid resolution.

2. RAG Response (Out-of-Domain): The RAG
output is passed as is, ensuring the most con-
textually rich response for undefined intents.

3. Hybrid Response (Contextual): Both the
canned response and the RAG output are re-
trieved and combined into a unified response
using a language model (LLM):

Rf = LLM(c ·Rc, (1− c) ·Rr),

where c is the confidence of the Intentmax,
passed to the LLM in to the prompt to en-
sures coherence and contextual alignment in
the final response.

Multi-Turn Handling. Context tracking ensures
coherence in multi-turn interactions by retrieving
and appending the most relevant embeddings from
dialogue history.

Feedback-Driven Adaptability. User feedback
dynamically influences system thresholds and in-
tent mappings. The threshold for FAQs (τFAQ) is
adjusted based on feedback trends, ensuring that
frequently misclassified queries are handled appro-
priately. The update mechanism follows::

τFAQ = τFAQ + λ · (NFR− PFR),

where:

• NFR: Negative Feedback Rate.

• PFR: Positive Feedback Rate.

• λ: Scaling factor controlling the sensitivity of
the adjustment.

• τFAQ: By default is set to 0.85 whenever the
intents (and dependent intents) are updated in
intent data store.

High negative feedback increases the threshold, re-
ducing the likelihood of misclassification as FAQs,
while positive feedback reduces the threshold to
favor FAQ classification. Threshold for Out-of-
Domain queries (τOut-of-Domain) is kept constant at
0.5 to prevent over-restricting or over-generalizing
OOD classification. This adaptive threshold mecha-
nism ensures that the system remains responsive to
user feedback while maintaining stability in query
classification. Further details are provided in Ap-
pendix A.1

3.3 Prototype Implementation
The framework is implemented as a modular sys-
tem using microservices:

• Frontend: Built with React.js for user inter-
action and feedback collection (Contributors,
2023).

• Backend: Flask microservices handle query
classification, retrieval, and feedback process-
ing (Grinberg, 2018).

• Storage: OCI (Oracle Cloud Infrastructure)
Opensearch stores canned responses & exter-
nal knowledge base, while FAISS and dense
embeddings support retrieval (Karpukhin
et al., 2020).

• Memory Cache: A memory-augmented mod-
ule maintains embeddings of prior inter-
actions in OCI Cache (Managed Redis), al-
lowing the system to retain relevant historical
context across multiple dialogue turns.

• Model Deployment: Models (e.g., BERT, En-
coder, Cross-Encoder, GPT-3 & other propri-
etary LLMs) are deployed using in-house ar-
chitecture and OCI Gen AI Service for scala-
bility.

4 Experiment and Results

The hybrid framework was evaluated on four met-
rics: accuracy, response latency, cost efficiency,
and turn efficiency. These evaluations spanned in-
house datasets of live customer queries, and scal-
ability tests. Table 2 summarizes overall results,
while Table 5 in the appendix provides category-
wise performance.

4.1 Experimental Setup
The evaluation dataset comprised 10,000 queries,
categorized as :- a) Predefined FAQ Queries (40%):



High-confidence queries resolved via canned re-
sponses, b) Contextual Queries (30%): Queries
requiring both canned & RAG responses, and c)
Out-of-Domain Queries (30%): Undefined intents
handled exclusively by RAG pipeline.

For multi-turn interactions, 20% of queries in-
cluded follow-ups designed to assess context re-
tention. Scalability tests evaluated performance
with dataset sizes up to 50,000 queries, preserving
category proportions. Results are shown in Table
3.

Evaluation Metrics The system was assessed
using the following metrics:

• Accuracy: Percentage of correctly resolved
queries across predefined FAQs, contextual
queries, and out-of-domain scenarios. Ac-
curacy is a fundamental evaluation metric
in retrieval-based and generative NLP mod-
els (Karpukhin et al., 2020; Lewis et al., 2020),
ensuring that responses align with the in-
tended knowledge base. We determine ac-
curacy using a cosine similarity metric, as
used in prior works on retrieval-based QA sys-
tems (Reimers and Gurevych, 2019). For Pre-
defined FAQ, the framework has to fetch the
correct FAQ, leading to a 100% cosine sim-
ilarity. For Contextual and Out-of-Domain
Queries, the generated resposne needs to be
similar (90%) to annotated ground truth an-
swer.

• Response Latency: Average response time
in milliseconds taken to generate responses.
Response latency is crucial in real-time con-
versational AI applications, as delays directly
impact user experience (Shuster et al., 2021).
Faster response times enhance engagement,
making this metric essential for evaluating
system efficiency.

• Cost Efficiency (CE): A normalized measure
of cost efficiency, defined as:

CE = min

(
1,

Latencybaseline

Latencyproposed
×

Accuracyproposed

Accuracybaseline

)

Inspired by cost-aware NLP evaluations (Tay
et al., 2023), this metric balances accuracy
and latency trade-offs. It ensures that the pro-
posed framework maintains or improves ac-

curacy while reducing computational costs, a
key factor in large-scale AI deployment.

• Turn Efficiency: Average number of turns
required to resolve a query in a conversation:

Turn Efficiency =
Total Turns

Resolved Queries

Turn efficiency measures conversational con-
ciseness, ensuring that the system minimizes
unnecessary back-and-forth interactions (Ser-
ban et al., 2017). A lower number of turns
per resolved query indicates a more efficient
dialogue system, reducing user dissatisfaction
and operational overhead.

4.2 Results and Analysis

Overall Performance. Table 2 compares the pro-
posed framework with baseline systems. Our pro-
posed framework achieves a balance of high ac-
curacy (95%) and low latency (180ms), outper-
forming the canned-response system and the RAG
pipeline’s accuracy. The proposed system reduces
the chances of hallucination for the most common
user queries by leveraging canned responses hence
outperforming accuracy of just RAG pipeline’s.

Category-Specific Insights. Table 5 (Appendix
A.2) highlights performance variations across
query types:

• FAQs: Similar accuracy compared to the
canned-response system, with a 82% reduc-
tion in latency compared to RAG Pipeline.

• Contextual Queries: Accuracy improved
over 47% compared to canned-response sys-
tem, with over 50% reduction in latency com-
pared to RAG Pipeline with similar accuracy.

• Out-of-Domain Queries: The RAG pipeline
and our proposed framework exceed the base-
line intent-based system’s accuracy by over
85%, as intent systems default to fallback re-
sponses for out-of-domain queries.

Scalability. The hybrid framework’s scalability
was evaluated under query loads ranging from
1,000 to 50,000. We observed graceful perfor-
mance degradation under increasing query loads.
Accuracy remains within enterprise-grade thresh-
olds (92% at 50,000 queries), while latency in-
creases proportionally due to retrieval bottlenecks.
Table 3 summarizes the results, demonstrating the



Framework Accuracy (%) (↑) Response Latency (ms) (↓) Cost Efficiency (↑) Turn Efficiency (↓)

Canned-Response (Baseline) 53 68 1.0 NA

RAG Pipeline 91 380 0.3 2.3

Proposed Framework 95 180 0.7 1.7

Table 2: Evaluation Results for Canned-Response (Intent) Systems, RAG, and Proposed Frameworks. Metrics
represent averages across the evaluation dataset. The desired direction for improvement: (↑) higher is better, (↓)
lower is better. Turn Efficiency is not available for Canned-Response as it lacks multi-turn capabilities.

frameworks ability to maintain balanced perfor-
mance in terms of accuracy, latency, and cost effi-
ciency under increasing concurrent loads.

Cost Efficiency. Proposed framework demon-
strates effective trade-offs, achieving a CE score of
0.7 compared to 0.3 for RAG. The introduction of
dynamic query routing minimizes computational
overhead for high-confidence queries.

Turn Efficiency. Turn efficiency (1.7) highlight
the framework’s ability to maintain coherence and
minimize dialogue complexity while trying to re-
solve queries, relatively outperforming both base-
lines when compared in conjunction with accuracy
and response latency.

Multi-Turn Interaction Analysis With 20%
(2,000) queries including follow-up interactions,
the dialogue context manager maintained high co-
herence in these multi-turn interactions, effectively
tracking evolving user intents and ensuring context
continuity. Minor context drift was observed in ses-
sions exceeding 10 turns, indicating that optimiz-
ing context management for prolonged dialogues
remains an area for future improvement. See Ap-
pendix A.5 for common failure scenarios and error
analysis.

Query Load Accuracy (%) Latency (ms) Cost Efficiency

1,000 96 174 0.77

5,000 96 177 0.74

10,000 95 180 0.71

20,000 94 186 0.70

50,000 92 193 0.69

Table 3: Scalability Results for the proposed Framework.
Query Load indicates the number of queries processed
in the evaluation.

4.3 Error Analysis:
We conducted a manual error analysis on 500 dia-
logue samples covering diverse user intents. Only
32 (6%) samples were found erroneous. Three in-

dependent annotators with subject matter expertise
in Oracle cloud customer support evaluated these
dialogue samples with an inter-annotator agree-
ment of 0.91. Errors were categorized into four
main types: 1) Edge Cases in Intent Classification
(21%) due to subtle semantic differences, 2) Long
Multi-Turn Dialogues (35%) where latency and
context tracking issues arose, 3) Retrieval Inaccu-
racy (25%) from incomplete or outdated document
retrieval, and 4) Feedback Misalignment (19%) due
to misinterpretation of user feedback. Future work
to remediate these could include refining fallback
strategies, optimizing context management, regular
index updates, and context-aware feedback process-
ing. Further details are provided in Appendix A.5.

4.4 Final Insights and Implications
The evaluation metrics, error analysis and scalabil-
ity underscore the proposed framework’s effective-
ness:

• Efficiency-Accuracy Trade-offs: Dynamic
query routing achieves optimal balance be-
tween computational cost and response qual-
ity.

• Multi-Turn Adaptability: Superior context
retention validates its applicability in complex
dialogue scenarios.

• Scalability and Robustness: Modular de-
sign ensures operational resilience under high
query loads.

5 Conclusion

We proposed a hybrid conversational framework
that integrates intent-based canned responses with
Retrieval-Augmented Generation (RAG) systems,
explicitly designed to handle multi-turn interac-
tions. The framework dynamically routes queries
based on intent confidence, ensuring low latency
for predefined intents while leveraging RAG for
complex or ambiguous queries. The inclusion
of a dialogue context manager guarantees coher-



ence across multi-turn interactions, and a feedback-
driven mechanism continuously refines intents and
confidence thresholds over time.

Experimental results demonstrated the proposed
framework’s ability to balance accuracy (95%), re-
sponse latency (180ms), and cost efficiency (0.7),
while achieving superior context retention and turn
efficiency in multi-turn scenarios. The system
effectively handles multi-turn dialogues with mi-
nor limitations in long conversations exceeding 10
turns. Our contributions include a scalable, adap-
tive solution for dynamic conversational AI, ad-
dressing key industry challenges such as query di-
versity, evolving knowledge bases, and real-time
performance requirements. Future research will fo-
cus on enhancing multi-turn context management,
conducting ablation studies to isolate module con-
tributions, and exploring real-time learning mech-
anisms for continuous adaptation. This work ad-
vances the state-of-the-art in enterprise conversa-
tional AI, providing a robust framework for han-
dling complex, multi-turn interactions efficiently.

6 Limitations and Future Work

While our system demonstrates strong performance
in enterprise customer support scenarios, it is opti-
mized for English language applications and may
require adaptation for multilingual deployments.
Expanding to other languages introduces chal-
lenges such as acquiring labeled training data and
handling linguistic variations, which may increase
operational costs and training time. Additionally,
our intent classifier is trained on domain-specific
datasets, and extending to new domains or indus-
tries will necessitate retraining with relevant data,
impacting both cost and deployment timelines.

Lastly, integrating real-time learning mechanisms
that adapt continuously without periodic retraining
is an avenue for future exploration, providing a
more seamless and cost-effective method for main-
taining system relevance over time. Future work
will also include studies to isolate the impact of the
dialogue context manager and quantify its contri-
bution to system performance, as well as extending
our framework to support multilingual conversa-
tions by improving intent recognition and retrieval
efficiency across diverse languages.
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A Appendix

A.1 Extended Workflow

Feedback-Driven Adaptability. The feedback
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Scenario Query Type Response Type Impact
Predefined FAQ High-confidence intent Canned Response Reduced Latency, Cost

Savings
Contextual Query Low-confidence intent Hybrid (RAG + canned) Increased Coherence,

Cost Saving
Out-of-Domain Query Undefined intent Full RAG pipeline Increased Accuracy

Table 4: Query Handling Scenarios in the Hybrid Framework.

Framework Category Accuracy
(%)

Response Latency
(ms)

Cost Efficiency

Canned Response

Predefined FAQ 93 65 1.00

Contextual 49 65 1.00

Out-of-Domain 5 75 0.08

RAG

Predefined FAQ 91 376 0.31

Contextual 92 381 0.31

Out-of-Domain 90 379 0.31

Proposed Framework

Predefined FAQ 96 65 1.00

Contextual 96 182 0.67

Out-of-Domain 93 379 0.32

Table 5: Performance comparison of different frameworks across various categories. Baseline cost efficiency
is established using average latency and accuracy for canned responses across the entire evaluation dataset as
mentioned in Table 2.

defined as follows:

NFR =
NegativeFeedback

TotalQueries

PFR =
PositiveFeedback

TotalQueries

New intents are generated from user feedback and
query patterns, which are processed offline to up-
date the Intent Data Store. Intent classification is re-
fined continuously by an adaptive system feedback
loop. Unresolved queries are logged, clustered on
the basis of semantic similarity, and flagged for
review. When a cluster reaches a certain size, a
new intent is created offline and integrated into the
classifier. Additionally, confidence thresholds are
periodically adjusted based on user feedback to
improve the routing of ambiguous queries.

A.1.1 Intent Evolution through Feedback
In addition to threshold tuning, the system expands
its intent data store based on observed usage pat-

terns and unresolved queries. The intent creation
process operates in the following stages:

1. Logging and Clustering: All unhandled
queries are logged and grouped using seman-
tic similarity clustering.

2. Pattern Detection: If a cluster of unresolved
queries exceeds a predefined frequency thresh-
old, it is flagged for intent creation.

3. New Intent Generation: A new intent is pro-
posed & validated by SMEs, and added to the
Intent Data Store.

This process ensures that frequently occurring un-
resolved queries are automatically handled by the
intent classifier going forward, thereby improving
future query routing.

Improving FAQ Classification via Threshold Ad-
justment

Query: “Why am I seeing high costs for my Oracle
Autonomous Database instance?”



The system classifies this as an FAQ and responds:
Response: "Oracle Autonomous Database costs
depend on the compute shape, storage capacity,
and workload type. You can adjust your settings to
optimize cost."

However, users frequently provide negative feed-
back, indicating that the response lacks details on
Auto Scaling, Always Free tier limits, and OCI
pricing policies. This causes NFR to increase, lead-
ing to an increase in τFAQ. The system becomes
more selective in assigning queries to FAQs. More
complex cost-related queries are routed to context-
aware retrieval mechanisms rather than FAQs.

Intent Creation for Repeated OOD Queries
Query: “How do I configure OCI Object Storage
to replicate data to another region?”

Initially, the system classifies this as Out-of-
Domain (OOD), as no existing intent covers cross-
region object storage replication. However, after
multiple users ask similar questions, the system
clusters these unresolved queries. Once the cluster
surpasses the predefined frequency threshold, it is
flagged for new intent creation by SMEs:

New Intent: “OCI Object Storage Cross-Region
Replication”
Associated Response: “Detailed steps to enabled
and configure cross-region replication as deter-
mined by SME”

The system proactively resolves similar future
queries by classifying them under the newly created
intent. Users receive accurate responses immedi-
ately instead of being redirected to general support.

Proposed Framework. The workflow of the pro-
posed system is summarized in Table 4

A.2 Detailed Performance Comparison
This section provides a detailed breakdown of the
performance of the proposed hybrid framework
compared to baseline systems (Canned Response
System) and RAG Pipeline across different query
categories: Predefined FAQs, Contextual Queries,
and Out-of-Domain Queries. The metrics include
accuracy, response latency, and cost efficiency,
highlighting the strengths and trade-offs of each
approach.

Analysis The results in Table 5 demonstrate the
trade-offs between accuracy, latency, and cost effi-
ciency:

• Predefined FAQs: The proposed framework
achieves a balance, with similar accuracy with
the canned-response system while reducing la-
tency by 82% compared to the RAG pipeline.

• Contextual Queries: The proposed frame-
work strikes a balance between RAG’s accu-
racy (92%) and the canned-response system’s
latency (65ms), achieving 96% accuracy with
an acceptable latency of 182ms.

• Out-of-Domain Queries: The RAG Pipeline
and the proposed framework have a very simi-
lar latency and performance with our proposed
framework have slight better accuracy (3%)
owing to the better handling of context and
queries.

A.3 In-House Dataset Overview
The evaluation leveraged a in-house dataset on
customer support for OCI Cloud based Services
of 10,000 queries across three categories: prede-
fined FAQs, contextual queries, and out-of-domain
queries. Table 6 provides a sample of the queries
used in the evaluation.

For BERT fine-tuning, we used in-house conversa-
tional dataset which is domain specific, with 35,000
human-customer conversations curated over a pe-
riod of 6 months.

A.4 Multi-Turn Interaction Examples
To demonstrate the framework’s adaptability, Ta-
ble 7 outlines examples of evolving user queries
and how the system dynamically adapts to maintain
coherence.

A.5 Failure Cases and Error Analysis
We conducted a manual error analysis on 500 dia-
logue samples spanning diverse user intents. Three
independent annotators with experience in enter-
prise conversational AI systems evaluated these
dialogues, with an inter-annotator agreement of
0.91 (Cohen’s Kappa). Inter-annotator agreement
was calculated by comparing the categorical labels
assigned (out of 4 shown below) by each annota-
tor across all 500 dialogue samples. Annotators
independently labeled each dialogue, and disagree-
ments were resolved through discussion to refine
the labeling criteria. The high agreement score
(0.91) reflects consistency in identifying and cate-
gorizing errors across evaluators.

Errors were categorized as follows:



Query Category Confidence Level
How do I reset my password? Predefined FAQ 0.95

What are the steps to integrate autoscaling? Contextual 0.70

What are compliance requirements for data? Out-of-Domain 0.40

Can you elaborate on scaling options? Multi-Turn Follow-Up 0.75

Table 6: Sample Queries from the in-house Dataset.

Turn User Query Framework System Response
1 What are the steps to enable ad-

vanced analytics?
Canned Response Analytics can be enabled in the dash-

board settings.

2 Can you explain what metrics are
available?

Hybrid Response Available metrics include user engage-
ment, retention, and revenue.

3 How can I visualize these metrics
effectively?

RAG Response Visualization tools like Tableau and
Power BI integrate seamlessly with our
platform.

4 What steps are required to con-
nect Tableau?

Hybrid Response Refer to the integration settings under
"Analytics" and provide your Tableau
API key.

5 Are there any tutorials for ad-
vanced analytics setup?

RAG Response Yes, detailed tutorials can be found in
the documentation section under "Ad-
vanced Analytics."

Table 7: Multi-Turn Example Showcasing Evolving Intents and Follow-Ups.

• Edge Cases in Intent Classification (21%
of errors): Queries were misclassified due to
subtle semantic differences. For example, the
query “Can you assist with integrating API X
for multi-platform deployment?” was routed
to a general FAQ response about API usage
due to high lexical similarity.

• Long Multi-Turn Dialogues (35% of er-
rors): In conversations exceeding 10 turns,
latency increased, and context tracking some-
times failed. For instance, after handling a
billing query, the system mistakenly retained
billing context when the user shifted to tech-
nical support.

• Retrieval Inaccuracy (25% of errors):
Some queries led to incomplete or off-topic
document retrieval. For example, a query like

“Provide the latest number of regions your
cloud service is available in” retrieved out-
dated documents due to incomplete index up-
dates.

• Feedback Misalignment (19% of errors):
User feedback was sometimes misinterpreted.
For instance, a user rated a correct response

poorly due to slow response time rather than
content accuracy, leading to unnecessary ad-
justments in the intent classifier.

Table 8 summarizes these failure cases and sug-
gested remedies. This detailed error analysis high-
lights both the strengths of our system and areas
for future improvement.

A.6 Prototype Implementation
The framework is implemented as a modular sys-
tem using microservices:

• Frontend: Built with React.js for user inter-
action and feedback collection (Contributors,
2023).

• Backend: Flask microservices handle query
classification, retrieval, and feedback process-
ing (Grinberg, 2018).

• Storage: Elasticsearch stores canned re-
sponses & external knowledge base, while
FAISS and dense embeddings support re-
trieval (Karpukhin et al., 2020).

• Memory Cache: A memory-augmented mod-
ule maintains embeddings of prior inter-



Scenario Issue Remedy Error Distribu-
tion (%)

Edge Cases in Intent Classification Query incorrectly routed to
canned responses

A stronger fallback strategy
could improve reliability

21% (7/32)

Long Multi-Turn Dialogues Latency for very long conver-
sations

Optimize dialog context man-
ager to reduce latency.

35% (11/32)

Retrieval Inaccuracy Incomplete or outdated docu-
ments retrieved

Regular index updates and im-
proved retrieval ranking

25% (8/32)

Feedback Misalignment User feedback misinterpreted
during adjustments

Implement context-aware
feedback processing

19% (6/32)

Table 8: Failure Cases and Suggested Remedies. A total of 32 erroneous dialogues were identified out of 500 tested
samples.

actions in OCI Cache (Managed Redis), al-
lowing the system to retain relevant historical
context across multiple dialogue turns.

• Model Deployment: Models (e.g., BERT, En-
coder, Cross-Encoder, GPT-3 & other propri-
etary LLMs) are deployed using in-house ar-
chitecture and OCI Gen AI Service for scala-
bility.

B Technical Implementation of
Multi-Turn Adaptation

The Dialogue Context Manager is implemented
using a transformer-based architecture with the fol-
lowing components:

• Context Embeddings: Queries are encoded
using fine-tuned BERT embeddings capturing
semantic information and historical contexts
are encoded using an in-house Bi-Encoder.

• Memory Module: A memory-augmented
module maintains embeddings of prior inter-
actions in cache (Redis), allowing the system
to retain relevant historical context across mul-
tiple dialogue turns.

• Context Attention Mechanism: An atten-
tion layer prioritizes recent or semantically
relevant interactions, dynamically retrieving
context embeddings as input to the intent clas-
sifier and response generator.

• Sliding Context Window: Implements a
fixed-length sliding window to limit the mem-
ory footprint and computational complexity
by retaining only the most relevant context
from prior turns.

The context manager utilizes the embeddings and
attention scores to generate a composite represen-
tation of the current dialogue state, which is passed
to downstream components, such as the hybrid
response generator. The dynamic adaptation en-
sures responses remain coherent and contextually
grounded in multi-turn settings.

C Technical Implementation of Hybrid
Routing

Hybrid routing combines canned responses and
RAG outputs using a confidence-based decision-
making pipeline:

• Confidence Scoring: The intent classifier as-
signs a confidence score to each query based
on the similarity between the query embed-
ding and predefined intent embeddings.

• Thresholding Mechanism: Queries with a
confidence score above a pre-defined thresh-
old (e.g., 85%) are routed to the canned re-
sponse repository for rapid resolution.

• Response Generation: For low-confidence
queries or multi-turn scenarios, responses are
generated by blending canned responses with
retrieved content from the RAG pipeline. Sam-
ple prompt used for blending the responses
using confidence scores is shown in Figure 2

This mechanism optimizes query handling for di-
verse scenarios while ensuring minimal latency and
maximal accuracy.



Figure 2: Prompt for Blending Responses

D Feature Limitations & Related Future
Work

D.1 Limitations

Despite the strong performance of the proposed
framework on a variety of metrics, certain feature-
specific limitations remain:

• Edge Cases in Intent Classification: Ambigu-
ous queries near confidence thresholds may
cause inconsistencies, as seen in our error
analysis, where subtle semantic differences
led to misclassification. A stronger fallback
strategy could improve reliability.

• Latency in Long Multi-Turn Dialogues: La-
tency issues for very long conversations (over
10 turns) were identified in 30% of errors,
highlighting the need to optimize the dialogue
context manager for faster context updates.

• Retrieval Inaccuracy: Incomplete or outdated
document retrieval (20% of errors) due to in-
dex inconsistencies highlights the need for
regular index updates and improved retrieval
ranking.

• Feedback Misalignment: User feedback mis-
interpretation (10% of errors) occasionally

led to suboptimal adjustments, suggesting the
need for context-aware feedback processing.

D.2 Future Work
Future research could address these limitations by:

• Developing advanced intent detection tech-
niques and fallback mechanisms to handle
ambiguous and low-confidence queries more
effectively.

• Enhancing multi-turn context tracking with
memory-augmented models to improve coher-
ence across long dialogues.

• Implementing regular index updates and fine-
tuned retrieval processes to ensure accurate
document retrieval.

• Integrating context-aware feedback process-
ing to ensure accurate adaptation of system
responses based on user ratings.

• Exploring distributed architectures and load-
balancing techniques for scalability under
peak query loads.


